02_制冷剂循环的基础知识_CN讲解
- 格式:ppt
- 大小:1.34 MB
- 文档页数:27
第1篇一、引言随着我国经济的快速发展,制冷行业得到了广泛应用,制冷设备在食品加工、医药、建筑、空调等领域发挥着重要作用。
然而,制冷设备在使用过程中存在一定的安全隐患,可能导致事故发生。
为了提高制冷行业的安全管理水平,预防和减少事故发生,本培训旨在提高制冷行业从业人员的安全生产意识和技能,确保制冷设备安全运行。
二、制冷安全基础知识1. 制冷剂制冷剂是制冷循环中传递热量的介质,常见的制冷剂有氨、氟利昂、R134a等。
制冷剂具有易燃、易爆、有毒等特点,在使用过程中需严格遵守安全操作规程。
2. 冷冻剂泄漏制冷系统在运行过程中,制冷剂可能发生泄漏,导致设备性能下降、能耗增加,甚至引发火灾、爆炸等事故。
因此,了解制冷剂泄漏的原因和预防措施至关重要。
3. 制冷设备运行安全制冷设备在运行过程中,要关注以下几个方面:(1)检查制冷剂液位,确保正常运行;(2)检查制冷压缩机、膨胀阀、冷凝器等部件的运行状态,发现问题及时处理;(3)保持制冷系统清洁,防止异物进入;(4)定期检查设备接地,确保设备安全运行。
三、制冷安全操作规程1. 制冷剂加注(1)穿戴好防护用品,如防毒面具、手套、工作服等;(2)检查制冷剂瓶体,确认无误后方可加注;(3)缓慢开启制冷剂瓶阀,防止制冷剂快速喷出;(4)加注过程中,保持制冷剂瓶体与制冷系统接口垂直,防止制冷剂泄漏。
2. 制冷设备检修(1)断电、泄压,确保设备安全;(2)穿戴好防护用品,如防毒面具、手套、工作服等;(3)检查设备部件,发现问题及时更换;(4)检修完毕,恢复设备运行,确保安全。
3. 制冷系统清洗(1)断电、泄压,确保设备安全;(2)穿戴好防护用品,如防毒面具、手套、工作服等;(3)使用专用清洗剂清洗制冷系统,防止异物进入;(4)清洗完毕,恢复设备运行,确保安全。
四、制冷安全事故案例分析1. 案例一:某工厂制冷设备泄漏引发火灾原因:制冷设备长期未进行检修,制冷剂泄漏至空气中,遇明火发生爆炸,引发火灾。
氨制冷基础知识与原理氨制冷是一种常见的制冷方式,广泛应用于工业和商业领域。
它的基础知识包括氨的性质、循环系统的构成和工作原理。
氨的性质氨(NH3)是一种无色气体,具有刺激性气味和可燃性。
它是一种高效的制冷剂,具有较大的制冷量和良好的热传导性。
氨的沸点为-33.34°C,在常温下容易液化,因此适合用于制冷。
循环系统的构成氨制冷循环系统由四个主要组件组成:压缩机、冷凝器、膨胀阀和蒸发器。
1.压缩机:压缩机是氨制冷循环的关键组件,负责将氨气从低压态压缩为高压态。
这个过程会显著增加氨气的温度和压力,将其制冷能力提高。
2.冷凝器:冷凝器是接收由压缩机排出的高温高压氨气,并通过冷却和冷凝过程释放热量。
冷凝器通常是由管道和散热器组成的,冷却介质(通常为水或空气)通过管道流动,将氨气冷却至液态。
3.膨胀阀:膨胀阀是控制制冷剂流量的关键组件。
它负责将高压液态氨气通过节流孔膨胀为低压氨气,使其进入蒸发器。
4.蒸发器:蒸发器是氨制冷循环中的冷却部分,它负责将低压液态氨气转化为低温蒸汽。
在蒸发器中,氨气吸收周围的热量,从而形成冷气。
常见的蒸发器类型有换热器、冷却塔和冷冻箱等。
工作原理氨制冷的工作原理基于制冷剂的物理特性和热力学原理。
1.蒸发过程:在蒸发器中,低压液态氨气经过膨胀阀进入,温度和压力降低,形成低温蒸汽。
蒸发器中的介质(如水或空气)吸收蒸发过程中释放的热量,冷却周围空气或物体。
2.压缩过程:低温蒸汽进入压缩机,被压缩为高温高压氨气。
压缩过程中,氨气的温度和压力显著增加,以便更好地释放热量。
3.冷凝过程:高温高压氨气进入冷凝器,在冷却介质的作用下,氨气冷却并逐渐液化。
冷凝过程中,热量从氨气中移除,并通过冷却介质释放到外部环境中。
4.膨胀过程:液态氨气通过膨胀阀进入蒸发器,低温低压状态下再次循环。
循环系统中,氨气在压缩和膨胀的过程中,通过吸收和释放热量,实现了制冷效果。
通过不断循环,整个系统能够持续制冷。
制冷基础知识——制冷剂制冷剂的命名与标识制冷剂的标识符号由字母“R”和它后面的一组数字和字母构成。
“R”是英语中制冷剂(refrigerant)的首字母,后面的数字则根据制冷剂的化学组成按一定规则编写。
▍无机化合物制冷剂:无机物制冷剂的符号是R7加上该物质的分子量的整数部分,例如氨的符号表示是R717。
▍氟利昂制冷剂:氟利昂的分子通式是CmHnFxClyBrz,其中,n+x+y+z=2m+2,简写为R(m-1)(n+1)(x)B(z)。
分子中含氯、氟、碳的完全卤代烃简称为“CFC”制冷剂,例如R12分子中含氢、氯、氟、碳的不完全卤代烃简称为“HCFC”制冷剂,例如R22分子中含氢、氟、碳而不含氯的卤代烃简称“HFC”制冷剂,例如R134a▍碳氢化合物制冷剂,简称“HC”制冷剂:a.饱和碳氢化合物,命名规则基本上和它的衍生物氟利昂一样。
例如:丙烷代号为R290:(分子式为C3H8,m=3,n=8,x=0,那么m-1=2,n+1=9);但丁烷代号为R600是个例外(化学式为CH3CH2CH2CH3);同素异构物在代号后面加字母a以示不同,如异丁烷代号为R600a(它的化学式为CH(CH3)3)。
b.非饱和碳氢化合物与他们的卤族元素衍生物的符号命名是先在R后面写上一个“1”,然后再按氟利昂编号规则书写“1”后面的数字,例如乙烯代号为R1150 (它的化学式是C2H4)。
c.环状有机物,是在R后面先写上一个“C”,然后按氟利昂的命名方法书写后面的数字。
如八氟环丁烷,它的化学式为C4H8,代号为RC318。
▍混合物制冷剂a. 共沸制冷剂,是由两种或两种以上互相混溶的单纯制冷剂按一定比例混合而成。
这种混合物在固定的压力下蒸发或者冷凝时,蒸发温度或冷凝温度保持不变,气相和液相的组分也保持不变,就好象单纯的制冷剂一样。
其代号规定为在R后面的第一个数字为5,其后的两位数字按混合工质命名的先后次序编写,最早命名的共沸制冷剂就记为R500,以后依次为R501、R502、R503等。
碳氢制冷剂根底知识(一)制冷剂概述制冷剂概述制冷剂概述制冷剂概述1、什么是制冷剂?答:制冷剂又称制冷工质,它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。
空调制冷中主要是采用卤代烃制冷剂,其中不含氢原子的称为氯氟烃(CFC),含氢原子的称为氢氯氟烃(HCFC),不含氯原子的称为氢氟烃(HFC)。
制冷剂在蒸发器吸收被冷却介质〔水或空气等〕的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。
它的性质直接关系到制冷装置的制冷效果、经济性、平安性及运行管理,因而对制冷剂性质要求的了解是不容无视的。
2、对制冷剂性质有哪些要求?(1)环保性要求工质的臭氧消耗潜能值〔ODP〕与全球变暖潜能值〔GWP〕尽可能小,以减小对大气臭氧层的破坏及引起全球气候变暖。
〔2〕具有优良的热力学特性具有优良的热力学特性以便能在给定的温度区域运行时有较高的循环效率。
具体要求为:临界温度高于冷凝温度、与冷凝温度对应的饱和压力不要太高、标准沸点较低、流体比热容小、绝热指数低、单位容积制热量较大等。
〔3〕具有优良的热物理性能具体要求为:较高的传热系数、较低的粘度及较小的密度。
〔4〕具有良好的化学稳定性要求工质在高温下具有良好的化学稳定性,保证在最高工作温度下工质不发生分解。
〔5〕与润滑油有良好互溶性。
〔6〕平安性。
工质应无毒、无刺激性、无燃烧性及爆炸性。
〔7〕有良好的电气绝缘性。
〔8〕经济性。
要求工质低廉,易于获得。
3、制冷剂是怎样分类的?在压缩式制冷剂中广泛使用的是氨、氟里昂和烃类。
一、按照化学成分,制冷剂可分为五类:无机化合物制冷剂、氟里昂、饱和碳氢化合物制冷剂、不饱和碳氢化合物制冷剂和共沸混合物制冷剂。
〔1〕无机化合物制冷剂:这类制冷剂使用得比拟早,如氨〔NH3〕、水〔H2O〕、空气、二氧化碳〔CO2〕和二氧化硫〔SO2〕等。
对于无机化合物制冷剂,国际上规定的代号为R及后面的三位数字,其中第一位为“7〞后两位数字为分子量。
制冷剂循环过程制冷剂循环是制冷系统中重要的环节,能够实现热量传递和温度调控。
本文将详细介绍制冷剂循环过程,包括其作用、主要组成和工作原理等内容。
一、制冷剂循环的作用制冷剂循环在制冷系统中扮演着至关重要的角色。
其主要作用如下:1. 热量传递:制冷剂循环通过吸收和释放热量,实现了热量的传递。
当制冷剂经过蒸发器时,吸收外界热量并蒸发成气态;而经过冷凝器时,释放热量并凝结为液态。
这样,通过循环不断实现热量的吸收和释放,从而达到制冷的效果。
2. 温度调控:制冷剂循环可以对系统内的温度进行调控。
通过调整循环中的压力和流量,可以实现对制冷系统的温度控制,满足不同环境条件下的制冷需求。
二、制冷剂循环主要组成制冷剂循环主要由以下几个组成部分构成:1. 压缩机:压缩机是制冷剂循环的核心部件,其作用是将低温低压的制冷剂气体吸入,并将其压缩成高温高压的气体。
通过压缩,制冷剂的温度和压力均升高,为后续的冷凝过程做准备。
2. 冷凝器:冷凝器是将高温高压的制冷剂气体冷却凝结成液体的部件。
制冷剂在冷凝器中释放热量,通过传热与外界环境接触,使制冷剂由气态转变为液态。
3. 膨胀阀:膨胀阀是控制制冷剂流量和压力的部件。
它通过调节制冷剂的过流面积,使制冷剂在膨胀阀后压降,温度降低,从而形成低温低压的制冷剂流体。
4. 蒸发器:蒸发器是将低温低压的制冷剂液体吸收外界热量并蒸发的部件。
通过与被制冷物体接触,蒸发器将外界热量带走,并将制冷剂再次变为低温低压的气体,完成整个循环过程。
三、制冷剂循环的工作原理制冷剂循环的工作原理可以总结为以下几个步骤:1. 压缩:制冷剂经过蒸发器吸收热量后变为气态,然后被压缩机吸入并被压缩成高温高压的气体。
2. 冷凝:经过压缩后的制冷剂气体进入冷凝器,与外界环境接触并释放热量,冷却凝结成液体。
3. 膨胀:制冷剂液体通过膨胀阀进入蒸发器,由于膨胀阀的作用,制冷剂的压力降低,温度下降。
4. 蒸发:制冷剂液体在蒸发器中与被制冷物体接触,吸收外界热量并蒸发成气态,形成低温低压的制冷剂气体。
制冷基础知识一、制冷术语:什么叫工质?凡是用来实现热能与机械能的转换或用来传递热能的工作物质统称为工质。
在制冷装置中,不断循环流动以实现能量转换的工作物质称为工质。
也是制冷系统中完成制冷循环的工作介质。
例如:氟利昂、氨、水等。
什么叫制冷剂?制冷剂即制冷工质,是制冷系统中完成制冷循环的工作介质。
制冷剂在蒸发器内吸取被冷却对象的热量而蒸发,在冷凝器内将热量传递给周围空气或水而被冷凝成液体。
制冷机借助于制冷剂的状态变化,达到制冷的目的。
什么叫载冷剂?载冷剂也称冷媒是指在间接制冷系统中用以传送冷量的中间介质。
载冷剂在蒸发器中被制冷剂冷却后,送到冷却设备中,吸收被冷却物体或环境的热量,再返回蒸发器被制冷剂重新冷却,如此不断的循环,以达到连续制冷的目的。
载冷剂传递冷量是依靠显热作用,而不象别的制冷剂那样依靠蒸发潜热来实现制冷。
例如:空气、水、盐水、有机化合物及其水溶液等。
二、制冷系统中的工作参数的概念1、温度:温度是表示物质冷热程度的量度。
常用的温度单位(温标)有三种:摄氏温度、华氏温度、绝对温度。
1)摄氏温度(t ,℃):我们经常用的温度。
用摄氏温度计测得的温度。
2)华氏温度( F ,℉):欧美国家常用的温度。
3)绝对温标(T,oK):一般在理论计算中使用。
三种温度单位之间换算:A、华氏温度 F (℉) = 9/5×摄氏温度t(℃) +32 (已知摄氏温度求华氏温度)B、摄氏温度t (℃)= [华氏温度F(℉)-32]×5/9 (已知华氏温度求摄氏温度)例: F (℉) t (℃)212 10032 05 -150 -17.8C、绝对温标T(oK)= 摄氏温度t (℃) +273 (已知摄氏温度求绝对温度)例:t (℃) T(oK)-30 243-10 2630 27330 3032、压力(P):在制冷中,压力是单位面积上所受的垂直作用力,即压强。
通常用压力表、压力计测得。
1)压力的常用单位有:Mpa(兆帕),Kpa(千帕),Pa(帕),bar(巴或巴帕),kgf/cm2(平方厘米公斤力),atm或B0 (即标准大气压,一般看作是:1bar、0.1MPa),at(工程大气压),mmHg(毫米汞柱),mmH2O(毫米水柱)。
制冷循环系统的基本知识与简单原理一、概念1、定义;制冷是指用人工的方法在一定时间和一定空间内将某物体或流体冷却,使其温度降到环境温度以下,并保持这个低温。
2、制冷机:机械制冷中所需机器和设备的总称为制冷机。
3、制冷剂:制冷机中使用的工作介质称为制冷剂.制冷剂在制冷机中循环流动,同时与外界发生能量交换,即不断地从被冷却对象中吸取热量,向环境排放热量。
制冷剂一系列状态变化过程的综合为制冷循环.4、制冷的方法:制冷的方法很多,可分为物理方法和化学方法.但绝大多数为物理方法。
目前人工制冷的方法主要有相变制冷、气体绝热膨胀制冷、半导体制冷和磁制冷等。
4。
1.相变制冷:即利用物质相变的吸热效应实现制冷。
如冰融化时要吸取80 kcal/kg的熔解热;干冰在1标准大气压下升华要吸取137kcal/kg的热量,其升华温度为-78。
9℃。
4.2.气体绝热膨胀制冷:利用气体通过节流阀或膨胀机绝热膨胀时,对外输出膨胀功,同时温度降低,达到制冷目的。
4。
3。
半导体制冷:两种不同金属组成的闭合电路中接上一个直流电源时,则一个接合点变冷,另一个接合点变热。
但纯金属的珀尔帖效应很弱,且热量通过导线对冷热端有相互干扰,而用两种半导体(N型和P型)组成的直流闭合电路,则有明显的珀尔帖效应且冷热端无相互干扰。
因此,半导体制冷就是利用半导体的温差电效应实现制冷。
(两种不同的金属构成闭合回路,当回路中存在直流电流时,两个接头之间将产生温差。
利用物理现象制冷的方法还有很多,我们不一一介绍。
目前生产实际中广泛应用的制冷方法是:利用液体的气化实现制冷,这种制冷常称为蒸气制冷。
它的类型有:蒸汽压缩式制冷(消耗机械能)、吸收式制冷(消耗热能)、蒸汽喷射式制冷(消耗热能)和吸附式制冷等几种。
二、制冷循环原理❖一般制冷机的制冷原理,液体制冷剂在蒸发器中吸收被冷却的物体热量之后→汽化成低温低压的蒸汽→被压缩机吸入→压缩成高压高温的蒸汽后排入冷凝器→在冷凝器中向冷却介质(水或空气)放热→冷凝为低温高压液体→经节流阀节流→再次进入蒸发器吸热汽化变成低温低压的气态(湿蒸汽)→吸入压缩机达到循环制冷的目的。
60制冷设备维修技术基本功二、项目基本知识知识点一 制冷基础知识1.制冷的分类根据制冷产生的低温温度不同,通常分为如下3种。
① 普通制冷:制冷温度在−153.15℃(120K )以上。
② 深度制冷:制冷温度在−153.15~−253.15℃之间。
③ 低温和超低温制冷:制冷温度在−253.15℃到接近绝对零度(−273.15℃)之间。
电冰箱和空调器属于普通制冷,普通制冷又分为3个温区。
① 低温区(−100℃以下),主要用于气体液化、气体分离、低温物理、超导等。
② 中温区(−100~+5℃),主要用于食品冷冻、冷藏保鲜、冷藏运输等。
③ 高温区(5~50℃),主要用于空气调节和热泵设备。
2.制冷方法常用的人工制冷方法有4种。
(1)液体汽化法在皮肤上擦些酒精,立刻会有凉感,这是由于低沸点的酒精在常压下挥发,吸收了皮肤的热量。
液体汽化法就是利用常压下沸点较低的液态制冷剂沸腾汽化,吸收周围物体或空间的热量,实现制冷。
在普通制冷范围内主要采用液体汽化法制冷。
液体汽化法又可分为蒸气压缩式制冷、吸收式制冷、蒸气喷射式等。
(2)温差电制冷(又叫半导体制冷)将两种不同的导体连接成闭合环路,两个连接点称为节点,这两种导体的组合称为电偶对。
在环路中接入直流电源,其中一个节点的温度会升高,向外放出热量称为热端,另一个节点的温度会降低,吸收周围热量产生制冷效应称为冷端,如图2-39所示。
改变电源极性冷热端互相变换,即原冷端变为热端,原热端变为端,这种电温差效应称为珀尔帖效应。
金属导体的珀尔帖效应十分微弱,而采用P型半导体和N 型半导体用铜片焊接成电偶对时,如图2-40所示,珀尔帖效应较为显著。
实际应用都采用半导体材料制作电偶对,所以温差电制冷又称半导体制冷。
一个半导体电偶对的制冷能力很小,约为1.163W ,往往将几十对电偶串联而成,将冷端排在一起,热端排在一起,串联组成热电堆,就可获得较大的制冷量,如图2-41所示。
半导体制冷的优点是不需要机械传动部分,体积小,无振动,无噪声,无磨损,运行可靠,维修方便,冷却速度快,无需制冷剂,易于控制。
制冷剂循环过程制冷剂循环过程是在制冷系统中的核心环节,它通过循环将制冷剂从低温低压状态转化为高温高压状态,实现对空气或物体的冷却。
下面将对制冷剂循环过程的原理和步骤进行详细介绍。
一、制冷剂循环过程的原理制冷剂循环过程的原理基于制冷机的工作原理,通常采用蒸发冷凝循环方式。
该循环过程包括四个关键组件:压缩机、冷凝器、蒸发器和节流阀。
在这个循环过程中,制冷剂在不同的组件中经历相应压力和温度的变化,完成传热和传质的过程。
首先,制冷剂在低温低压状态下进入蒸发器。
在蒸发器内部,制冷剂吸收外部空气或物体的热量,使其自身发生蒸发,从而降低所接触物体的温度。
同时,制冷剂也由液体状态转变为蒸汽状态。
其次,制冷剂经过压缩机。
压缩机的作用是提高制冷剂气体的压力和温度,使其能够更高效地释放热量。
然后,制冷剂进入冷凝器。
冷凝器通过散热方式将制冷剂的热量传递给外界环境,使制冷剂从蒸汽状态重新回到液态状态。
在冷凝器的作用下,制冷剂的温度和压力得到一定程度的降低。
最后,制冷剂通过节流阀进入蒸发器,回到循环的起点。
在进入蒸发器前,制冷剂经历了压力和温度的临界点降低,使其能够重新吸收热量并实现冷却的效果。
二、制冷剂循环过程的步骤制冷剂循环过程可以简述为以下几个步骤:1. 蒸发:制冷剂从蒸发器进入制冷系统,通过吸收外界热量使制冷剂发生蒸发,并降低蒸发器内的温度。
2. 压缩:蒸发后的制冷剂进入压缩机,在压缩机内部被压缩成高压高温气体,同时增加了其内能和温度。
3. 冷凝:经过压缩后的制冷剂进入冷凝器,通过与外界环境的接触,释放热量并转化为液态。
4. 膨胀:液态制冷剂通过节流阀进入蒸发器,此时压力和温度降低,制冷剂再次蒸发吸收热量,循环再次开始。
制冷剂在循环过程中经历了多次相变,不断循环往复,实现对空气或物体的冷却。
总结:制冷剂循环过程在制冷系统中扮演着重要的角色。
通过蒸发冷凝循环方式,制冷剂可以完成从低温低压到高温高压的转变,实现对空气或物体的冷却。