自动控制原理拉氏变换共54页
- 格式:ppt
- 大小:3.88 MB
- 文档页数:54
附录1: 拉普拉斯(LapLace )变换机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。
按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。
一、拉普拉斯变换的定义如果有一个以时间t 为自变量的实变函数)(t f ,它的定义域是0≥t ,那么)(t f 的拉普拉斯变换定义为⎰∞-==0)()()]([dt e t f s F t f L st (1-1)式中,s 是复变数, ωσj s +=(σ、ω均为实数),⎰∞-0st e 称为拉普拉斯积分; )(s F 是函数)(t f 的拉普拉斯变换,它是一个复变函数,通常也称)(s F 为)(t f 的象函数,而称)(t f 为)(s F 的原函数;L 是表示进行拉普拉斯变换的符号。
式(1-1)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数)(s F 。
二、几种典型函数的拉氏变换1.单位阶跃函数)(1t 的拉氏变换)(t f 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为)0()0(101≥<⎩⎨⎧∆t t t )(图1-1 单位阶跃函数单位阶跃函数如图1-1所示,它表示在0=t 时刻突然作用于系统一个幅值为1的不变量。
单位阶跃函数的拉氏变换式为∞--∞-===⎰00|1)(1)](1[)(st st e sdt e t t L s F 当 0)Re(>s ,则 0lim →-∞→stt e所以 ss e ss F st1)]1(0[1)(0=--=-=∞-(1-2)2.指数函数atet f -=)(的拉氏变换指数函数也是控制理论中经常用到的函数,其中 是常数。
dt e dt ee eL s F t s a atst at⎰⎰∞+--∞--===0)(0][)(令a s s +=1则与求单位阶跃函数同理,就可求得 as e L s F sat+===-11][)(1(1-3) 3.正弦函数与余弦函数的拉氏变换 设t t f ωsin )(1=, t t f ωcos )(2=,则dt te t L s F st ⎰∞-==01sin ][sin )(ωω由欧拉公式,有je e t tj t j 2sin ωωω--=所以⎥⎦⎤⎢⎣⎡-=⎰⎰∞∞---001j 21)(dt e e dt e e s F stt j st t j ωω ⎥⎦⎤⎢⎣⎡-=⎰⎰∞∞+---00)()(j 21dt e dt e t j s t j s ωω ⎥⎥⎦⎤⎢⎢⎣⎡+--=∞+-∞--0)(0)(j s 1j -s 1j 21t j s t j s e e ωωωω22s j s 1j -s 1j 21ωωωω+=⎥⎦⎤⎢⎣⎡+--=(1-4)同理 222][cos )(ωω+==s st L s F (1-5)4.单位脉冲函数 δ(t ) 的拉氏变换单位脉冲函数是在持续时间)0(→=εεt 期间幅值为ε1的矩形波。
Lecture3-Laplace TransformsK.J.ÅströmReview of control system analysis1.The Basic Feedback Loopplace T ransforms3.Analysis of Feedback Loops4.Qualitative Understanding of Signals and Systems5.SummaryTheme:Streamline manipulation of equations and block diagrams.Construction of a Block DiagramThe block diagram gives an overview.T o draw a block diagram:•Understand how the system works.•Identify the major components and the relevant signals.•Key questions:Where is the essential dynamics?What are appropriate abstractions?•Describe the dynamics of the blocks in terms of standard models.dt n+a1dn−1ydt n−1+...+b n u is characterized by two polynomialsA(s)=s n+a1s n−1+a2s n−2+...+a n−1s+a nB(s)=b1s n−1+b2s n−2+...+b n−1s+b n•The roots of A(s)are called poles of the system.•The roots of B(s)are called zeros of the system.•The transfer function of the system is G(s)=B(s)Linear Time Invariant Systems(LTI)d n ydt n−1+...+a n y=b1dn−1uInterpretation of the Impulse Responsey(t)=nk=1C k−1(t)eαk t+t(t−τ)u(τ)dτLet the system be initially at rest,i.e.C k=0and let the inputbe an impulse at time0.The output is theny(t)= (t)If the input is a unit step the output(the step response)isy(t)=t(t−τ)dτ=t(τ)dτExperimental determination of step and impulse responses.Recall Cruise ControlProcess modeldvdt2+(0.02+k)dedtThe mathematical tool of Laplace transforms is ideally suitedfor these type of calculations.An essential part of the languageof control.place TransformsConsider a function f defined on 0≤t <∞and a real number σ>0.Assume that f grows slower than e σt for large t .The Laplace transform F =L f of f is defined asL f =F (s )= ∞e −stf (t )dtExample 1:f (t )=1,F (s )=∞e −st dt =−1sExample 2:f (t )=e −at ,F (s )=∞e −(s +a )t dt =−1s +adt=∞e −stf (t )dt =e −st f (t )∞0+s∞e −stf (t )dt =−f (0)+s L fs)dv =f (0)Final value theoremlim s →0sF (s )=lim s →0∞0se −st f (t )dt =lims →0∞e −vf (vPropertiesLinearity:L (a f +b )=a L f +b L Differentiation:L dfs L fTime shift:L f (t −T )=e −sTL fTime stretch:L f (at )=1a ),a >0.Convolution:L t0f (t −τ) (τ)d τ=F (s )G (s )Final value Theorem †:lim s →0sF (s )=lim t →∞f (t )Initial value Theorem †:lim s →∞sF (s )=lim t →0f (t )•†:V alid only if limits exist!A (s )=B (s )s −α1+C 2s −αnC k =lim s →αk(s −αk )F (s )=B (αk )The time function corresponding to the transform isf (t )=C 1e α1t +C 2e α2t +...+C n e αn tParameters αk give shape and numbers C k give magnitudes.Notice that αk may be complex numbers.With multiple roots the constants C k are instead polynomials.Manipulating LTI Systems The differentiation property L dfCruise ControlProcess model:dvsE(s)Pure algebra gives relation between Laplace transforms of slopeΘreference V r and E by eliminating V and Us(s+0.02)+ks+k iE(s)=10sΘ(s)+s(s+0.02)V r(s)2+2ω0s+ω20Θ(s)=10θ0ω0te−ω0tω0te−ω0tThe largest error e max=10θ0e−1occurs for t=1/ωparegraph belowθ0=0.04ζ=1,ω0=0.05(dotted),ω0=0.1Discussion•What do we mean by a solution to a problem?•A historical perspectiveClosed form expressions,tables,curves •The role of computers•The necessity of insight and understanding•The need to check results•What properties can wefind easily using“back of an envelope”calculation.•A perspective on use of Laplace transforms in control engineering•A more general(biased personal)perspective.T echnology changes fast but engineering education changes slowly.U(s)=L yCar Model in Cruise Control Process modeldvU(s)=1U(s)=−10Transfer Function of PID ControllerThe error e is the input and the control signal u is the outputu=ke+k ite(τ))dτ+k ddeE(s)=k+k iTransfer Function of CarA simple model of a car on a horizontal road tells how its position y depends on the throttle.Let the mass be m and assume that the propelling force is proportional to the throttle wefindmd2yU(s)=kTransfer Function of Time DelayConsider a system where the output y is the input u delayed Ttime units.The input output relation isy(t)=u(t−T)and the transfer function isG(s)=Y(s)Transfer Function of Standard Model Consider the systemd n ydt n−1+...+a n y=b1dn−1us n+a1s n−1+a2s n−2+...+a n−1s+a nSolutionIntroduce Laplace transforms and transfer functions.We haveE =R − N +P (D +CE )Solving for E givesE =11+PCN −P5.Qualitative Understanding of Signals andSystemsTime responses can in principle be computed.T ables of Laplace transforms is a help but the work is quite tedious.Time responses are easy to compute using different types of software.•It is a good rule to always make order of magnitude calculations to make sure that results are reasonable whenever you use software.•Much insight can be obtained form very simple calcula-tions (series expansions and factorization).•Some results will be presented.•It will be discussed more in future lecturesA (s )=B (s )s −α1+C 2s −αnC k =lim s →αk(s −αk )F (s )=B (αk )Parameters αk (roots of A (s ))are easy to compute.The signal y (t )has the formy (t )=C 1e α1t +C 2e α2t +...+C n e αn tParameters αk give shape and C k give magnitudes.A (s )=s +5Example...For small s the Laplace transform is Y(s) 2.5/s,which implies that for large t the time function is y(t) 2.5.For larges we have Y(s) 1/s2.This means that for small t the time function isC(s)=s+5Insight from Transfer Functions•Derive transfer function G(s)=B(s)Insight from Transfer Functions•Make a series expansion of G(s)for small s(low fre-quency behavior,large t)G(s)=c−1s+c−2s k+...If c0=0like a static gain.If c−1=0and c−1=0like an integrator.If c−1=c−2=...=c−k+1=0and c k=0like k integrators.ExamplesE XAMPLE 1—PID CONTROLLERThe PID controller has the transfer functionG (s )=k +k is+k +k d sThis is already in series expansion form.For slow signals(small s )it behaves like an integrator and for fast signals (large s )it behaves like a differentiator.E XAMPLE 2—PID CONTROLLER WITHD ERIVATIVEF ILTERG (s )=k 1+11+s T d /NBehaves like a static gain k (1+N )for fast signals (large s ).。
第一讲 拉普拉斯变换及其应用1.1基本要求1,熟悉拉氏变换的基本法则2,熟练掌握典型函数的拉氏变换式。
3,掌握用拉氏变换求解微分方程初值问题的思路。
4,熟练掌握求有理分式函数拉氏反变换的方法 1.2.重点讲解1, 对于学习本课程而言,广义积分式(拉氏变换的定义)的收敛性以及复变量主值积分式(反变换定义式)的计算,与正确地熟练地运用拉氏变换的基本法则相比不是主要的,因为在工程计算中可以用查表的方式来完成拉氏变换和拉氏反变换的计算。
而拉氏变换的基本法则的运用则直接关系到是否真正掌握这种变换的工具。
2,拉氏变换的线性性质源自定积分的线性性质,这说明作为一种变换关系,拉氏变换是线性变换。
应当指出线性关系并非所有变换都具有的性质,例如以十为底的对数可以看成正半数轴到数轴的变换关系,但关系式g()g g l a b l a l b +≠+说明取对数的运算显然不满足线性关系。
3, 为了保证拉氏变换的一一对应关系,总假定拉氏变换的定义式中的原函数()f t 在t 时为零。
即原函数应写成0<()1()f t t ⋅,根据单位阶跃函数1(t)的定义,这里()1()f t ⋅t 为()0()1()00f t t f t t t > ⋅=<下面给出()f t 、()1()f t t ⋅、、0()1()f t t t ⋅−00()1(f t t t t )−⋅−、0(f t t )−的函数关系,以说明通常所说“将()f t 延迟t ” 的正确表示。
显然应当是图1-1中的(d) ,不是(c)或(e) 0()1()f t t ⋅0()1()f t t t ⋅−00()1()f t t t t −⋅− (d)(c)(b) (a) (e)图1-1 将()f t 延迟t基于上述认识,就能正确表达图形和用延迟定理求出某些图形的拉氏变换式。
例题1-2图1-2 波形图求图1-2中的波形的拉氏变换。
解 图1-2中的波形可以看成、()1()t t ⋅001(t t t t )−⋅−、t t 01()t 0⋅−这三个信号的代数和,读者可画出这三个信号的波形图以验证下式的正确性。
附录1: 拉普拉斯(LapLace )变换机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。
按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。
一、拉普拉斯变换的定义如果有一个以时间t 为自变量的实变函数)(t f ,它的定义域是0≥t ,那么)(t f 的拉普拉斯变换定义为⎰∞-==0)()()]([dt e t f s F t f L st (1-1)式中,s 是复变数, ωσj s +=(σ、ω均为实数),⎰∞-0st e 称为拉普拉斯积分; )(s F 是函数)(t f 的拉普拉斯变换,它是一个复变函数,通常也称)(s F 为)(t f 的象函数,而称)(t f 为)(s F 的原函数;L 是表示进行拉普拉斯变换的符号。
式(1-1)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数)(s F 。
二、几种典型函数的拉氏变换1.单位阶跃函数)(1t 的拉氏变换)(t f 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为)0()0(101≥<⎩⎨⎧∆t t t )(图1-1 单位阶跃函数单位阶跃函数如图1-1所示,它表示在0=t 时刻突然作用于系统一个幅值为1的不变量。
单位阶跃函数的拉氏变换式为∞--∞-===⎰00|1)(1)](1[)(st st e sdt e t t L s F 当 0)Re(>s ,则 0lim →-∞→stt e所以 ss e ss F st1)]1(0[1)(0=--=-=∞-(1-2)2.指数函数atet f -=)(的拉氏变换指数函数也是控制理论中经常用到的函数,其中 是常数。
dt e dt ee eL s F t s a atst at⎰⎰∞+--∞--===0)(0][)(令a s s +=1则与求单位阶跃函数同理,就可求得 as e L s F sat+===-11][)(1(1-3) 3.正弦函数与余弦函数的拉氏变换 设t t f ωsin )(1=, t t f ωcos )(2=,则dt te t L s F st ⎰∞-==01sin ][sin )(ωω由欧拉公式,有je e t tj t j 2sin ωωω--=所以⎥⎦⎤⎢⎣⎡-=⎰⎰∞∞---001j 21)(dt e e dt e e s F stt j st t j ωω ⎥⎦⎤⎢⎣⎡-=⎰⎰∞∞+---00)()(j 21dt e dt e t j s t j s ωω ⎥⎥⎦⎤⎢⎢⎣⎡+--=∞+-∞--0)(0)(j s 1j -s 1j 21t j s t j s e e ωωωω22s j s 1j -s 1j 21ωωωω+=⎥⎦⎤⎢⎣⎡+--=(1-4)同理 222][cos )(ωω+==s st L s F (1-5)4.单位脉冲函数 δ(t ) 的拉氏变换单位脉冲函数是在持续时间)0(→=εεt 期间幅值为ε1的矩形波。