制冷剂-基础知识备课讲稿
- 格式:doc
- 大小:30.00 KB
- 文档页数:12
制冷原理培训讲义上海法维莱交通车辆设备有限公司目录二、一些基本的制冷概念 (2)2.1热力学 (2)2.2热量 (3)2.3温度 (3)2.4热量测量 (3)2.5传热 (3)2.6状态变化 (4)2.7显热 (4)2.8熔解潜热 (4)2.9蒸发潜热 (5)2.10升华潜热 (5)2.11饱和温度 (5)2.12过热蒸汽 (5)2.13过冷液体 (5)2.14大气压 (6)2.15绝对压力 (6)2.16表压 (6)2.17液体压力和温度的关系 (6)2.18气体压力和温度的关系 (7)2.19比容 (7)2.20密度 (7)2.21压力和流体压头 (8)2.22流体流动 (8)2.23流体流动对传热的影响 (8)一、概述制冷是指用人工的方法在一定时间和一定空间内将某物体或流体冷却,使其温度降到环境温度以下,并保持这个低温。
这里所说的“冷”是指相对于环境温度而言的。
一桶开水置于空气中,逐渐冷却成常温水,这个过程是自发的传热降温,属于自然冷却,不是制冷。
只有通过一定的方式将水冷却到环境温度以下,才可称为制冷。
因此,制冷就是从物体或流体中取出热量,并将热量排放到环境介质中去,以产生低于环境温度的过程,也即从低于环境温度的物体中吸取热量,将其转移给环境介质。
由于热量只能自动地从高温物体传给低温物体,因此实现制冷必须消耗能量,该能量可以是机械能、电能、热能、太阳能及其他形式的能量。
机械制冷中所需机器和设备的总和称为制冷机。
例如,单级蒸气压缩式制冷机包括压缩机、蒸发器、冷凝器和节流阀;单级吸收式制冷机包括发生器、冷凝器、蒸发器、吸收器和节流阀等。
在制冷机中,除转动的压缩机、泵等机器以外,其余是换热器及各种辅助设备,统称为制冷设备。
而将制冷机同使用冷量的设施结合在一起的装置称为制冷装置,如冰箱、冷库、空调机等。
制冷机中使用的工作介质称为制冷剂。
制冷剂在制冷机中循环流动,并且不断地与外界发生能量交换,即不断地从被冷却对象中吸取热量,向环境介质排放热量。
制冷原理培训讲稿尊敬的各位同事大家好!今天我将为大家介绍制冷原理,希望通过这次培训,大家能够对制冷技术有一个全面的了解。
制冷技术是一项将热量从一个低温系统转移到一个高温系统的过程,以降低低温系统的温度为目的。
制冷原理基于热力学和热传递的基本原理,通过利用物质在不同温度下的相变或者介质的热传导性来实现。
首先,我们来了解一下制冷循环的基本原理。
制冷循环通常包括蒸发器、压缩机、冷凝器和节流装置四个主要部件。
蒸发器是热量吸收的地方,液体制冷剂通过葫芦器内部的换热管道,在低压下蒸发成气体,并吸收热量。
压缩机将蒸发器中的气体制冷剂压缩,使其温度和压力升高。
冷凝器是热量放出的地方,压缩机压缩过的气体制冷剂在冷凝器内部冷却下来,变成高温高压液体。
最后,通过节流装置,高温高压液体制冷剂的压力下降,温度也随之降低,重新进入蒸发器完成制冷循环。
制冷原理的关键在于制冷剂的选择和应用。
制冷剂具有特定的物理和化学性质,在制冷循环中起到传导热量的作用。
一个好的制冷剂应具备较低的沸点和较高的蒸发潜热,这样能够在蒸发器中充分吸收热量。
同时,制冷剂还需对环境友好,不会对臭氧层产生危害。
目前使用较广泛的制冷剂有氯氟烃和氨等。
了解了制冷循环和制冷剂,在实际应用中,还需要考虑一些其他因素。
首先是制冷系统的功率和效率。
功率主要由压缩机提供,而效率则取决于制冷剂的特性和循环中各个部件的损失。
其次是制冷负荷的计算。
制冷负荷是指一定时间内所需制冷量,需要根据实际需求来计算,以确保系统满足要求。
最后是制冷系统的安全问题,制冷剂的不当使用可能导致压力过高或者温度异常,对设备和人员造成安全隐患,因此需要加强对系统运行安全的监控和维护。
在实际的工程应用中,制冷技术广泛应用于空调、冷藏冷冻、制冷设备等行业。
随着科技的进步,制冷技术也在不断创新和发展。
例如,越来越多的环保型制冷剂被开发和应用,使得制冷系统对环境的影响降到了最低。
同时,制冷设备的智能化和节能化也受到了越来越多的关注。
制冷剂基本知识及应⽤制冷剂基本知识及应⽤第⼀章制冷剂的分类第⼆章制冷剂命名第三章热⼒学性质第四章物理化学性质第五章环境友好型第六章制冷剂淘汰与替代⼀. 制冷剂的分类1.1 按制冷剂分⼦结构分类:⽆机化合物(700系)和有机化合物。
1.1.1有机化合物制冷剂分为:碳氢化合物—HC;完全卤代烃—CFC;⽆氯卤代烃—HFC;不完全卤代烃—HCFC。
1.2 按制冷剂组成分类:单⼀(纯质)制冷剂和混合制冷剂。
1.2.1混合制冷剂分为:1)共沸混合物500系泡点线和露点线存在共沸点。
2)⾮共沸混合物制冷剂400系泡点线和露点线不相交。
1.2.2近共沸混合物⾮共沸混合物且滑移温度≤1℃,属于400系;不等温相变特性,有节能效果。
1.3 按制冷剂标准沸点分类:⾼温(低压):标准沸点0~10℃;中温(中压):标准沸点-20~0℃;低温(⾼压):标准沸点-60~-20℃。
1.4 安全性分类:1.4.1毒性分类:A类低慢性毒性;B类⾼慢性毒性。
1.4.2可燃性分类:1类,⽆⽕焰传播;2L类,弱可燃;2类,可燃;3类,可燃易爆1.5 环境友好型分类:1)环境友好型:R290,R600a,R414A,R717,R744;2)⾮环境友好型:R410A。
⼆. 制冷剂命名2.1 ⽆机化合物制冷剂例:H2O —R718R—制冷剂;7—⽆机物;18—⽔的分⼦量。
同理,R717,R744。
2.2 有机化合物制冷剂2.2.1 卤代烃及碳氢化合物例:CHF2CHF2—HFC-R134 HFC—⽆氯卤代烃;R—制冷剂;4—有4个氟;3—有2+1=3个氢;1—有2-1=1个碳;对称性同分异构体。
例:CH2FCF3 —HFC-R134a HFC—⽆氯卤代烃;R—制冷剂;4—有4个氟;3—有2+1=3个氢;1—有2-1=1个碳;a—a型⾮对称性同分异构体。
同理:CH2FCH2F=R152;CHF2CH3=R152a。
例:CF3Br —R13B1R—制冷剂;3—有3个氟;1—有0+1=1个氢;有1-1=0个碳故省略;B1—有1个溴。
146制冷512 第10周星期二第5、6节2014年11月4日146制冷522 第10周星期四第1、2节2014年11月6日
教
学过程
新课
讲授
、训
练、新
内容
1、讲授知识点,制冷剂的概念是什么?
制冷剂:在整蒸汽压缩式制冷的蒸发器里吸热后由液体转变为蒸汽,在冷凝器里放热后由蒸汽转变为液体的流体物质。
(俗
称制冷剂为冰种或雪种)
2、制冷剂的要求
1)、临界温度要高,凝固温度要低,沸点要低
2)、工作压力要适当
3)、单位制冷量要大,单位容积制冷量要适当
4)、绝热指数要小,导热系数要高,黏度和密度要小
5)、无毒、不燃烧、不爆炸,化学稳定性好
6)、价格便宜,易于获取
3、制冷剂的分类
1)、按化学组成分类
A、卤化碳类制冷剂(氟利昂)
B、环状化合物类
C、共沸类与非共沸类混合制冷剂
D、饱和与非饱和碳氢化合物类制冷剂
E、有机化合物与无机化合物类制冷剂
2)、按标准沸点和冷凝压力分类
A、高温低压制冷剂
B、中温中压制冷剂
C、低温高压制冷剂
审阅签名:黎铨华2014年11月2日。
146制冷512 第10周星期二第5、6节2014年11月4日146制冷522 第10周星期四第1、2节2014年11月6日
教
学过程
新课
讲授
、训
练、新
内容
1、讲授知识点,制冷剂的概念是什么?
制冷剂:在整蒸汽压缩式制冷的蒸发器里吸热后由液体转变为蒸汽,在冷凝器里放热后由蒸汽转变为液体的流体物质。
(俗
称制冷剂为冰种或雪种)
2、制冷剂的要求
1)、临界温度要高,凝固温度要低,沸点要低
2)、工作压力要适当
3)、单位制冷量要大,单位容积制冷量要适当
4)、绝热指数要小,导热系数要高,黏度和密度要小
5)、无毒、不燃烧、不爆炸,化学稳定性好
6)、价格便宜,易于获取
3、制冷剂的分类
1)、按化学组成分类
A、卤化碳类制冷剂(氟利昂)
B、环状化合物类
C、共沸类与非共沸类混合制冷剂
D、饱和与非饱和碳氢化合物类制冷剂
E、有机化合物与无机化合物类制冷剂
2)、按标准沸点和冷凝压力分类
A、高温低压制冷剂
B、中温中压制冷剂
C、低温高压制冷剂
审阅签名:黎铨华2014年11月2日。
《制冷原理》制冷剂教案制冷原理教案一、教学目标:1.了解制冷原理和制冷剂的基本概念。
2.掌握制冷循环过程及其原理。
3.熟悉几种常见的制冷剂及其性质。
4.理解制冷剂的选择和应用。
二、教学重点:1.制冷循环过程及其原理。
2.常见制冷剂的性质和应用。
三、教学难点:1.制冷循环系统的工作原理。
2.制冷剂的选择和应用。
四、教学内容及方法:1.制冷原理的基本概念(10分钟)-制冷的定义和作用。
-制冷循环系统的基本组成。
-制冷剂的基本作用。
教学方法:教师通过简单的实例引入制冷原理的基本概念,激发学生对这一课题的兴趣。
2.制冷循环过程及其原理(30分钟)-具体介绍制冷循环过程中的蒸发、压缩、冷凝和膨胀过程。
-讲解蒸发器、压缩机、冷凝器和膨胀阀的作用原理。
教学方法:教师通过流程图和示意图的形式,结合实际制冷循环系统的工作原理,向学生逐一说明制冷循环过程及其原理。
3.常见制冷剂的性质和应用(40分钟)-介绍常见的制冷剂,如氨、氟利昂等,包括其化学性质、物理性质、环境影响等方面的内容。
-分析制冷剂的选择原则和应用范围。
教学方法:教师通过切实的例子,向学生展示不同的制冷剂及其性质,引导学生理解制冷剂的选择和应用。
4.制冷剂的环境影响及替代品(20分钟)-介绍制冷剂对环境的影响,如温室效应、臭氧层破坏等。
-探讨替代制冷剂的研发和应用。
教学方法:通过图片和文章的形式,向学生展示制冷剂对环境的影响,并就替代品的研发和应用进行讨论。
五、教学资源:1.制冷循环系统图。
2.制冷剂性质的数据表。
3.制冷剂环境影响的相关资料。
六、教学评估方式:1.小组讨论:针对制冷剂的选择和应用进行小组讨论,总结出不同条件下的最佳选择。
2.案例分析:通过给定的实际案例,分析问题所在,并提出解决方案。
七、教学拓展:1.进一步研究不同制冷剂的性能和应用范围。
2.学习设备操作和维护的相关知识,了解制冷设备的结构和原理。
八、教学反思:制冷原理和制冷剂是制冷技术的基础,掌握制冷循环过程及其原理、了解制冷剂的性质和应用是学习制冷技术的重要一步。
w w w .z h u lo ng .co m制冷剂讲稿永源热泵2006-5-26w ww .z h u lo ng .co m题纲•制冷剂的发展历史•制冷剂简介•制冷剂性质•常用制冷剂•制冷剂与制冷系统•关于制冷剂的环保条约•制冷剂的发展趋势w ww .z h u lo ng .co m制冷剂的发展历史•乙醚——1834年由美国人雅各布·珀金斯用乙醚作制冷剂。
建造了首台实用机械制冷机器。
•二氧化碳——1866年威德豪森提出使用二氧化碳被用作制冷剂 。
•氨——1872年英籍美国人波义耳发明了以氨为制冷剂的压缩机。
•氟里昂——1926年托马斯·米奇尼开发了首台CFC 机器(R12)。
w ww .z h u lo ng .co m制冷剂简介•制冷剂的分类 低压高温(R11)Pk ≤2~3bar ,To >0℃中压中温(R22) Pk <20bar ,- 60 ℃ <To <0℃高压低温(R13) Pk ≥20bar ,To ≤-70℃•制冷剂的命名规则w ww .z h u lo ng .co m制冷剂命名规则•国际通用命名规则,制冷剂以R * *•无机化合物R7**,如水R718,氨R717•共沸制冷剂R5开头,如R500、R501等•非沸制冷剂R4开头,如R407C 、R410A 等•氟里昂用 R(m-1)(n+1)(x)(z), CmHnFxClyBrz , 2m+2=n+x+y+z ,如R11、R22等•国际新的表示方法,即用HCFC 代替原来的R •如含氢、氯、氟、碳原子的工质(HCFC-22)•若工质不含氢原子,则以CFC 表示(CFC-11)•若工质不含氯原子,则以HFC 表示(HFC-134a )w ww .z h u lo ng .co m制冷剂的性质•毒性•可燃性•换热性•临界点•臭氧消耗潜值(ODP )•全球变暖潜值(GWP )•材料相容性•冷冻油w ww .z h u lo ng .co m制冷剂毒性•ASHARE 标准按毒性将制冷剂分成A 、B 两个安全等级。
碳氢制冷剂基础知识(一)制冷剂概述制冷剂概述制冷剂概述制冷剂概述1、什么是制冷剂?答:制冷剂又称制冷工质,它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。
空调制冷中主要是采用卤代烃制冷剂,其中不含氢原子的称为氯氟烃(CFC),含氢原子的称为氢氯氟烃(HCFC),不含氯原子的称为氢氟烃(HFC)。
制冷剂在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。
它的性质直接关系到制冷装置的制冷效果、经济性、安全性及运行管理,因而对制冷剂性质要求的了解是不容忽视的。
2、对制冷剂性质有哪些要求?(1)环保性要求工质的臭氧消耗潜能值(ODP)与全球变暖潜能值(GWP)尽可能小,以减小对大气臭氧层的破坏及引起全球气候变暖。
(2)具有优良的热力学特性具有优良的热力学特性以便能在给定的温度区域内运行时有较高的循环效率。
具体要求为:临界温度高于冷凝温度、与冷凝温度对应的饱和压力不要太高、标准沸点较低、流体比热容小、绝热指数低、单位容积制热量较大等。
(3)具有优良的热物理性能具体要求为:较高的传热系数、较低的粘度及较小的密度。
(4)具有良好的化学稳定性要求工质在高温下具有良好的化学稳定性,保证在最高工作温度下工质不发生分解。
(5)与润滑油有良好互溶性。
(6)安全性。
工质应无毒、无刺激性、无燃烧性及爆炸性。
(7)有良好的电气绝缘性。
(8)经济性。
要求工质低廉,易于获得。
3、制冷剂是怎样分类的?在压缩式制冷剂中广泛使用的是氨、氟里昂和烃类。
一、按照化学成分,制冷剂可分为五类:无机化合物制冷剂、氟里昂、饱和碳氢化合物制冷剂、不饱和碳氢化合物制冷剂和共沸混合物制冷剂。
(1)无机化合物制冷剂:这类制冷剂使用得比较早,如氨(NH3)、水(H2O)、空气、二氧化碳(CO2)和二氧化硫(SO2)等。
对于无机化合物制冷剂,国际上规定的代号为R及后面的三位数字,其中第一位为“7”后两位数字为分子量。
如水R718...等。
(2)氟里昂(卤碳化合物制冷剂):氟里昂是饱和碳氢化合物中全部或部分氢元素(CL)、氟(F)和溴(Br)代替后衍生物的总称。
国际规定用“R”作为这类制冷剂的代号,如R22...等。
又有人称之为氟利昂的。
(3)饱和碳氢化合物制冷剂:这类制冷剂中主要有甲烷、乙烷、丙烷、丁烷和环状有机化合物等。
代号与氟里昂一样采用“R”,这类制冷剂易燃易爆。
如R50、R170、R290...等。
(4)不饱和碳氢化合物制冷剂:这类制冷剂中主要是乙烯(C2H4)、丙烯(C3H6)和它们的卤族元素衍生物,它们的R后的数字多为“1”,如R113、R1150...等。
(5)共沸混合物制冷剂:这类制冷剂是由两种以上不同制冷剂以一定比例混合而成的共沸混合物,这类制冷剂在一定压力下能保持一定的蒸发温度,其气相或液相始终保持组成比例不变,但它们的热力性质却不同于混合前的物质,利用共沸混合物可以改善制冷剂的特性。
如R500、R502...等。
二、根据冷凝压力,制冷剂可分为三类:高温(低压)制冷剂、中温(中压)制冷剂和低温(高压)制冷剂。
高温、中温及低温制冷剂:根据制冷剂常温下在冷凝器中冷凝时饱和压力Pk和正常蒸发温度T0的高低,一般分为三大类:(1)低压高温制冷剂。
适用于空调系统的离心式制冷压缩机中。
(2)中压中温制冷剂。
如R717、R12、R22等,这类制冷剂一般用于普通单级压缩和双级压缩的活塞式制冷压缩机中。
(3)高压低温制冷剂。
如R13(CF3Cl)、R14(CF4)、二氧化碳、乙烷、乙烯等,这类制冷剂适用于复迭式制冷装置的低温部分或-70℃以下的低温装置中。
4、空调制冷剂对环境有什么影响空调制冷剂对环境有什么影响空调制冷剂对环境有什么影响空调制冷剂对环境有什么影响?空调制冷剂对大气环境的影响主要有两个方面,一是对大气臭氧层的破坏,另一方面是使全球气候变暖的温室效应。
在卤代烃中,随着氯原子数的增加,其对大气臭氧层的破坏就愈严重,因此,CFC对大气臭氧层的破坏最严重,HCFC对大气臭氧层的破坏程度相对较小,HFC不破坏臭氧层。
制冷剂对臭氧层的破坏程度用破坏臭氧层潜值(Ozone depletion potentia,简称ODP)表示。
制冷剂的排放会产生全球气候变暖的温室效应,其影响程度用全球变暖潜值(Global warming potential,简称GWP)表示。
5、制冷剂发展历史是如何划分的?制冷剂的发展经历了三个阶段:第一阶段,从1830年到1930年,主要采用NH3、CO2、H2O等作为制冷剂,它们有的有毒,有的可燃,有的效率低,用了约100年的时间。
第二阶段,从1930年到1990年,主要采用CFCs和HCFCs制冷剂,使用了约60年。
第三阶段,从1990年至今,进入了以HFCs(含氟烃)为主的时期。
6、常用汽车空调制冷剂有哪些?(1)氟利昂-12(代号:R12)R12为烷烃的卤代物,学名二氟二氯甲烷。
它是我国中小型制冷装置中使用较为广泛的中压中温制冷剂。
是一种无色、透明、没有气味,几乎无毒性、不燃烧、不爆炸,很安全的制冷剂。
R12的标准蒸发温度为-29.8℃,冷凝压力一般为0.78~0.98MPa,凝固温度为-155℃,单位容积标准制冷量约为288kcal/m3。
R12只有在空气中容积浓度超过80%时才会使人窒息。
但与明火接触或温度达400℃以时,则分解出剧毒的光气。
R12能与任意比例的润滑油互溶且能溶解各种有机物,但其吸水性极弱。
因此,在小型氟利昂制冷装置中不设分油器,而装设干燥器。
同时规定R12中含水量不得大于0.0025%。
R12对一般金属不腐蚀,但能腐蚀镁及含镁超过2%的铝镁合金。
它对天然橡胶和塑料有膨润作用,系统中不能用一般天然橡胶作密封垫片,而应采用丁腈橡胶或氯乙醇等人造橡胶。
R12的渗透性很强,甚至铸件的极细缝隙,螺纹接合处等都可能泄漏,因此要求机器的密封性要良好。
否则,会造成密封垫片的膨胀引起制冷剂的泄漏。
由于R12在大气中分解后释放出的氯原子对臭氧层具有破坏作用,导致大气中臭氧浓度下降及形成臭氧空洞危害地球环境。
根据蒙特利尔协议,发达国家1996年开始停止使用包括R12在内的CFC系列制冷剂,发展中国家在2000年基本停止使用CFC系列制冷剂,到2030年将全面停止使用HCFC系列制冷剂。
因此,必须开发适合汽车空调系统的制冷剂R12的替代品。
目前,有两种物质可作为R12的替代物应用于汽车空调。
一是R134A(四氟乙烷),二是碳氢化合物。
(2)R134A(四氟乙烷)R-134A制冷剂,别名R134A、HFC134A、HFC-134A、由于R-134A属于HFC类物质(非ODS物质Ozone-depleting depleting Substances)——因此完全不破坏臭氧层,是当前世界绝大多数国家认可并推荐使用的环保制冷剂,也是目前主流的环保制冷剂,广泛用于新制冷空调设备上的初装和维修过程中的再添加,是目前使用最广泛的中低温环保制冷剂。
其主要特点是:不含氯原子;具有良好的安全性能;物理性能与CFCl2比较接近,所以制冷系统的改型比较容易;传热性能比CFCl2好,制冷剂的用量可大大减少。
HFC134A和CFCl2有相近的蒸发压力并且ODP值为零,GWP 值仅0.29,且无明显毒性(长期慢性毒性试验仍在进行中)。
由于R134A 良好的综合性能,使其成为一种非常有效和安全的CFC-12的替代品。
目前R134A已商品化,广泛地应用于制冷空调中,尤其是成功地用于汽车空调。
这是因为一是由于R-134A特性使然,二是通过选择单一的冷媒,可以避免制冷剂经过胶皮软管时组成发生变化,目前全球生产的R-134a制冷剂中50%用于汽车空调,由于汽车空调的特殊工况,一般情况下每两年就要加注一次制冷剂。
2006年中国新车消费R-134A约6550吨,维修用量约2950吨,合计9500吨,同比增长25%,约占R-134A消费总量的56%。
由此可见中国汽车空调市场是巨大的,对制冷剂的需求也是巨大的。
根据欧盟已通过的含氟温室气体控制法规的要求,自2017年1月1日起,欧盟将禁止新生产的汽车空调使用GWP值大于150的制冷剂,由于现在使用的R-134A的GWP值为1300,故将被禁用;在2011年1月1日至2017年1月1日的6年间,在用汽车空调将按比例逐步淘汰GWP值大于150的制冷剂;自2017年1月1日起,将禁止所有汽车空调使用GWP值大于150的制冷剂。
因而,汽车空调使用低GWP值的制冷剂成为趋势和必然。
(3)R600a(异丁烷)碳氢制冷剂臭氧层的破坏和全球气候变化,是当前世界所面临的主要环境问题。
由于制冷空调广泛采用CFC与HCFC类物质对臭氧层有破坏作用以及产生温室效应,使全世界的这一行业面临严重的挑战。
CFC与HCFC的替代已成为当前国际性的热门话题。
国际普遍认为:21世纪将是天然制冷工质的世纪。
各国都在积极跟踪,注意天然工质的研究开发。
在各种天然制冷剂中,烷烃(又称碳氢化合物,缩写HC).是引起各国科学家注意的天然制冷工质,并对它的应用技术进行了详细的研究.烷烃:“鲨鱼”牌HCR-22,丙烷(R290),异丁烷(R600a)正丁烷(R600),是从自然界获得的成分之一.具有零臭氧耗损值(ODP)和极低的温室效应值(GWP).欧洲是发展烷烃制冷剂应用于家用电器最早的地区.世界绿色和平组织也积极推荐碳氢化合物作为替代的制冷工质,德国AEG公司于1990年开始对碳氢制冷剂的研究,进行一系列试验表明异丁烷(R600a)用于冰箱永久替代氟利昂(CFC).欧洲地区特别是德国90%以上的冰箱使用R600a作为制冷剂.世界各国也逐步扩大使用R600a制冷剂我国目前的冰箱也大部分都使用R600a. 7、制冷剂的发展趋势是什么?总得来说,制冷剂的发展趋势应该满足生态环境可持续发展的要求,并且推动其进一步发展。
根据可持续发展中经济发展与保护资源、保护生态环境的协调一致的核心要求,制冷剂的发展方向有两个:一个是环保。
使用绿色环保的制冷剂已经是大势所趋,绿色环保制冷剂可以是合成的,也可以是天然的,虽然合成的环保制冷剂也对臭氧不会造成破坏,但从地球生态的可持续发展来看天然制冷剂是最理想的选择,因为天然制冷剂本来就是地球生态系统中存在的,无论是使用还是排放到环境中,取之于自然回之于自然,对环境的影响比合成制冷剂都小的多,相信随着技术的不断进步,天然制冷剂必将大有发展。
一直以来制冷剂的替代研究工作也是沿着环保的方向发展的,并且已经对环境的可持续发展起到了很大的促进作用,2003年9月为纪念“国际臭氧层日”,联合国环境规划署和国际气象组织在巴黎发表了由37个国家250名专家联合作出的关于大气臭氧层状况的评估报告。