2-2双水相萃取
- 格式:ppt
- 大小:964.00 KB
- 文档页数:38
双水相萃取的原理及应用1. 引言双水相萃取是一种常用的分离和提取技术,它利用两种不相溶的溶剂,即水相和有机相,在液-液界面上进行分相和萃取。
该技术具有高效、简便、环保等特点,被广泛应用于化学、生物、环境等领域。
本文将介绍双水相萃取的原理和一些常见的应用。
2. 双水相萃取的原理双水相萃取的原理基于不同溶剂之间的亲疏水性差异,以及化合物在两种溶剂中的分配系数。
在水相和有机相的界面上,亲水性较强的化合物会向水相转移,而亲水性较弱的化合物则会向有机相转移。
这样,在两相之间可实现化合物的分离和富集。
3. 双水相萃取的步骤双水相萃取通常包括以下几个步骤:•第一步:选择合适的水相和有机相溶剂。
一般情况下,水相为水,有机相为有机溶剂如乙醚、丙酮等;•第二步:将待提取物溶解在适量的水相溶液中,并加入适量的有机相溶液;•第三步:进行充分摇匀和混合,使两相形成均匀混合体;•第四步:静置一段时间,使两相分离,从而形成上下两层液相;•第五步:将两相分离,分别收集上下相中的物质。
4. 双水相萃取的应用4.1. 生物化学•蛋白质分离纯化:双水相萃取可用于蛋白质的富集和纯化,对于分子量较大的蛋白质特别有效;•酶的富集:通过双水相萃取,可以有效地从复杂的酶混合物中富集目标酶,提高其活性和纯度;•生物活性物质的提取:双水相萃取可用于提取天然产物中的生物活性物质,如草药提取液中的有效成分。
4.2. 环境科学•水样前处理:对于含有大量有机物的水样,双水相萃取能够有效地去除有机物,净化水质;•环境污染物的富集:通过双水相萃取,可以将水中微量的有机污染物富集到有机相中,方便进一步分析和检测。
4.3. 化学合成•有机合成中的分离提取:在化学合成过程中,双水相萃取可用于分离和富集目标化合物,提高产率和纯度。
5. 结论双水相萃取是一种高效、简便、环保的分离和提取技术,适用于多个领域。
它的原理基于不同溶剂之间的亲疏水性差异,通过分配系数的差异实现化合物的分离和富集。
双水相萃取的名词解释双水相萃取是萃取的一种方法。
两种水溶性不同的聚合物,或一种聚合物和无机盐的混合溶液,在一定的浓度下,其体系会自然分成互不相溶的两相。
当被分离物质进入双水相体系后,由于表面性质、电荷间作用和各种作用力等的影响,被分离物质在两相间的分配系数不同,导致其在上下相的浓度不同,即可达到分离的目的。
早在1896年人们就已观察到,明胶与琼脂,或明胶与可溶性淀粉溶液混合时,会得到一种不透明的混合溶液。
静置后可分为两相,上相中含有大部分的明胶,下相中含有大部分琼脂(或淀粉),这种现象称为聚合物的不相容性,从而产生了双水相。
双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。
当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境的影响,使其在上、下相中的浓度不同。
分配系数K等于物质在两相的浓度比。
各种物质的K值不同,例如各种类型的细胞粒子、噬菌体等分配系数都大于100或小于0.01,酶、蛋白质等生物大分子的分配系数在0.1~10之间,而小分子盐的分配系数在1.0左右。
因而,双水相体系对生物物质的分配具有很大的选择性。
双水相的优势ATPE作为一种新型的分离技术,对生物物质、天然产物、抗生素等的提取、纯化表现出以下优势:(1)含水量高(70%--90%),在接近生理环境的体系中进行萃取,不会引起生物活性物质失活或变性;(2)可以直接从含有菌体的发酵液和培养液中提取所需的蛋白质(或者酶),还能不经过破碎直接提取细胞内酶,省略了破碎或过滤等步骤;(3)分相时间短,自然分相时间一般为5min~15 min;(4)界面张力小(10-7~10-4mN/m),有助于两相之间的质量传递,界面与试管壁形成的接触角几乎是直角;(5)不存在有机溶剂残留问题,高聚物一般是不挥发物质,对人体无害;(6)大量杂质可与固体物质一同除去;(7)易于工艺放大和连续操作,与后续提纯工序可直接相连接,无需进行特殊处理;(8)操作条件温和,整个操作过程在常温常压下进行;(9)亲和双水相萃取技术可以提高分配系数和萃取的选择性。
三、双水相萃取3.1 双水相萃取的原理及特点3.1.1 双水相萃取的原理双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。
当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同。
分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。
3.1.2 双水相萃取的特点双水相体系萃取具有如下特点:(1)含水量高(70%~90%),是在接近生理环境的温度和体系中进行萃取,不会引起生物活性物质失活或变性;(2)分相时间短,自然分相时间一般为5~15min;(3)界面张力小(10-7~10-4mN/m),有助于强化相际间的质量传递;(4)不存在有机溶剂残留问题;(5)大量杂质能与所有固体物质一同除去,使分离过程更经济;(6)易于工程放大和连续操作。
由于双水相萃取具有上述优点,因此,被广泛用于生物化学、细胞生物学和生物化工等领域的产品分离和提取。
3.2 双水相萃取在分离和提取各种蛋白质(酶)上的应用用聚乙二醇(PEG)/羟丙基淀粉酶(Reppal PEG)体系经两步法可从黄豆中分离磷酸甘油酸激酶(PGK)和磷酸甘油醛脱氢酶(GAPDH)。
在黄豆匀浆中加入PEG4000,可絮凝细胞碎片及大部分杂蛋白。
在上清液中加入PEG4000(12%)-ReppalPES(40%),PGK在上相、GAPGH在下相的收率均在80%以上。
萃取过程的放大采用离心倾析机连续处理匀浆液,用离心萃取器完成双水相体系的两相分离,整个工艺具有处理量大、接触时间短、酶收率高的特点。
用PEG/(NH4)2SO4双水相体系,经一次萃取从A-淀粉酶发酵液中分离提取α-淀粉酶和蛋白酶,萃取最适宜条件为PEG1000(15%)-(NH4)2SO4(20%),pH=8,α-淀粉酶收率为90%,分配系数为19.6,蛋白酶的分离系数高达15.1。