人教版八年级数学下19.一次函数预习导学案
- 格式:wps
- 大小:25.50 KB
- 文档页数:1
八年级数学下册19.2.2.2 一次函数导学案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册19.2.2.2 一次函数导学案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册19.2.2.2 一次函数导学案(新版)新人教版的全部内容。
19。
2.2.2 一次函数预习案一、学习目标1、学会运用待定系数法和数形结合思想求一次函数解析式;2、能通过函数解决简单的实际问题。
二、预习内容预习课本十九章第二节P93—95内容。
1、待定系数法:先,再根据条件确定解析式中,从而具体写出这个的方法,叫做待定系数法.2、一次函数的函数解析式一般设为 .三、预习检测1、、若一次函数y=—x+b的图象经过点(3,2),则一次函数的解析式为()A.y=x+1 B.y=-x+5 C.y=—x-5 D.y=—x+12、一次函数y=2mx+m2—4的图象经过原点,则m的值为()A.0 B.2 C.-2 D.2或-23、如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元 D.0。
5元探究案一、合作探究(15min)探究一:1、已知一次函数的图象过点 (3,5) 与(—4,—9),求这个一次函数的解析式。
分析:求一次函数的解析式,关键是求出的值。
从已知条件列出二元一次方程组,得出答案。
结论:先 ,再根据条件确定解析式中,从而具体写出这个的方法,叫做待定系数法.待定系数法的一般步骤: 。
第19章一次函数复习(一)一、知识梳理1。
一次函数的概念。
函数y=_______(k、b为常数,k______)叫做一次函数。
当b_____时,函数y=____(k____)叫做正比例函数.理解一次函数概念应注意下面两点:(1)解析式中自变量x的次数是___次, 比例系数_____.(2)正比例函数是一次函数的特殊形式 .2.平移与平行的条件。
(1)把y=kx的图象向上平移b个单位得y= ,向下平移b个单位得y= .(2)若直线y=k1x+b与y=k2x+b平行,则,。
反之也成立 .3.正比例函数的图象与性质.(1)图象:正比例函数y=kx (k是常数,k≠0))的图象是经过的一条直线,我们称它为直线y=kx.(2)性质:当k>0时,直线y= kx经过第象限,从左向右上升,即随着x的增大y也;当k<0时,直线y=kx经过第象限,从左向右下降,即随着 x的增大y反而。
4。
一次函数的图象及性质.(1)一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的__________.(2)性质:当k>0时,从左向右上升,即随着x的增大y也;当k〈0时,从左向右下降,即随着 x的增大y反而 .5.一次函数y=kx+b(k≠0)k的作用及b的位置.k决定直线的方向和直线的陡、平情况k>0,。
b>0,。
k<0,。
b<0, .越大直线越。
二、题型、技巧归纳考点一一次函数的概念例1、关于x的函数y=(m—2)+2+m是一次函数,则m=____考点二平移和平行问题例2、直线y=kx+b与y= -5x+1平行,且经过(2,1),则k= ,b= 。
考点三正比例函数的图象与性质例3、正比例函数y=(1—2m)x的图像经过点A()和点B(),当时,则m的取值范围是 .考点四一次函数的性质例4.已知一次函数y=kx-k,若y随着x的增大而减小,则该图象经过( )A、第一、二、三象限B、第一、二、四象限C、第二、三、四象限D、第一、三、四象限考点五一次函数图象例5、如图,在同一直角坐标系中,关于x的一次函数y = x+ b与 y = bx+1的图象只可能是( )三、随堂检测1、若函数y=kx+b (k,b 为常数,k≠0)的图象如图所示,那么当y<0时,x 的取值范围是( )。
新人教版八年级数学下册第十九章《一次函数(第一课时)》导教学设计1、在列函数剖析式的基础上认识什么是一次函数。
学习目标2、弄清正比率函数和一次函数间的关系。
3、成立学生应用数学知识解决实际问题的意识。
认识一次函数重点:一次函数剖析式的特点难点: 1、一次函数剖析式的特点。
2、一次函数与正比率函数关系的正确理解一、课前学习1、函数的看法是2、正比率函数的看法是3、正比率函数图象性质是:4、某登山队大本营所在地的气温为15° , 海拔每高升1km气温下降6℃ . 登山队员由大本营向上登高x km时 , 他们所处的地址的气温是y℃ .试用剖析式表示y 与 x 的关系:这个函数是正比率函数吗?它与正比率函数有什么不同样?这种形式的函数叫函数5、以下问题中,变量之间的对应关系是函数关系吗?若是是,请写出函数剖析式。
(注意范围)( 1)有人发现,在20~ 25℃时蟋蟀每分钟鸣叫次数 C 与温度 t (℃)有关,即C?的值约是t 的7倍与35 的差。
( 2)有一种计算成年人标准体重G(单位: kg )的方法是:以厘米为单位量出身高值h,再减常数 105, 所得差是G的值。
( 3)某城市的市内电话的月收费额y(元)包括:月租费22 元,拨打电话x 分的计时费(按0. 1 元 / 分收取)。
( 4)把一个长 10cm,宽 5cm的矩形的长减少xcm,宽不变,矩形面积2y(单位: cm)随 x 的值而变化 .上面这些函数的形式都是自变量x 的 k(常数)倍与一个常数的.若是我们用b 来表示这个常数的话.?这些函数形式就可以写成:6、一次函数的看法:一般地,形如的函数叫一次函数。
(1)自变量系数(常数) k≠ 0;(2) 自变量 x 的次数为 1;( 3)当 b=0 时, y=kx+b 即 y=kx ,故正比率函数是一次函数。
一次函数与正比率函数的辨证关系可以用以下列图来表示:二、交流与显现:小组内完成下面各题。
人教版数学八年级下第19章《一次函数》导学案共28页19.1变量与函数学习目标、重点、难点【学习目标】1、常量、变量的概念;2、函数的概念和其3种表示方法(列表法、图象法、解析法),自变量的取值范围;3、图象的定义;4、描点法画函数图象的一般步骤;【重点难点】1、函数的概念和其3种表示方法(列表法、图象法、解析法),自变量的取值范围;2、描点法画函数图象的一般步骤;新课导引有资料显示,影响气温有三个方面的因素,即纬度位置、海陆位置和地形.其中,地形对气温的影响是巨大的,地理学家经过多年探测和研究发现,海拔每升高100米,气温下降0.6℃.【问题探究】 如果山脚的气温是24℃,那么相对山脚高度为2000米的山顶的气温又如何呢?相对山脚高度为x 米处的气温又如何表达呢?【解析】 山脚的气温为24℃,相对山脚高度为2000米的山顶的气温应比24℃低,降低的温度为0.6×1002000=0.6×20=12(℃),故可知相对山脚高度为2000米的山顶气温为24-12=12(℃).同理,相对山脚高度为x m 处的气温可表示为(24-0.6×100x )℃教材精华知识点1常量与变量不同的事物在变化过程中,有些量的值是按照某种规律变化的,有些量的值是始终不变的.在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.拓展 常量与变量是相对的,判断常量与变量的前提条件是“在某一变化过程中”,在不同的变化过程中,同一个量在不同过程中可能不同.如工作量问题,工作量=工作效率×工作时间,若工作量一定,则工作效率、工作时间为变量;若工作效率一定,则工作量、工作时间为变量.知识点2 函数的概念一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.函数的定义中包括三个要素:(1)自变量的取值范围;(2)两个变量之间的对应关系;(3)后一个变量被唯一确定而形成的变化范围.拓展 (1)自变量与函数都用什么字母表示无关紧要,自变量可用x 表示,也可用t ,u ,p ,…中的任何一个字母表示,函数可用y 表示,也可用s ,v ,q ,…中的任何一个字母表示.(2)在我们所研究的范围内,有时两个变量之间虽然有一定的关系,但却不符合函数中的对应关系,也就是说,这种关系不是“唯一确定”的关系,那么这两个变量之间就不存在函数关系.(3)函数不是数,函数的本质是对应,函数关系就是变量之间的对应关系,且是一种特殊的对应关系.必须是“对于x的每一个值,y都有唯一的值与之对应”.例如:“一个数与它的绝对值”,若一个数用x表示,它的绝对值用y表示,其中x可以取任意实数,即自变量的取值范围是全体实数,对应关系是一个数与它的绝对值对应,一个数的绝对值是这个数的函数.规律方法小结确定函数关系的方法:判断变量之间是否构成函数关系,就是看是否存在两个变量.并且在这两个变量中,确定好哪个是自变量,哪个是因变量,自变量在变化过程中处于主动地位,因变量在变化过程中处于被动地位,自变量每变一个值,因变量都必须有唯一确定的值与它相对应,这样,它们才能构成函数关系.知识点3 函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式.我们应从以下几个方面来理解函数关系式的概念:(1)函数关系式是等式.例如:y=2x+3就是一个函数关系式,我们可以说代数式2x+3是x 的函数,但不能说2x+3是函数关系式.(2)函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个变量表示函数.例如:y=2x2+3中,y是x的函数,x是自变量.(3)书写函数关系式是有顺序的.例如:y=x-3表示y是x的函数;若x=y+3,则表示x是y的函数.也就是说,求y关于x的函数关系式,必须用自变量x的代数式表示y,即得到的等式的左边是一个变量y,右边是一个含x的代数式.(4)用数学式子表示函数的方法叫解析法.知识点4 自变量的取值范围的确定函数自变量的取值范围的确定必须考虑两个方面:首先,自变量的取值必须使含自变量的代数式有意义;其次,自变量的取值应使实际问题有意义.这两个方面缺一不可,尤其是后者,在学习过程中特别容易忽略.因此,在分析具体问题时,一定要细致周到地从多方面考虑.拓展在函数关系式中,自变量的取值要使函数关系有意义,可分下列几种情况:(1)当函数关系式是一个只含有一个自变量的整式时,自变量的取值范围是全体实数.例如:y =2x-1中,自变量x的取值范围是全体实数.(2)当函数关系式表示实际问题时,自变量的取值必须使实际问题有意义.例如:S=πR2中,若R表示圆的半径,则R>0.(3)当函数关系式是分式时,自变量的取值范围是使分母不为零的实数.(4)当函数关系式是二次根式时,自变量的取值范围是使被开方数不小于零的实数.(5)自变量的取值范围可以是有限或无限的,也可以是几个数或单独的一个数.识点5 函数值函数值是指自变量在取值范围内取某个值时,因变量与之对应的确定的值.拓展(1)①当已知函数解析式时,给出自变量的值,求相应的函数值,就是将自变量x代入解析式,求代数式的值.②当已知函数解析式时,给出函数值,求相应的自变量x的值.就是解方程.③已知函数解析式,当自变量确定时,函数值也唯一确定;当函数值确定时,自变量不一定唯一.(2)当函数与实际问题相联系时,函数值与自变量的值都要使实际问题有意义.规律方法小结已知函数值和函数解析式求自变量的过程体现的是一种方程思想,所谓方程思想,就是指对所求的数学问题通过列方程(组)使问题得以解决的数学思想.知识点6 函数的图象一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.拓展(1)函数的图象可以是直线、射线、线段,也可以是双曲线、抛物线等,要形象直观地反映两个变量之间的对应关系.(2)观察图象时要注意弄清横轴和纵轴表示的意义,自变量的取值范围以及图象中函数值随着自变量变化的规律.规律方法小结(1)①利用函数图象,可以求方程的解、不等式的解集、方程组的解集,还可以预测变量的变化趋势.②通常判断一个点是否在函数图象上的方法是:将这个点的坐标代入函数的表达式,若满足,则这个点就在函数的图象上;若不满足,则这个点就不在函数的图象上.函数图象上的任意点A(x,y)中的x,y满足函数关系式;反之,满足函数关系式的任意一对x,y的值所对应的点一定在函数的图象上.(2)在求方程的解、不等式解集的问题中,还有解决一些实际问题的时候,为了使问题更简单,通常用图象来辅助解决问题,这就体现了另一种数学思想——数形结合思想.所谓数形结合思想,就是将数与形结合起来进行分析、研究、解决问题的一种思想方法.知识点7 用描点法画函数图象的一般步骤用描点法画函数图象的一般步骤:(1)列表:给出一些自变量的值及其对应的函数值.(2)描点:在平面直角坐标系中,以自变量的值为横坐标.相应的函数值为纵坐标,描出表格中数值对应的各点.(3)连线:按照横坐标由小到大的顺序把所描出的各点用平滑的曲线连接起来.拓展(1)列表时要根据自变量的取值范围取值,从小到大或自中间向两边选取,取值要有代表性,尽量使画出的函数图象能反映出函数的全貌.(2)描点时要以表中每对对应值为坐标,点取得越多.图象越准确.(3)连线时要用平滑的曲线将所描的点顺次连接起来.知识点8 函数的三种表示形式列表法:用表格列出自变量与函数的对应值,表示函数两个变量之间的关系.这种表示函数的方法叫做列表法.它的优点是能明显地显示出自变量的值和与之对应的函数值.但它只能把部分自变量的值和与之对应的函数值列出,不能反映出函数变化的全貌图象法:用图象表示两个变量之间的函数关系,这种表示函数的方法叫做图象法.它的优点是能够形象直观地显示出数据的变化规律,为研究函数的性质提供方便,但所画出的图象是近似的、局部的,所以由图象确定的函数往往不够准确.解析法:用自变量x的各种数学运算构成的式子表示函数y的方法叫做解析法.它的优点是简明扼要,规范准确,便于理解函数的性质,但并非适用于所有函数.课堂检测基本概念题1、(1)在圆的周长公式C=2πR中,常量是,变量是;(2)东风村的耕地面积是109 m2,这个村人均占有耕地面积y随这个村的人数x的变化而变化,其中常量是,变量是,解析式为.基础知识应用题2、如图所示,图中有几个变量?你能将其中某个变量看成是另一个变最的函数吗?如果能,求出当t=12时对应的路程s.3、某地区现有果树1 2000棵,计划今后每年栽果树2000棵.(1)求果树总数y(棵)与年数x(年)的函数关系式;(2)预计到第5年该地区有多少棵果树.综合应用题4、李奶奶晚饭以后外出散步,碰到老邻居交谈一会儿,返回途中,在读报栏前看了一会儿报,如图所示的是据此情况画出的图象,请你回答下列问题.(1)李奶奶是在什么地方碰到老邻居的?交谈了多长时间?(2)读报栏大约离家多远?(3)李奶奶在哪段时间走得最快?你是怎么计算的?(4)图中反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?你能将其中某个变量看成是另一个变量的函数吗?请写出0≤t≤15时,s与t的关系式.5、有一个水箱,它的容积为500 L,水箱内原有水200 L,现需将水箱注满,已知每分钟注入水10 L.(1)写出水箱内水量Q(L)与时间t(min)的函数关系式;(2)求自变量t的取值范围;(3)画出函数图象.探索创新题6、如图所示的图象反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s(千米)和行驶时间t(小时)之间的关系,根据所给图象,解答下列问题.(1)写出甲的行驶路程s和行驶时间t(t≥0)之间的函数关系式;(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度?在哪一段时间内,甲的行驶速度大于乙的行驶速度?(3)从图象中你还能获得什么信息?请写出其中的一条.体验中考1、写出图象经过点(1,-1)的一个函数关系式:.2、一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h,水流速度为5 km/h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是(如图所示) ( )学后反思附:课堂检测及体验中考答案课堂检测1、分析本题考查的是常量与变量的概念.常量是在一个变化过程中,数值不发生改变的量;变量是在一个变化过程中,数值发生变化的量.答案:(1)2π C ,R (2)109y 与x x y 910= 【解题策略】 π是常数.而不是变量.另外,常量不一定都是用具体的数表示的,有时也可用字母表示.2、分析 本题考查变量与函数的概念以及求函数值的方法.从图中可以看出,有两个变量t 与s ,而s =vt ,v 是常量,所以t 与s 构成函数关系,从图中还可以看出,当t =3时,s =20,这说明走20米的路程用了3分钟,则速度320=v 米/分. 解:从图中看出,有两个变量t 和s .如果把t 看做自变量,s 看做因变量,那么路程s 、速度v 、时间t 之间的关系式为s =vt .从图中看出,每取一个t 值,都有一个s 值与之对应,当t =3时,s =20,∴20=3v ,∴320=v 米/分. ∴s 与t 之间的关系式为t s 320=(t ≥0), ∴可以将s 看做t 的函数.∴当t =12时,s =320×12=80(米). 规律·方法 要确定函数关系,就要确定两个变量中,哪个是自变量,哪个是因变量,还要注意到其他的量都必须是常量.求函数值的方法有两种,一种是从图中找出来,另一种是用求代数式的值的方法求出来.3、 分析 果树总数y (棵)=现有果树12000(棵)+历年栽树的棵数.解:(1)y =12000+2000x (x ≥0,且x 为整数).(2)当x =5时.y =12000+2000×5=22000(棵),即预计到第5年该地区有22000棵果树.【解题策略】 确定自变量的取值范围时,不仅需要考虑函数关系式有意义,而且还要注意问题的实际意义.4、分析 本题考查的是由图象分析问题的能力.解:(1)李奶奶是在离家600米处碰到老邻居的,交淡了大约10分钟.(2)读报栏大约离家300米.(3)李奶奶在40~45分这段时间内走得最快,这是因为:李奶奶从家出发到返回家中的行程是这样的:①从出发地点到遇到老邻居,用了15分,走了600米,在这15分时间内,她的平均速度是600÷15=40(米/分);②从15分到25分,她和老邻居交谈了约10分;③从25分到35分,她在返回家的途中,走了600-300=300(米),这一段她的平均速度是300÷10=30(米/分);④从35分到40分,她在读报栏读报,也就是读报栏离家大约300米的距离;⑤从40分到45分,她返回家中,共用时5分,行走了300米,这一段她的平均速度是300÷5=60(米/分).因此李奶奶在40~45分这段时间内走得最快.(4)从图中反映出了李奶奶外出散步时间与离家距离这两个变最之间的关系,其中外出散步时间是自变量,离家距离是因变量,离家距离是散步时间的函数.当0≤t ≤15时,s =40t .5、分析 (1)水箱内的水量=原有水量+t 分钟内注入的水量;(2)由于t 表示时间,则有t ≥0,又因为水箱内的水量必小于或等于水箱的容量,所以200+10t ≤500,解得t≤30;(3)用描点法画出图象,但要注意图象应为一条线段,必须突出线段的端点,用实心点表示.解:(1)Q =200+10t . (2)由题意知⎩⎨⎧≤+≥,50010200,0t t 解得0≤t ≤30.(3)图象如图14-5所示.【解题策略】 实际问题中的自变量的取值范围应使实际问题有意义,同时要特别注意实际问题中不可忽略的隐含的限制条件.实际问题的函数图象常为线段或射线,画其图象时必须用实心点或空心圈来表示临界值.6、分析 本题考查对函数图象的观察、理解能力,认真观察图象、理解图象即可解决问题. 解:(1)s =2t (t ≥0).(2)当0<t <1时,甲的行驶速度小于乙的行驶速度;当t >1时,甲的行驶速度大于乙的行驶速度.(3)此题答案不唯一,如在出发后的第3小时两人相遇等.【解题策略】 (1)在描述行程问题的图象中,可以通过点的坐标求速度.比如用P 点坐标(3,6),可以求甲的速度为36=2千米/时,用Q 点坐标(1,3),可以求乙在前一个小时的速度为13=3千米/时.(2)利用坐标系中同一起点处图象的高低可以判断行驶过程中速度的快慢,图象高的行驶速度快.(3)图象相交的时刻就是两人相遇的时刻.体验中考1、分析 本题考查图象上点的坐标与函数关系式的关系,点在图象上,则将点的坐标代入函数关系式,函数关系式成立,本题答案不唯一.可以填y =-x 或y =x 2-2等.2、分析 本题考查用图象表示两个变量之间的关系的能力,随着时间t 的增加,航行的路程先逐渐增加,然后由于停留一段时间,所以有一段时间航行路程保持不变,然后逆流回航.路程仍然逐渐增加,但由于逆行速度比顺流速度慢,所以路程增加的幅度变小.故选C .【解题策略】 本题中明确s 代表的意义是解题的关键,它代表航行的路程而不是离开甲地的距离.19.2一次函数学习目标、重点、难点【学习目标】1、一次函数的有关概念(正比例函数、一次函数)2、一次函数的图象和画法;3、一次函数的性质(正比例函数的性质、一次函数的性质) 【重点难点】1、正比例函数的概念、图象和性质;2、一次函数的概念、图象和性质;3、待定系数法;知识概览图新课导引生活中,我们见到过形形色色的钟表,它是我们日常的计时工具,一声声滴答滴答,提醒我们珍惜时间,时钟的分针每旋转一圈,表示时间过了一个小时,旋转两圈,表示时间过了2个小时,如此下去,时间在不断流逝,那么分针走过的圈数与经过的时间有什么关系呢?应如何表示? 【问题探究】分针旋转一圈,时间便过了相应的一小时,两者之间存在一个一一对应关系,可看做函数,那么可以适当设出变量,用函数关系式表示.【解析】设分针走过的圈数为x ,时间设为y (小时),则两者之间存在一种对应关系,可以用函数关系式y =x 表示,当然也可用表格或图象表示.教材精华知识点1正比例函数的概念、图象和性质概念:一般地,形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数.正比例函数中自变量的取值范围是全体实数.图象:一般地,正比例函数y =kx (k 是常数,k ≠0)的图象是一条经过原点的直线,我们称它为直线y =kx .性质:当k >0时,y 随x 的增大而增大.当x <0时,y 随x 的增大而减小.拓展 (1)正比例函数y =kx ,也可以说成y 与x 成正比例.要求函数关系式只需通过x ,y 的一组对应值求出k ,从而确定关系式.(2)正比例函数的图象是过原点的直线.当k >0时,直线从左到右呈上升趋势,经过第三、一象限;当k <0时,直线从左到右呈下降趋势,经过第二、四象限.画正比例函数的图象时.只需选取除原点外的一点,过原点和选取点画直线即可,选取的点一般为点(1,k ).(3)正比例函数的性质也可以逆用.如当正比例函数y =kx (k ≠0)中y 随x 的增大而增大时,则k >0,反之k <0;再比如,正比例函数的图象过第一、三象限,则k >0等.知识点2一次函数的概念、图象和性质概念:一般地,形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做一次函数. 图象:一次函数的图象是一条直线.性质:一次函数y =kx +b (k ,b 常数,k ≠0),当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.拓展 (1)一次函数的关系式是关于自变量的一次关系式,要确定一次函数关系式,只需确定k ,b .(2)一次函数的图象是一条直线,要画出图象只需确定图象上的两点,这两点一般选与x 轴、y轴的交点⎪⎭⎫⎝⎛-0,k b ,(0,b ),过这两点画直线即可.(3)直线y=kx+b也可以看做是把直线y=kx向上(b>0)或向下(b<0时)平移b个单位得到的.(4)直线y=k1x+b1与直线y=k2x+b2的位置关系:当k1=k2,b1=b2时,两直线重合.当k1=k2,b1≠b2时,两直线平行.当k1≠k2,b1=b2时,两直线相交于y轴上的一点(0,b1).当k1≠k2,b1≠b2时.两直线相交.(5)直线y=kx+b(k≠0)的位置与k,b符号的关系.由k,b的符号可以确定直线y=kx+b的位置.反过来,由直线y=kx+b的位置也可以确定k,b的符号.这种数形结合的思想方法,是我们解决图象问题的重要方法.由k,b的符号也可以不通过画图象,直接判定直线的位置,k的符号决定直线的倾斜方向,b的符号决定直线与y轴交点的位置.(6)k的大小决定直线的倾斜程度,即k越大,直线与x轴相交成的锐角度数越大;k越小,直线与x轴相交成的锐角度数越小.b决定直线与y轴交点的位置,b>0时,直线与y轴的交点在y轴的正半轴上;b<0时,直线与y轴的交点在y轴的负半轴上.规律·方法(1)要正确理解一次函数成立的条件.①自变量的指数是1;②一次项系数k≠0.(2)弄清楚一次函数与正比例函数的关系:正比例函数一定是一次函数,但一次函数并不一定是正比例函数.当一次函数y=kx+b中b=0时,一次函数就变成了正比例函数,所以正比例函数是特殊的一次函数.(3)一次函数自变量的取值范围是全体实数,在实际问题中根据实际意义确定.知识点3 待定系数法待定系数法是确定函数关系式的基本方法.用待定系数法确定一次函数表达式的步骤为:(1)设出函数关系式的一般形式y=kx+b.(2)把自变量x 与函数y 的对应值代入函数关系式中,得到关于待定系数的方程或方程组. (3)求出待定系数. (4)写出函数关系式.拓展 确定实际问题中一次函数关系式时,首先要将实际问题转化为数学问题,即建立数学模型,其次是建立函数与自变量之间的关系式,要注意确定自变量的取值范围.课堂检测基础知识应用题1、下列函数(以x 为自变量)中,一次函数有 ,正比例函数有 . ①x y 2=;②131+=x y ;③y =-4x ;④12-=x y ;⑤y =5x 2. 2、若正比例函数y =(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是 ( )A .m <0B .m >0C .m <21 D .m >213、已知y -3与x 成正比例,且当x =2时,y =7. (1)写出y 与x 之间的函数关系式; (2)当x =4时,求y 的值; (3)当y =4时,求x 的值.综合应用题4、已知直线y =(1-3k )x +2k -1. (1)k 为何值时,直线经过原点?(2)k 为何值时,直线与y 轴交点的纵坐标是-2? (3)k 为何值时,直线与x 轴交于点(43,0)? (4)k 为何值时,直线经过第二、三、四象限? (5)k 为何值时,已知直线与直线y =-3x -5平行?探索创新题5、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h),两车之间的距离为y (km),如图所示的折线表示y 与x 之间的函数关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; (3)求慢车和快车的速度;(4)求线段BC 表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇30 min 后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小时.体验中考1、对于函数y =k 2x (k 是常数,k ≠0)的图象,下列说法不正确的是 ( )A .是一条直线B .过点⎪⎭⎫⎝⎛k k ,1C .经过一、三象限或二、四象限D .y 随x 的增大而增大2、一次函数y =kx +b ,若x 的值减小1,y 的值就减小2,则当x 的值增加2时,y 的值 ( ) A .增加4 B .减小4 C .增加2 D .减小23、直线y =-2x -4分别交x 轴、y 轴于点A ,B ,O 为坐标原点,则S △AOB = .4、已知一次函数y =kx +b 的图象经过点A (-1,3)和点B (2,-3). (1)求这个一次函数的表达式;(2)求直线AB 与坐标轴围成的三角形的面积.学后反思附: 课堂检测及体验中考答案 课堂检测1、分析 本题需要运用概念进行判断,要结合一次函数、正比例函数的特征,另外,要特别注意正比例函数是一次函数,而一次函数不都是正比例函数,①中x2是分式,④中x 2是根式,⑤中的5x 2是二次式,因而这几个函数都不是一次函数,当然也不是正比例函数. 答案:②③ ③规律·方法 判定一次函数的方法:(1)必须是整式;(2)自变量的次数必须是一次;(3)一般形式y =kx +b 中k ≠0,k 和b 为常数.2、分析 本题考查正比例函数的图象和性质,因为当x 1<x 2时,y 1>y 2,所以y 随x 的增大而减小,所以1-2m <0,所以m >21.故选D . 【解题策略】 此类问题也可以结合图象进行判定.根据两点坐标的关系,找出y 随x 的变化规律,从而利用函数的增减性确定k 的符号,这种类型的问题在中考中经常出现.3、分析 本题考查利用待定系数法求函数解析式的方法.由y -3与x 成正比例,可设y -3=kx ,由x =2,y =7可求出k ,则可以写出关系式. 解:(1)由于y -3与x 成正比例,可设y -3=kx . 把x =2,y =7代入y -3=kx 中,得7-3=2k ,∴k =2.∴y 与x 之间的函数关系式为y -3=2x ,即y =2x +3. (2)当x =4时,y =2×4+3=11. (3)当y =4时,4=2x +3,∴21=x . 【解题策略】 本题中把y -3看做一个整体,从而设y -3=kx .4、分析 (1)正比例函数的图象经过原点(或当b =0时,直线经过坐标原点);(2)直线y =kx +b 与y 轴交点的纵坐标是b ;(3)直线y =kx +b 与x 轴交点的横坐标为-kb;(4)当k <0,b <0时,直线y =kx +b 经过第二、三、四象限;(5)如果直线y 1=k 1x +b 1与直线y 2=k 2x +b 2平行,那么k 1=k 2,b 1≠b 2,反过来也成立. 解:(1)当2k -1=0,即k =21,直线经过原点. (2)当x =0时,y =-2,即2k -1=-2,解得k =-21, 即当k =-21时直线与y 轴交点的纵坐标是-2.(3)当x =43时,y =0,即43(1-3k )+2k -1=0,解得k =-1,即当k =-1时,直线与x 轴的交点坐标为(43,0).(4)当⎩⎨⎧--,0<12,0<31k k ,即31<k <21时,直线经过第二、三、四象限.(5)当1-3k =-3,即k =34时,2k -1=35≠-5,此时,已知直线与直线y =-3x -5平行. 规律·方法 本题从不同的方面考查了一次函数图象的基本知识,解题时,我们应做到由解析式或k ,b 的符号,联想到图象的大致位置,或由图象联想到函数解析式或k ,b 的符号,真正做到数与形的紧密结合.5、 解:(1)900(2)图中点B 的实际意义是:当慢车行驶4 h 时,慢车和快车相遇.。
学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________人教版初中数学八年级下册19.2.5一次函数的解析式的求法导学案一、学习目标:1.理解待定系数法的意义.2.会用待定系数法求一次函数的解析式.重点:用待定系数法求一次函数的解析式.难点:能从不同的条件下找出隐含条件求一次函数解析式.二、学习过程:课前自测1.什么叫一次函数?2.一次函数y=kx+b(k,b 是常数,k≠0)有什么性质呢?3.常数k 和b 是怎样影响函数图象的呢?画一画画出函数y=2x 和y=-23x+3的图象.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________自主学习求下图中直线的函数解析式.①图(1)是经过_____的一条直线,因此是_______函数.②设它的解析式为_______.③将点________代入解析式求出______,从而确定该函数的解析式为_______.确定正比例函数的解析式需要___个条件.图(2)设直线的解析式是________,因为此直线经过点______和______,因此将这两个点的坐标代入可得关于k,b 方程组,从而确定k,b 的值,确定了函数解析式.确定一次函数的解析式需要___个条件.【求解】解:设直线的解析式为___________学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________∵直线经过点________与_________∴________________________解方程组得________b k ∴这条直线的解析式为____________.典例解析例1.已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.【归纳】__________________________________________________________,__________________________________叫做待定系数法.【针对练习】已知一次函数的图象经过点(9,0)和点(24,20),写出函数的解析式.例2.若一次函数的图象经过点A(2,0)且与直线y=-x+3平行,求其解析学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________式.例3.一次函数y=kx+b 的自变量的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求这个函数的解析式.例4.已知一次函数的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的解析式.达标检测1.一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是()A.k=2B.k=-3C.b=2D.b=-3学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.已知y 是x 的一次函数,表中列出了部分对应值,则m 的值为()A.-1B.0C.12D.23.若直线y=kx+b 经过A(0,2)和B(3,0)两点,则这个一次函数的解析式是()A.y=2x+3B.y=3x+2C.y=-23x+2D.y=x-14.如图,一次函数的图象经过A,B 两点,则这个一次函数的解析式是()A.y=32x-2B.y=12x-2C.y=12x+2D.y=32x+25.已知一次函数y=kx+b,当x 增加3时,y 减小2,则k 的值是()A.-23B.-32C.23D.326.如图,把直线y=-2x 向上平移后得到直线AB,直线AB 经过点(m,n),且2m+n=6,则直线AB 的解析式是()A.y=-2x-3B.y=-2x-6C.y=-2x+3学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________D.y=-2x+67.已知一次函数y=kx+2,当x=5时,y=4,则k=_____.8.若一次函数y=2x+b 的图象经过点A(-1,1),则b=____,该函数图象过点B(,____)和点C(____,0).9.已知一次函数y=kx+b 的图象经过A(4,-5),B(-6,7)两点,则k____0.(填“>”或“<”)10.一次函数y=mx+|m-1|的图象经过点(0,2),且y 随x 的增大而增大,则m 的值是_____.11.已知一次函数y=kx+3的图象与坐标轴围成的三角形的面积是1.5,则此一-次函数的解析式可能为__________________.12.如图,直线l 与y 轴交于点(0,3),与正比例函数y=2x 的图象交于点B,且点B 的横坐标为1,求直线l对应的函数解析式.13.已知一次函数的图象经过A(-2,-3),B(1,3)两点.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(1)求这个一次函数的解析式.(2)判断点P(-1,1)是否在这个一次函数的图象上.(3)求此函数图象与x 轴、y 轴围成的三角形的面积.。
第十九章 一次函数复习导学案备课时间: 月 日 上课时间: 月 日 审稿: 八年级备课组【学习目标】①结合具体情境体会一次函数的意义,根据条件确定一次函数表达式。
②会画一次函数的图象,根据一次函数的图象和解析表达式y =kx +b (k ≠0)探索并理解其性质。
【基础巩固】一、一次函数的定义形如函数y =____ ___(k 、b 为常数,k ___ )叫做一次函数。
当b ___ 时,函数y =___ _(k __ __)叫做正比例函数。
★理解一次函数概念应注意下面两点:⑴、解析式中自变量x 的次数是___次,⑵、比例系数k_______。
针对训练:1、下列函数:① y=-3x ② 13+=x y ③ x y 3-= ④ 223x y = ⑤6x-2y=3 ⑥y=-1 其中是一次函数的有 。
(填序号)2、若函数1)4(152++-=-m x m y m 是关于x 的一次函数,则m= ;当m= 时,它是正比例函数二、一次函数y=kx+b 的图像(1)形状:一次函数的图象是一条 ;(2)画法: ①两点法,通常选取与坐标轴的交点(0 , )和( ,0)②平移法:直线y=kx 沿 平移 个单位长度得到y=kx+b 的图象,当b>0时,向 平移;当b<0时,向 平移。
针对训练:(1)将直线y=-3x 向上平移4个单位所得的直线的解析式是 ,y 随x 的增大而 ;(2)函数y=2(x-1)是y=2x 经过怎样的平移得到的 , y 随x 的增大而 ;(3)直线y=-2x-3向 平移 个单位长度得到直线y=-2x+6。
三、用“待定系数法”确定一次函数解析式1、已知点(3,-6)在正比例函数的图像上,求这个正比例函数解析式2、已知某一次函数的图象经过(1, 2), (0, 1)两点,试求这个一次函数的解析式.3、根据图象,求出相应的函数解析式。
思考:求正比例函数解析式,需要 条件;求一次函数解析式需要 个条件。
一次函数和它的图象(3)课型: 新授课 上课时间: 课时: 1一、【三维目标】:本节课主要探究一次函数的解析式,介绍待定系数法求一次函数解析式的方法.体会二元一次方程组的实际应用. 二、学习过程:例1:已知一次函数的图像经过点(3,5)与(2,3),求这个一次函数的解析式。
分析:求一次函数b kx y +=的解析式,关键是求出k ,b 的值,从已知条件可以列出关于k ,b 的二元一次方程组,并求出k ,b 。
解: ∵一次函数b kx y +=经过点(3,5)与(2,3) ∴⎩⎨⎧______________________解得⎩⎨⎧==__________b k∴一次函数的解析式为_______________像例1这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个 式子的方法,叫做待定系数法。
练习:1、已知一次函数2+=kx y ,当x = 5时,y = 4,(1)求这个一次函数。
(2)求当2-=x 时,函数y 的值。
2、已知直线b kx y +=经过点(9,0)和点(24,20),求这条直线的函数解析式。
3、已知弹簧的长度 y (厘米)在一定的限度内是所挂重物质量 x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.求这个一次函数的关系式. 例2:地表以下岩层的温度t (℃)随着所处的深度h (千米)的变化而变化,t 与h 之间在一定范围内近似地成一次函数关系 。
1、根据上表,求t (℃)与h (千米)之间的函数关系式;2、求当岩层温度达到1700℃时,岩层所处的深度为多少千米? 三、课堂总结,发展潜能根据已知的自变量与函数的对应值,可以利用待定系数法确定一次函数解析式,具体步骤如下: 深度(千米) …… 2 4 6 …… 温度(℃)……90160300……2.把自变量与函数的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数的方程或方程组.(有几个待定系数,就要有几个方程)3.解方程或方程组,求出待定系数的值,从而写出所求函数的解析式.四、练习1.一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行,•则此函数的解析式为()A.y=x+1 B.y=2x+3 C.y=2x-1 D.y=-2x-52.已知一次函数y=kx+b,当x=1时,y=2,且它的图象与y•轴交点的纵坐标是3,则此函数的解析式为()A.0≤x≤3 B.-3≤x≤0 C.-3≤x≤3 D.不能确定3、大拇指与小拇指尽量张开时,两指尖的距离称为指距。
19.2.2 一次函数第一课时教学目标1.理解一次函数的概念及其与正比例函数的关系,在探索过程中,发展学生的抽象思维及概括能力,体验特殊和一般的辨证关系.2.能根据问题信息写出一次函数的表达式,能利用一次函数解决简单的实际问题.3.经过利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力.教学重难点重点:一次函数的概念及其与正比例函数的关系;会根据已知信息写出一次函数的表达式.难点:理解一次函数的概念及其与正比例函数的关系,在探索过程中,发展学生的抽象思维及概括能力.教学过程一、情境引入上节课我们一起学习了函数和正比例函数的概念,同学们能说出函数与正比例函数的概念及它们之间的关系吗?(学生思考后,抢答.)请同学们来看下面的问题:(多媒体演示)【问题1】某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高x km时,他们所在位置的气温是y℃.试用函数解析式表示y与x的关系.【分析】 y随x变化的规律是:从大本营向上,当海拔增加xkm时,气温从5℃减少6x℃,因此,y与x的函数解析式为:y=5-6x,这个函数也可以写为y=-6x+5.当登山队员由大本营向上登高0.5km时,他们所在位置的气温就是当x=0.5时函数y =-6x+5的值,即y=-6×0.5+5=2(℃).【问题2】问题1中的这个函数:y=-6x+5是正比例函数吗?它与正比例函数有什么不同?这种形式的函数还有吗?让学生畅所欲言,将y=-6x+5与正比例函数的解析式y=kx作对比,发现多了一个常数项,学生依照模式举出另外一些例子,教师给予点评.本节课我们就一起来探究这种新型的函数及其图象的特征.二、互动新授请同学们接着看教材P90“思考”中的问题:(多媒体演示)【思考】下列问题中,变量之间的对立关系是函数关系吗?如果是,请写出函数关系式.这些函数解析式有哪些共同特征?(1)有人发现,在20℃~25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差.(2)一种计算成年人标准体重G(单位:kg)的方法是:以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3)某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话x min的计时费(按0.1元/min收取).(4)把一个长10cm 、宽5cm 的长方形的长减少x cm ,宽不变,长方形的面积y (单位:cm 2)随x 的变化而变化.逐一出示题目并由学生独立完成,此处不必对自变量取值范围作深入追究,重在正确得出函数关系式.教师评讲:上面问题中,表示变量之间关系的函数解析式分别为:(1)c =7t -35(20≤t ≤25); (2)G =h -105;(3)y =0.1x +22; (4)y =-5x +50(0≤x ≤10).正如函数y =-6x +5一样,上面这些函数都是常数k 与自变量的积及与常数b 的和的形式.一般地,形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.【问题3】 下列函数中哪些是一次函数,哪些又是正比例函数?(1)y =-8x ; (2)y =-8x; (3)y =5x 2+6; (4)y =-0.5x -1. 学生独自思考后交流讨论,形成共识:(1)(4)是一次函数,其中(1)是正比例函数.三、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了一次函数的概念:形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.四、板书设计五、教学反思本课教学通过创设情境引入一次函数,引导学生类比正比例函数概念的学习过程来学习一次函数.教学中发现学生在判断一个函数是否是一次函数时,往往只凭表象判定,容易出错.因此,教学时要让学生明白:要判断一个函数是否是一次函数,就要先将式子进行变形,看它能否化成y =kx +b(k ,b 是常数,k ≠0)的形式,即x 的指数为1,k ≠0,b 为任意常数,若符合上述条件,且b =0,则这个函数即是一次函数,又是正比例函数.也就是说,正比例函数一定是一次函数,而一次函数不一定是正比例函数.同时,教师还要点明,一次函数的解析式应是整式,自变数指数应为 1.只有让学生把一次函数的概念理解透彻,才能明确辨析一次函数的解析式的结构特征,为今后一次函数的学习打好基础.导学方案一、学法点津学生在学习一次函数概念时,要明确:一次函数的解析式的形式是y =kx +b(k ,b 是常数,k ≠0),它的右边是关于x 的一次式,其中一次项系数必须是不为零的常数,b 可以为任意常数.二、学点归纳总结1.知识要点总结(1)一次函数的概念一般地,形如y =kx +b(k ,b 是常数,k ≠0)的函数是一次函数.(2)一次函数与正比例函数的区别与联系.正比例函数一定是一次函数,而一次函数只有当常数项为零时,才变为正比例函数.2.规律方法总结判断一个函数是否是一次函数,就是判断它是否能化成y =kx +b(k ,b 是常数,k ≠0)的形式,能化成y =kx +b(k ,b 是常数,k ≠0)形式的函数一定就是一次函数,不能化成y =kx +b(k ,b 是常数,k ≠0)形式的函数就不是一次函数.第一课时作业设计一、选择题1.下列说法正确的是( ).A .正比例函数是一次函数B .一次函数是正比例函数C .正比例函数不是一次函数D .不是正比例函数就不是一次函数2.一次函数y =kx +b(k ≠0)满足x =0时,y =-1;x =1时,y =1,则这个一次函数是( ).A .y =2x +1B .y =-2x +1C .y =2x -1D .y =-2x -13.若2y -4与3x -2成正比例函数,则y 与x( ).A .一定是正比例函数B .一定是一次函数C .没有函数关系D .以上答案不对二、填空题4.如图,已知点A(-1,0),点B 是直线y =x 上的一动点,当线段AB 最短时,点B 的坐标为________.5.下列函数:(1)y =x -6;(2)y =2x ;(3)y =x 8;(4)y =7-x 中,y 是x 的一次函数的有________.6.一次函数y =2x +b -3,当b =__________时,此一次函数变成为正比例函数.三、解答题7.k 为何值时,函数y =(k +1)xk 2+k -1是一次函数?此时它是正比例函数吗?8.已知y 与x -3成正比例,当x =4时,y =3.(1)写出y 与x 之间的函数关系式;(2)y 与x 之间是什么函数关系;(3)求x =2.5时,y 的值.【参考答案】一、1.A 2.C 3.B二、4.⎝⎛⎭⎫-22,-22 5.(1)(3)(4) 6.3 三、7.解:由k 2=1,得k =±1,又∵k +1≠0,∴k ≠-1,∴k =1.此时y =2x ,它是正比例函数.8.解:(1)由y =k(x -3),当x =4时,y =3,得3=k(4-3),解得k =-3,∴y =3(x -3),即y =3x -9.(2)y 与x 之间是一次函数关系.(3)当x =2.5时,由y =3x -9得,y =3×2.5-9=-1.5.第二课时教学目标1.了解一次函数的图象及其画法.2.理解一次函数与正比例函数以及它们图象之间的关系.3.理解一次函数的性质.4.通过一次函数的图象和性质的研究,体会数形结合在问题解决中的作用,并能应用它们解决相关函数问题.5.通过画函数的图象以及用函数图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁性.教学重难点重点:一次函数的图象和性质.难点:由一次函数图象归纳出一次函数性质以及对性质的理解.教学过程一、情境引入大家知道,有句名言“数因形而直观,形因数而入微”,同学们还记得其中反映的数学思想方法吗?学生很容易回答出“利用数形结合来研究问题时,数量关系与图形相互依赖,密不可分”等,之后教师提出以下问题:【问题1】 我们曾用数形结合的方法研究了正比例函数,大家还能回忆它的有关内容吗?学生畅所欲言.【问题2】 还记得上节课的“登山问题”吗?多媒体出示:某登山队大本营所在地的气温为5℃,海拔每升高1km 气温下降6℃,登山队员由大本营向上登高x km 时,他们所在位置的气温是y ℃.试用解析式表示y 与x 的关系.为了直观地反映登山温度变化情况(y =5-6x ),我们可以怎么做呢?(画出图象). 那么图象是什么形状呢?这就是本节课我们要一起探究的一次函数图象及其性质.二、互动新授【例2】 画出函数y =-6x 与y =-6x +5的图象.学生独自在坐标纸上动手画图后,教师多媒体演示:【解】 函数y =-6x 与y =-6x +5中,自变量x 可以是任意实数,列表表示几组对应值(计算并填写教材表19-9中空格).x -2 -1 0 1 2y=-6x0 -6y=-6x+55 -1教材表19-9画出函数y=-6x与y=-6x+5的图象(教材图19.2-3).教材图19.2-3【思考】比较上面两个函数的图象的相同点与不同点,填出你的观察结果:这两个函数的图象形状都是__________,并且倾斜程度__________,函数y=-6x的图象经过原点,函数y=-6x+5的图象与y轴交于点__________,即它可以看作由直线y=-6x向__________平移__________个单位长度而得到.比较两个函数解析式,你能说出两个函数的图象有上述关系的道理吗?联系上面结果,考虑一次函数y=kx+b(k≠0)的图象是什么形状,它与直线y=kx(k≠0)有什么关系.学生思考后,师生共同探究:比较一次函数y=kx+b(k≠0)与正比例函数y=kx(k≠0)的解析式,容易得出:一次函数y=kx+b(k≠0)的图象可以由直线y=kx平移|b|个单位长度得到(当b>0时,向上平移;当b<0时,向下平移).一次函数y=kx+b(k≠0)的图象也是一条直线,我们称它为直线y=kx+b.【例3】画函数y=2x-1与y=-0.5x+1的图象.【分析】由于一次函数的图象是直线,因此只要确定两个点就能画出它.【解】列表表示当x=0,x=1时两个函数的对应值(教材表19-10).x 0 1y=2x-1 -1 1y=-0.5x+1 1 0.5教材表19-10过点(0,-1)与点(1,1)画出直线y=2x-1的图象;过点(0,1)与点(1,0.5)画出直线y=-0.5x+1.(教材图19.2-4)教材图19.2-4【思考】画出函数y=x+1,y=-x+1,y=2x+1,y=-2x+1的图象,由它们联想:一次函数解析式y=kx+b(k,b是常数,k≠0)中,k的正负对函数图象有什么影响?学生练习后,师生共同分析:观察前面一次函数的图象,可以发现规律:当k>0时,直线y=kx+b从左向右上升;当k<0时,直线y=kx+b从左向右下降.由此可知:一次函数y=kx+b(k,b是常数,k≠0)具有如下性质:当k<0时,y随x的增大而减小.三、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了一次函数的图象及性质:当k>0时,图象由左向右呈上升趋势,y随x的增大而增大.当k<0时,图象由左向右呈下降趋势,y随x的增大而减小.四、板书设计五、教学反思本节课主要是研究一次函数的图象和性质,它是在学习了正比例函数的图象和性质,及初步了解如何研究一个具体函数的图象与性质的基础上进行的,原有的知识与经验对本节课的学习有着积极的促进作用,在前后知识的比较中,学生进一步理解知识,促进认知结构的完善、发展,进一步体验研究函数的基本思路.这些目标的达成,要求教学中必须发挥学生的主体作用.在教学中,部分学生对一次函数y=kx+b的图象位置的确定,k,b所起的作用理解不到位,以致对一次函数的性质把握不准、为了有效地解决这种问题,教师可用数形结合的思想方法来阐述.导学方案一、学法点津学生在画一次函数的图象时,只要在平面直角坐标系中先描出两个点,再连成直线即可,这两点一般选取(0,b)和(-bk,0);同时要记住一次函数y=kx+b(k,b是常数,k≠0)具有如下性质:(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小.二、学点归纳总结1.知识要点总结(1)一次函数的图象.①一次函数y=kx+b(k,b是常数,k≠0)的图象是一条直线.②由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.(2)一次函数的性质.一次函数y=kx+b(k,b是常数,k≠0)具有如下性质:①当k>0时,y随x的增大而增大;2.规律方法总结(1)因为两点确定一条直线,所以一般可由点(0,b)和点(-b k,0)确定直线y =kx +b 的解析式,并画出相应的图象.此外还可根据图象的平移求解,即直线y =kx +b 可以看作将直线y =kx 平移|b|个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).(2)根据一次函数的性质,如果已知系数k 的符号就可以直接说出系数y 的值随x 的变化而变化的情况;反之,如果知道一次函数的增减性,就能够推断常数k 的符号.第二课时作业设计一、选择题1.如果函数y =ax +b(a <0,b <0)和y =kx(k >0)的图象交于点P ,那么点P 应该位于( ).A .第一象限B .第二象限C .第三象限D .第四象限2.若一次函数y =kx +b 的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 符号判断正确的是( ).A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <03.点P 1(x 1,y 1),P 2(x 2,y 2)是一次函数y =-4x +3图象上的两个点且x 1<x 2,则y 1,y 2的大小关系是( ).A .y 1>y 2B .y 1>y 2>0C .y 1<y 2D .y 1=y 2二、填空题4.在一次函数y =2x +3中,y 随x 的增大而__________(填“增大”或“减小”);当0≤x ≤5时,y 的最小值为__________.5.在同一直角坐标系中作出下列直线:(1)y =12x -1;(2)y =2x -1;(3)y =-12x +1;(4)y =-2x +1,则互相平行的直线是__________.6.把直线y =3x 向上平移6个单位长度得到的函数解析式为__________.三、解答题7.已知一次函数y =kx -4,当x =2时,y =-3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位长度,求平移后的图象与x 轴的交点坐标.8.已知直线y =2x -3.(1)求直线与y 轴交点到x 轴的距离.(2)在直线上是否存在点A ,使点A 到x 轴的距离为2?若存在,求出点A 的坐标;若不存在,请说明理由.【参考答案】一、1.C 2.D 3.A二、4.增大 3 5.(1)和(3) 6.y =3x +6三、7.(1)y =12x -4. (2)(-4,0). 8.(1)3. (2)存在.点A 的坐标为⎝⎛⎭⎫52,2或⎝⎛⎭⎫12,-2.第三课时教学目标1.学会根据所给信息,用待定系数法求一次函数的解析式.2.了解分段函数的特点,学会根据题意求出分段函数的解析式并画出函数图象.3.能利用一次函数及其图象解决简单的实际问题,发展学生的数学应用能力.4.进一步体会并感知数学建模的一般思想.教学重难点重点:根据所给信息确定一次函数的表达式.难点:培养数形结合解决问题的能力.教学过程一、情境引入请同学们拿出坐标纸,画出函数y =12x 与y =3x -1的图象,回答下列问题:(多媒体演示)【问题1】 在画这两个函数图象时,分别描了几个点?为何选这几个点?可以有不同的取法吗?要求学生根据自己的作图畅所欲言,充分表达自己的观点,以使全班学生在本节课立于同一起跑线上.【问题2】 在上节课中,我们学习了在给定一次函数表达式的前提下,我们可以说出它的图象特征及有关性质;反之,如果给出信息,能否求出函数的表达式呢?这将是本节课我们要研究的问题.二、互动新授【例4】 已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.【分析】 求一次函数y =kx +b 的解析式,关键是求出k ,b 的值.从已知条件可以列出关于k ,b 的二元一次方程组,并求出k ,b.【解】 设这个一次函数的解析式为y =kx +b.因为y =kx +b 的图象过点(3,5)与(-4,-9),所以⎩⎪⎨⎪⎧3k +b =5,-4k +b =-9.解方程组得⎩⎪⎨⎪⎧k =2,b =-1. 这个一次函数的解析式为y =2x -1.教师总结:像例4这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法.由于一次函数y =kx +b 中有k 和b 两个待定系数,因此用待定系数法时,需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式.多媒体呈现:K【例5】 “黄金1号”玉米种子的价格为5元/kg.如果一次购买2kg 以上的种子,超过2kg 部分的种子价格打8折.(1)填写教材表19-11.购买量/kg 0.5 1 1.5 2 2.5 3 3.5 4 …付款金额/元…(2)写出购买量关于付款金额的函数解析式,并画出函数图象.【分析】 付款金额与种子价格有关.问题中种子价格不是固定不变的,它与购买量有关.设购买xkg 种子,当0≤x ≤2时,种子价格为5元/kg ;当x >2时,其中有2kg 种子按5元/kg 计价,其余的(x -2)kg(即超出2kg 部分)种子按4元/kg(即8折)计价.因此,写函数解析式与画函数图象时,应对0≤x ≤2和x >2分段讨论.购买量/kg 0.5 1 1.5 2 2.5 3 3.5 4 …付款金额/元 2.5 5 7.5 10 12 14 16 18 …(2)设购买量为x kg ,付款金额为y 元.当0≤x ≤2时,y =5x ;当x >2时,y =4(x -2)+10=4x +2.函数图象如教材图19.2-5.教材图19.2-5说明:y 与x 的函数解析式也可合起来表示为:y =⎩⎪⎨⎪⎧5x , 0≤x ≤2,4x +2, x >2. 【思考】 你能由上面的函数解析式解决以下问题吗?由函数图象也能解决这些问题吗?(1)一次购买1.5kg 种子,需付款多少元?(2)一次购买3kg 种子,需付款多少元?学生练习后,小组交流.三、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了用待定系数法求一次函数的解析式以及分段函数的特点.四、 板书设计五、教学反思在本节课的教学过程中,许多学生对用待定系数法确定一次函数解析式的步骤还不是很清楚,以致解析式求错,因此为便于记忆教师把用待定系数法确定一次函数解析式的步骤归纳为四个字:“设”、“列”、“解”、“代”.“设”.这样,学生记得简单,又不容易出错.另外,求分段函数的解析式,要让学生明白:首先要求出自变量各个范围内所对应的函数解析式,然后用大括号合写成一个函数的形式并标注自变量的取值范围即可.教师还要通过实例,让学生初步感受分段函数在解决问题中的优越性,树立起学生学习的兴趣和信心.导学方案一、学法点津学生要明白用待定系数法确定一次函数y=kx+b(k≠0)的解析式,就是要确定k和b 的值,通过四字口诀:设、列、解、代,来理解并识记其一般步骤.在学习求分段函数时,要明确方法:首先要确定自变量的取值范围,然后用待定系数法求各个自变量取值范围内的函数解析式,最后,合并写成一个函数的形式.二、学点归纳总结1.知识要点总结1.用待定系数法求一次函数解析式的一般步骤:(1)设:设出含有待定系数的函数解析式;(2)列:把已知条件(自变量与函数的对应值)代入解析式得到关于待定系数的方程(组);(3)解:解方程(组),求出待定系数;(4)代:将求出的待定系数的值代回所设的函数解析式,即可得到所求的函数解析式.(2)分段函数的概念.在同一问题中,自变量的不同取值范围内表示函数关系的解析式有不同的形式,这样的函数称为分段函数.2.规律方法总结(1)已知解析式可以画直线,反过来,已知直线也可以求解析式,它们之间的数形转换关系如下所示:K(2)求分段函数的解析式应注意各段自变量的取值范围,分段函数在书写时用大括号把各段函数合并写成一个函数的形式,并且必须指明各段函数的自变量的取值范围.同时,求分段函数的函数值应注意自变量所在的范围,确定相应的函数值.第三课时作业设计一、选择题1.直线y =kx +3与x 轴的交点是(1,0),则k 的值为( ).A .3B .2C .-2D .-32.一次函数图象经过点A(-2,-1),且与直线y =2x -3平行,则此函数解析式为( ).A .y =x +1B .y =2x +3C .y =2x -1D .y =-2x -53.某市出租车收费标准如下:3千米以内收费6元;3千米到10千米部分每千米收费1.3元;10千米以上部分每千米收1.9元,那么出租车收费y(元)与行驶路程x(千米)的函数关系用图象可表示为( ).A BCD二、填空题 4.已知直线y =ax -2经过点(-3,-8)和⎝ ⎛⎭⎪⎫12,b 两点,那么a =__________,b =__________.5.若一次函数y =(1-2m)x +3的图象经过A(x 1,y 1),B(x 2,y 2)两点,当x 1<x 2时,y 1>y 2,则m 的取值范围是__________.6.某图书出租店有一种图书的租金y(元)与出租的天数x(天)之间的函数关系如图所示,则两天后,每过一天,累计租金增加__________元.三、解答题7.已知直线l 与直线y =2x +1的交点的横坐标为2,与直线y =x -8交点的纵坐标为-7,求直线l 的解析式。
课题:第十九章一次函数——分段函数
班级姓名座号.
例1 已知y与x的函数关系如图所示,求y与x的函数解析式.
练习1 有一个进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min时间内既进水也出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系如图所示:
(1)求y与x的函数解析式;
(2)每分进水、出水各是多少?
例2 玉米种子的价格为5元/kg,如果一次购买2 kg以上的种子,超过 2 kg部分的种子的价格打8折. (1)填写下表:
(2)写出付款金额关于购买量的函数解析式,并画出图象.
练习2 从A 地向B 地打长途电话,通话时间不超过3min 收费2.4元,超过3min 后每分加收1元.
(1)写出通话费用y (单元:元)关于通话时间x (单位:min )的函数解析式.(本题中x 取整数,不足1min 的通话时间按1min 计费);
(2)如果有10元话费,打一次电话最多可以通话多长时间?
例3 在平面直角坐标系中,画出函数⎩⎨
⎧≤->=0,0,x x x x y 的图象,结合图象写出2条函数具有的性质.
思考:你会画函数x y =的图象吗?
【课堂练习】
1. 一个实验室在0:00-2:00保持20℃恒温,在2:00-4:00匀速升温,每小时升高5℃.请你画出函数图象,并写出实验室温度T (单位:℃)关于时间t (单位:h )的函数解析式.。
2014年八年级数学下册第十九章一次函数导学案2.3一次函数与二元一次方程组学习目标:1、理解一次函数与二元一次方程组的关系,会根据图象求二元一次方程组的解。
2、应用一次函数和二元一次方程组的关系解决实际问题。
学习重点:利用一次函数图像求二元一次方程组的解,并解决简单的实际问题。
学习难点:一次函数与一元一次方程,一元一次不等式,二元一次方程结合解决实际问题。
学习过程:一、创设问题情境:1、解方程组2、画一次函数和的图像,写出交点坐标。
二、自主学习与合作交流:思考:1号探测气球从海拔5米处出发,以1米/分的速度上升。
于此同时,2号探测气球从海拔15米出发,以0.5米/分的速度上升,两个气球都上升了1小时。
(1)、用式子分别表示两个气球所在的位置的海拔(单位:米)关于上升时间(单位:小时)的函数关系式;(2)、在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?归纳:从函数的观点看解二元一次方程组:从“数”的角度看:解方程组相当于求为何值时,两个相等,以及这个函数值是。
2. 从“形”的角度看:解方程组相当于确定两条直线的三、巩固练习:例、一家电信公司给顾客提供两种上网收费方式:方式A以0.1元分的价格按上网时间计费,方式B除收20元月基费外,再以0.05元分的价格上网时间计费,如何选择收费方式能使上网者更合算。
【解法一】设上网时间为x分钟,若按方式A收费,= 元;若按B方式收费, = 元.在同一直角坐标系中分别画出这两个函数图象.两个函数图象交于点,从图象上可以看出:当_________时,, 所以选择方式A省钱;当时,,所以选择省钱;当_________时,,所以选择省钱.【解法二】设上网时间为x分钟,方式B与方式A两种计费的差额为y元,则y随x变化的函数关系式为:y=_________ ,化简:y=_________.在直角坐标系中画出函数的图象.直线y=___________与x轴交点为________.由图象可知:当_______时,y0,即选方式A省钱;当时,y=0,即选方式A、B没有区别;当_______时,y0,即选方式省钱.例2、如图所示,求两直线的解析式及其交点坐标。
八年级数学下册一次函数 复习课导学案(一)设计者: 一、【知识体系】:1. 主要知识点回顾(1) 一次函数的定义是:若 =0,则一次函数化为了(2)一次函数y kx b =+(0k ≠ )的图象是经过点( , )和点( , )的一条直线(3)一次函数y kx b =+(0k ≠ )中k 叫 ,b 叫当0k >时 从左向右看,图象是 ,也可以说成图象向 倾斜 当0k <时 从左向右看,图象是 ,也可以说成图象向 倾斜当0b >时,图象与y 轴交点在 当0b <时,图象与y 轴交点在 (4)当0k >,0b >一次函数y kx b =+的图象过第 象限 当0k >,0b <一次函数y kx b =+的图象过第 象限 当0k <,0b >一次函数y kx b =+的图象过第 象限 当0k <,0b <一次函数y kx b =+的图象过第 象限 (5)一次函数y kx b =+(0k ≠ )中 当0k >时,y 随x 的增大而 当0k <时,y 随x 的增大而(6)已知直线1111:(0)l y k x b k =+≠和2222:(0)l y k x b k =+≠ 若:1l //2l 则 若:1l 与2l 重合 则 若:1l 与2l 相交 则 ,其交点坐标可由方程组 求得例1:已知一次函数y=kx+b(k ≠0)在x=1时,y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式。
例2:.已知2y -3与3x +1成正比例,且x=2时,y=5,(1)求y 与x 之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .例3:.已知一次函数的图象经过点A (-3,2)、B (1,6). ①求此函数的解析式,并画出图象.②求函数图象与坐标轴所围成的三角形面积.例4:某一次函数的图象与直线y=6-x 交于点A (5,k ),且与直线y=2x-3无交点,•求此函数的关系式.例5业务类别 月租费 市内通话费 说明:1分钟为1跳次,不足1分钟按1跳次计算,如3.2分钟为4跳次.全球通 50元 0.4元/跳次神州行 0元 0.6元/跳次①写出z 、y 与x 之间的函数关系式;②一个月内市内通话多少跳次时,两种方式的费用相同?③某人估计一个月内通话300跳次,应选择哪种方式合算?例6.A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.•已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B 市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,•求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?例7:如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)•之间的函数关系图象.①根据图象,写出该图象的函数关系式;②某人乘坐2.5km,应付多少钱?③某人乘坐13km,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?。
19.1.1变量与函数(1)学习目标:通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义;学会用含一个变量的代数式表示另一个变量;学习重点:了解常量与变量的意义;学习难点:较复杂问题中常量与变量的识别。
学习过程:一、自主学习:问题一:汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1、请同学们根据题意填写下表:2、在以上这个过程中,变化的量是_____________.不变化的量是__________.3、试用含t的式子表示s,s=________,t的取值范围是这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.二、合作探究:问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.•1、请同学们根据题意填写下表:2、在以上这个过程中,变化的量是_____________.不变化的量是__________.3、试用含x的式子表示y,y=______ ,x的取值范围是 .这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:当圆的半径r分别是10cm,20cm,30cm时,圆的面积S分别是多少?1、请同学们根据题意填写下表:(用含 的式子表示)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含S的式子表示r,S=___ ,r的取值范围是 .这个问题反映了____随____的变化过程.问题四:用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。
设矩形的长为xm,面积为Sm2 .1、请同学们根据题意填写下表:2、在以上这个过程中,变化的量是_____________.不变化的量是__________.3、试用含x的式子表示s.S=__________________,x的取值范围是 . 这个问题反映了矩形的___ _ 随_ __的变化过程.小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的,有些量的数值是始终不变的。
19.1.1变量课型: 新授课上课时间:课时: 1三维目标:1、通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义;2、学会用含一个变量的代数式表示另一个变量;学习重点:了解常量与变量的意义;学习难点:较复杂问题中常量与变量的识别学习过程:提出问题,创设情景问题一:汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1.请同学们根据题意填写下表:t/时 1 2 3 4 5 ts/千米2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含t的式子表示s: s=________,t的取值范围是 ________ .这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.一、深入探究,得出结论(一)问题探究:问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.•1.请同学们根据题意填写下表:售出票数(张)早场150 午场206 晚场310 x收入y (元)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含x的式子表示y: y=______ ,x的取值范围是 .这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为L cm.1.请同学们根据题意填写下表:所挂重物(kg) 1 2 3 4 5 m受力后的弹簧长度L(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含m的式子表示L: L=____________ ,m的取值范围是 .这个问题反映了_________随_________的变化过程.问题四:要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30 cm2呢?怎样用含有圆面积S的式子表示圆半径r?1.请同学们根据题意填写下表:(用含 的式子表示)面积s(cm2)10 20 30 s半径r(cm)2.在以上这个过程中,变化的量是__________.不变化的量是__________.3.试用含s的式子表示r.r=_________,s的取值范围是 .这个问题反映了___ _ 随_ __的变化过程.问题五:用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。
第19章一次函数预习导学案
19.1函数
19.1.1变量与函数
课时一:了解变量与函数的概念
1、在一个变化的过程中,数值发生变化的量叫做,数值始终不变的量叫做.
2、一般来说,在一个变化过程中,如果有两个变量x 与y,并且对于x的每一个确定的值,y都有
的值与其对应,那么我们就说x是,y是x的.
课时二:函数解析式与函数值
1、若y是x的函数,则对于x的每一个确定的值,y 都有的值与其对应.若当x=a,y=b,则b就叫做a的.
2、函数的是用关于的数学式子表示与之间的关系.
19.1.2函数的图象
课时一:函数图象的解图与画法
1、对于一个函数,如果把自变量与函数的每对
分别作为点的,那么坐标平面内由这些点组成的图形就是这个函数的. 2、函数图象的作用是可以直观地看出一个变量随另一个变量变化而变化的情况,数形结合地研究函数. 3、如果y是x的函数,那么函数图象上的点的
和一定是满足这个函数解析式的解.
4、描点法画函数图象的一般步骤:
、、.
(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中对应值为坐标,在平面直角坐标系
中描出相应的点;
(3)连线:按照自变量有小到大的顺序,把所描各点
用平滑曲线连接起来;
5、当自变量存在一定的取值范围时,函数图象的端点
应根据情况采用实心点或空心点表示.
课时二:函数的三种表示方式
1、函数有常见的三种变式方法,分别是、
和.其中,
是用数学表达式表示两个变量之间的对应关系;
是用列出表格来表示两个变量之间的对应关系;
是用图象表示两个变量之间的对应关系.
19.2一次函数
19.2.1正比例函数
1、形如y=kx(k为常数,k≠0)的函数叫做,其中常数k叫做比例系数.
2、一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条,直线y=kx必过点(0,0)和点(1,k).
3、当k>0时,直线y=kx经过第、第象限,从左向右,y随x的增大而;当k<0时,直线y=kx经过第、第象限,从左向
右,y随x的增大而.
19.2.2 一次函数
课时一:一次函数的图象和性质
1、形如的函数,叫做一次函数,其中k,b是常数,且k≠0.
2、对一次函数y=kx+b(k≠0),当b=0时,一次函数就成了,即函数是一种特殊的一次函数.
3、对一次函数y=kx+b(k≠0)的图象是一条,与x轴的交点是,与y轴的交点是 .当k>0时,直线y=kx+b从左向右,y随x的增大而;当k<0时,直线y=kx+b从左向右,y随x的增大而.
4、直线y=kx+b可以看作由直线y=kx在y轴的方向上平移个单位长度得到的(当b>0时,向上平移;当b<0时,向下平移).
课时二:待定系数法
1、利用待定系数法确定函数解析式,需要明确函数的模型,设出函数解析式,根据条件确定函数解析式中未知的系数,从而确定解析式.
2、从“数”的角度看:由于一次函数y=kx+b有一项系数k和常数项b两个待定系数,所以用待定系数法时要根据个条件列出二元一次方程组(以k和b为未知数)解方程组后就能具体写出一次函数的解析式.
3、从“形”的角度看:一次函数的图象是一条直线,因为确定一条直线,所以需要两个点确定直线位置;正比例函数的图象是经过的一条直线,所以只再需要一个点就可以确定这条直线.
19.2.3 一次函数与方程、不等式
1、解方程ax+b=0(a,b为常数),即求当自变量x为何值时,一次函数y=ax+b的值为.
2、解一元一次不等式ax+b>m(<m)等价于寻求使一次函数y=ax+b的值大于(或小于)m的自变量x的取值范围;反之,求当函数y=ax+b的值大于m(或小于m)时,自变量x的取值范围,也就是解不等式ax+b>m (<m).
3、一般地,一个二元一次方程组对应两个一次函数,因而也对应两条直线.如果一个二元一次方程组有唯
一的解 x=a那么这个解就是方程组对应的两条直线 y=b
的交点的坐标.。