5.7双水相萃取
- 格式:ppt
- 大小:2.39 MB
- 文档页数:55
双水相萃取技术双水相体系简介( 双水相体系简介(Aqueous two phase extraction, ATPE) )早在1896年,Beijerinck发现,当明胶与琼脂或明胶与可溶性淀粉溶液相混时,得到一个混浊不透明的溶液,随之分为两相,上相富含明胶,下相富含琼脂(或淀粉), 这种现象被称为聚合物的不相溶性(incompatibility),从而产生了双水相体系(Aqueous two phase system,ATPS)。
双水相萃取原理双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。
当物质进入双水相体系后,由于表面性质、电荷作用和各种力( 如憎水键、氢键和离子键等) 的存在和环境的影响,使其在上、下相中的浓度不同。
对于某一物质,只要选择合适的双水相体系,控制一定的条件,就可以得到合适的分配系数,从而达到分离纯化之目的。
双水相的形成双水相系统PEG = 聚已二醇Kpi = 磷酸钾DX = 葡聚糖(dextran双水相体系的分类高聚物/高聚物双水相体系高聚物/无机盐双水相体系低分子有机物/无机盐双水相体系表面活性剂双水相体系双水相萃取体系的特点1) 整个体系的含水量高(70%~90%), 萃取是在接近生物物质生理环境的条件下进行,故而不会引起生物活性物质失活或变性;2) 单级分离提纯效率高。
通过选择适当的双水相体系,一般可获得较大的分配系数,也可调节被分离组分在两相中的分配系数,使目标产物有较高的收率;3) 传质速率快,分相时间短。
双水相体系中两相的含水量一般都在80%左右,界面张力远低于水-有机溶剂两相体系,故传质过程和平衡过程快速;4) 操作条件温和,所需设备简单。
整个操作过程在室温下进行,相分离过程非常温和,分相时间短。
大量杂质能与所有固体物质一起去掉,大大简化分离操作过程;双水相萃取体系的特点5) 过程易于放大和进行连续化操作。
双水相萃取易于放大,各种参数可以按比例放大而产物收率并不降低,易于与后续提纯工序直接相连接,无需进行特殊处理,这对于工业生产来说尤其有利;6) 不存在有机溶剂残留问题,高聚物一般是不挥发性物质,因而操作环境对人体无害;7) 双水相萃取处理容量大,能耗低。
双⽔相萃取技术双⽔相萃取技术(two-aqueous phase extraction)⼀、前⾔近年来,随着基因⼯程、蛋⽩质⼯程、细胞培养⼯程、代谢⼯程等⾼新⽣物技术研究⼯作的⼴泛展开,各种⾼附加值的⽣化新产品不断涌现,对⽣化分离技术也提出了越来越⾼的要求。
与上游过程相⽐,⽬前作为下游过程的⽣化分离纯化技术往往存在步骤多,收得率低,处理时间长,重复性差等缺点,这样便严重阻碍了⽣物技术的⼯业化发展。
因此,就迫切需要⼀种分离步骤少,收得率⾼,处理时间短,并且易于放⼤的⽣化分离纯化技术,双⽔相萃取技术就满⾜了这⼀需要。
特别是基因⼯程技术的发展,需要从细胞中提取⾼质量的遗传物质,由于细胞破碎后,在溶液中存在⼤量的轻质细胞碎⽚,给遗传物质的提取形成了很⼤的⼲扰,通常通过离⼼分离和溶剂萃取难以得到⾼纯度⾼活性的遗传物质,⽽通过双⽔相初步提取,可以使⽬标物和轻质碎⽚得到很好的分离,且⽬标物的活性⼏乎没有损失。
因此双⽔相萃取技术得到了很⼤的重视,并且在近20年⾥取得了较⼤的发展。
⼆、发展史双⽔相萃取技术⼜称之为⽔溶液两相分配技术(Partition of two aqueous phase system)1、1896年,Beijernek 在琼脂和可溶性淀粉或明胶混合时,发现这种混合溶液能较快地分为两层,他把这种现象称之为聚合物的“不相容性”(incompatibility)――――体系的发现2、1956年瑞典伦得(Luhd)⼤学的Albertson发现双⽔相萃取技术可⽤于蛋⽩质的选择分离,但⽬标蛋⽩同成相⾼聚物的分离是影响了其⼤规模⼯业应⽤。
――――――――――发现可以⽤于分离提纯3、20世纪70年代中期西德的Kula和Kroner等⼈⾸先将双⽔相技术应⽤于从细胞匀浆液中提取酶和蛋⽩质,从⽽⼤⼤改善了胞内酶的提取过程,提⾼了酶的收得率。
―――――――利⽤于活性物质的提取4、1989年,Diamond等⼈以Flory-Huggins理论为基础,推导出⽣物分⼦在双⽔相体系中的分配模型,但有局限性,仍需继续探索,不断完善。
双水相萃取操作步骤
嘿,朋友们!今天咱来聊聊双水相萃取那些事儿。
这双水相萃取啊,就像是一场奇妙的分离魔法。
首先呢,你得准备好你的“魔法材料”,也就是各种试剂和样品啦。
这就好比要做好一顿美味大餐,食材可得精挑细选呀。
然后就是搭建“魔法舞台”啦。
把需要分离的混合物放进去,就像把
各种食材放进锅里一样。
这时候,你就等着看它们在这个特殊的“舞台”上开始表演啦。
接下来,就是关键的时刻啦!就像一场精彩的魔术,两种互不相溶
的水相开始形成,目标物质会在其中一相中富集起来。
你看,多神奇呀!
在这个过程中,可不能马虎哦。
要时刻关注着,就像照顾小婴儿一
样细心。
温度啦、浓度啦,都得把握好,不然这场“魔法”可就施展不
顺利咯。
想象一下,如果温度不合适,就好像炒菜时火候没掌握好,那结果
可就不那么美妙啦。
而且呀,不同的物质在双水相系统中的分配情况可是不一样的哟。
这就跟不同的人有不同的性格似的,得慢慢去了解,去摸索最佳的条件。
等呀等呀,终于到了收获成果的时候啦。
把富含目标物质的那一相分离出来,就像从一堆杂物中找到了自己最心爱的宝贝一样,那种喜悦感,真是没法形容。
你说这双水相萃取是不是很有意思呀?它能帮我们把那些复杂混合物中的宝贝给找出来,让它们为我们所用。
所以呀,大家可别小看了这看似简单的操作步骤,这里面的学问可大着呢!只有认真对待,才能让双水相萃取这个“魔法”发挥出最大的威力呀。
总之呢,双水相萃取就是这样一个充满魅力的技术,让我们在科学的世界里不断探索,不断发现新的惊喜。
大家都快去试试吧!。
蛋白分离纯化技术之双水相萃取技术双水相萃取是一项蛋白分离和蛋白纯化技术,是利用物质在两相间的选择分配差异而进行分离提纯的,目前已经被广泛应用与医药化学、细胞生物学、生物化工和食品工业等领域。
双水相萃取技术用于提取蛋白质等生物活性物质时,具有操作简单、体系含水量高,在萃取过程中可以保持物质的构象稳定、蛋白不易失活并获得高的萃取率的特点。
1、双水相萃取技术可分离和纯化蛋白双水相萃取技术可以用于蛋白分离和蛋白纯化,包含在一些蛋白分离公司提供的服务。
早期,如在20世纪60年代,有研究者全面进行了生物大分子在双水相系统中的分配行为的研究,得到了蛋白质、酶、核酸、病毒、抗体抗原复合物以及细胞等的分配数据。
双水相系统具有温和的操作条件,对于在极性条件下易造成变性失活的蛋白质和酶的提取中表现出了很大的优势。
双水相萃取法进行蛋白分离和蛋白纯化的原理是:聚合物与聚合物之间或聚合物与盐之间由于分子空间阻碍作用形成了双水相。
当待分离物质进入体系后,由于各组分表面性质、电荷作用和各种力的作用和溶液环境的影响,使其在上、下相中的分配系数不同,通过调节体系参数使被分离物质在两相间选择性分配,从而实现目标组分的分离纯化。
双水相萃取技术进行蛋白分离和蛋白纯化具有以下优点:(1)易于放大,各种参数可以按照比例放大而不降低产物收率[1];(2)双水相系统传质和平衡过程速度快,回收效率高、能耗较小;(3)易于进行连续化操作、设备简单,且可以直接与后续提纯工序相连接,无需进行特殊处理;(4)相分离条件温和,双水相体系的张力很小,有利于保持生物分子的活性,可以直接用在发酵液中;(5)影响双水相体系的因素比较复杂,可调参数多,便于改变操作条件提高纯化效果。
美迪西提供蛋白质分离纯化技术服务,可以根据客户要求,提供从小试到规模生产全程的蛋白分离纯化服务,并根据工艺的要求结合产品特点给客户定制适用的工艺和系统。
2、双水相萃取技术分离和纯化物质的研究α-淀粉酶是一类用途十分广泛的酶,在粮食、食品加工,以及医药行业等都经常使用,由于α-淀粉酶是具有重要应用价值的工业酶,周内外很多课题组对它进行了研究。
第七章双水相萃取第一节概述基因工程产品如蛋白质和酶往往是胞内产品,需经细胞破碎后才能提取、纯化,细胞颗粒尺寸的变化给固—液分离带来了困难,同时这类产品的活性和功能对pH值、温度和离子强度等环境因素特别敏感,由于它们在有机溶剂中的溶解度低并且会变性,而且大部分蛋白质分子有很强的亲水性,不能溶于有机溶剂中,因此传统的溶剂萃取法并不适合。
采用在有机相中添加表面活性剂产生反胶束的办法可克服这些问题,但同样存在相的分离。
因此基因工程产品的商业化迫切需要开发适合大规模生产的、经济简便的、快速高效的分离纯化技术。
其中双水相萃取技术,又称水溶液两相分配技术是近年来出现的引人注目、极有前途新型分离技术。
双水相萃取就是针对生物活性物质的提取所开发的一种新型液一液萃取分离技术。
双水相萃取法的特点是能够保留产物的活性,整个操作可以连续化,在除去细胞或细胞碎片时,还可以纯化蛋白质2~5倍,与传统的过滤法和离心法去除细胞碎片相比,无论在收率上还是成本上都要优越得多见表11.1所示。
双水相萃取法和传统的酶粗分离方法(如盐析或有机溶剂沉淀等)相比也有很大的优势,如以 -半乳糖苷酶为例,用沉淀或双水相萃取纯化的比较见表11.2。
除此以外,处理量相同时,双水相萃取法比传统的分离方法,设备需用量要少3~10倍,因此已被广泛地应用在生物化学、细胞生物学和生物化工领域,进行生物转化、蛋白质、核酸和病毒等产品的分离纯化和分析等。
用此法来提纯的酶已达数十种,其分离过程也达到相当规模,如甲酸脱氢酶的分离已达到几十千克湿细胞规模,半乳糖苷酶的提取也到了中试规模等。
近年来又进行了双水相萃取小分子生物活性物质,如红霉素、头孢菌素C、氨基酸的研究和亲和双水相萃取的研究,大大扩展了应用范畴并提高了选择性;使双水相萃取技术具有更大的潜力和宽阔的前景。
双水相萃取现象最早是1896年由Beijerinck在琼脂与可溶性淀粉或明胶混合时发现的这种现象被称为聚合物的“不相溶性”。
双水相萃取技术
实验原理
双水相系统中使用的双水相是由两种不相溶的高分子溶液或者互不相溶的盐溶液和高分子溶液组成。
双水相系统的制备,一般是将两种溶质分别配成一定浓度的水溶液,然后将两种溶液按照不同的比例混合,静止一段时间,当两种溶质的浓度超过某一浓度范围时,就会产生两相。
实验器材
聚乙二醇、硫酸钠(硫酸铵)、烧杯、玻璃棒、量筒、分析天平实验步骤
1、双水相系统的制备
(1)分别配制浓度为6g/100ml、10g/100ml、14g/100ml聚乙二醇溶液各50ml。
(2)配制50ml浓度为14g/100ml的硫酸钠溶液三份。
(3)将不同浓度的聚乙二醇溶液与硫酸钠溶液混合,充分搅拌,静置分层,得到3份双水相系统。
2、观察双水相系统,高浓度双水相系统如不成两相,可定量添加聚乙二醇和硫酸钠的高浓度溶液。
3、向双水相体系加入反应液。