2013届人教A版文科数学课时试题及解析(33)数列的综合应用B
- 格式:doc
- 大小:100.50 KB
- 文档页数:5
高三数学数列综合应用试题答案及解析1.已知数列{an }中,a1=2,an-an-1-2n=0(n≥2,n∈N*).(1)写出a2,a3的值(只写结果),并求出数列{an}的通项公式;(2)设bn=+++…+,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,求实数t的取值范围.【答案】(1)a2=6,a3=12. an=n(n+1).(2)实数t的取值范围为(-∞,-2)∪(2,+∞)【解析】解:(1)∵a1=2,an-an-1-2n=0(n≥2,n∈N*),∴a2=6,a3=12.当n≥3时,an -an-1=2n,a n-1-a n-2=2(n-1),又a3-a2=2×3,a2-a1=2×2,∴an -a1=2[n+(n-1)+…+3+2],∴an=2[n+(n-1)+…+3+2+1]=2×=n(n+1).当n=1时,a1=2;当n=2时,a2=6,也满足上式,∴数列{an }的通项公式为an=n(n+1).(2)bn=++…+=++…+=-+-+…+-=-==.令f(x)=2x+(x≥1),则f′(x)=2-,当x≥1时,f′(x)>0恒成立,∴函数f(x)在[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3,即当n=1时,(bn )max=.要使对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,则需t2-2mt+>(bn )max=,即t2-2mt>0对∀m∈[-1,1]恒成立,∴,解得t>2或t<-2,∴实数t的取值范围为(-∞,-2)∪(2,+∞).2.一函数y=f(x)的图象在给定的下列图象中,并且对任意an ∈(0,1),由关系式an+1=f(a n)得到的数列{an }满足an+1>a n(n∈N*),则该函数的图象是()【答案】A【解析】由an+1>a n可知数列{a n}为递增数列,又由a n+1=f(a n)>a n可知,当x∈(0,1)时,y=f(x)的图象在直线y=x的上方,故选A.3.设函数)定义为如下数表,且对任意自然数n均有xn+1=的值为( ) A.1B.2C.4D.5【答案】D【解析】,又根据,所以有,,,, .,所以可知:,,故选D.【考点】数列的周期性4.是点集A到点集B的一个映射,且对任意,有.现对点集A中的点,,均有,点为(0,2),则线段的长度 .【答案】【解析】∵,∴,,,,,,…,根据变化规律可知,∴,,∴.【考点】1.数列的性质;2.两点间距离公式.5.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:(1)b2012是数列{an}中的第项;(2)b2k-1=.(用k表示)【答案】(1)5030(2)【解析】由以上规律可知三角形数1,3,6,10,…的一个通项公式为an=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…其中能被5整除的为10,15,45,55,105,120,…故b1=a4,b2=a5,b3=a9,b4=a10,b5=a14,b6=a15,….从而由上述规律可猜想:b2k =a5k= (k为正整数),b2k-1=a5k-1==,故b2012=b2×1006=a5×1006=a5030,即b2012是数列{an}中的第5030项.6.已知数列满足,则该数列的通项公式_________.【答案】【解析】∵,∴,∴,∴,,…,,∴,∴,∴.【考点】1.累加法求通项公式;2.裂项相消法求和.7.数列满足,则 .【答案】【解析】这类问题类似于的问题处理方法,在中用代换得(),两式相减得,,又,即,故.【考点】数列的通项公式.8.已知函数,记,若是递减数列,则实数的取值范围是______________.【答案】【解析】是递减数列,从开始是用式子计算,这时只要,即即可,关键是是通过二次式计算,根据二次函数的性质,应该有且,即且,解得,综上取值范围是.【考点】数列的单调性.9.已知数列{}的前n项和为,且,则使不等式成立的n的最大值为.【答案】4【解析】当时,,得,当时,,所以,所以,又因为适合上式,所以,所以,所以数列是以为首项,以4为公比的等比数列,所以,所以,即,易知的最大值为4.【考点】1.等比数列的求和公式;2.数列的通项公式.10.甲、乙两人用农药治虫,由于计算错误,在A、B两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个容量为1千克的药瓶,他们从A、B两个喷雾器中分别取1千克的药水,将A中取得的倒入B中,B中取得的倒入A中,这样操作进行了n次后,A喷雾器中药水的浓度为,B喷雾器中药水的浓度为.(1)证明:是一个常数;(2)求与的关系式;(3)求的表达式.【答案】(1)18;(2);(3) .【解析】(1)利用n次操作后A和B的农药的和应与开始时农药的重量和相等建立等量关系,证明是一个常数;(2)借助第一问的结论和第n次后A中10千克的药水中农药的重量具有关系式,求解与的关系式;(3)根据第二问的递推关系,采用构造数列的思想进行求解.试题解析:(1)开始时,A中含有10=1.2千克的农药,B中含有10=0.6千克的农药,,A中含有千克的农药,B中含有千克的农药,它们的和应与开始时农药的重量和相等,从而(常数). 4分(2)第n次操作后,A中10千克的药水中农药的重量具有关系式:由(1)知,代入化简得① 8分(3)令,利用待定系数法可求出λ=—9,所以,可知数列是以为首项,为公比的等比数列.由①,,由等比数列的通项公式知:,所以. 12分【考点】1.数列的递推式;(2)数列的通项公式;(3)实际应用问题.11.等比数列的各项均为正数,且,则【答案】B【解析】等比数列中,所以【考点】等比数列性质及对数运算点评:等比数列中,若则,在对数运算中12.已知数列的首项为,对任意的,定义.(Ⅰ)若,(i)求的值和数列的通项公式;(ii)求数列的前项和;(Ⅱ)若,且,求数列的前项的和.【答案】(1) ,,(2) 当为偶数时,;当为奇数时,【解析】(Ⅰ) 解:(i),,………………2分由得当时,=………4分而适合上式,所以.………………5分(ii)由(i)得:……………6分……………7分…………8分(Ⅱ)解:因为对任意的有,所以数列各项的值重复出现,周期为. …………9分又数列的前6项分别为,且这六个数的和为8. ……………10分设数列的前项和为,则,当时,,……………11分当时,,…………12分当时所以,当为偶数时,;当为奇数时,. ……………13分【考点】数列的通项公式,数列的求和点评:解决的关键是对于数列的递推关系的理解和运用,并能结合裂项法求和,以及分情况讨论求和,属于中档题。
2013高考数学一轮强化训练 5.5数列的综合应用 文 新人教A 版1.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A.5B.4C.3D.2答案:C解析: 115201552530a d a d +=⎧⎨+=⎩ 3d ⇒=,故选C. 2.等比数列{n a }中1824a a ,=,=,函数12()()()f x x x a x a =--…8()x a -,则 f′(0) 等于( )A.62B.92 C .122 D.152答案:C解析:f′(x 12)()()x a x a =--…8()x a x -+⋅ 12[()()x a x a --… 8()]x a -′, ∴f′12(0)a a =…8a .∵{n a }为等比数列1824a a ,=,=,∴f′12(0)a a =…4412818()82a a a ===.3.在直角坐标系中,O 是坐标原点111()P x y ,,、222()P x y ,是第一象限的两个点,若1214x x ,,,依次成等差数列,而1218y y ,,,依次成等比数列,则△12OPP 的面积是 .答案:1解析:由1214x x ,,,依次成等差数列得1212215x x x x =+,+=,解得1223x x =,=.又由1218y y ,,,依次成等比数列,得212128y y y y =,=,解得1224y y =,=,∴12(22)(34)P P ,,,.∴12(22)(34)OP OP =,,=, .∴126814OP OP ⋅=+=, |1OP|=|2OP |=5, ∴cos 121212OP OP POP OP OP ⋅∠===|||| ∴sin 12POP ∠=∴1212OP P S = |1OP ||2OP|sin 121512POP ∠=⨯=.4.在△ABC 中,三边a,b,c 成等差数列也成等差数列,求证:△ABC 为正三角形.证明:由题设,2b=a+c 且=∴4b a c =++.∴a c +=即20=.从而a=c,∴b=a=c.∴△ABC 是正三角形.题组一 等差、等比数列综合问题1.已知等差数列{n a }的公差为2,若134a a a ,,成等比数列,则2a 等于( )A.-4B.-6C.-8D.-10答案:B 解析:∵2143a a a =,∴2222(2)(4)(2)a a a -+=+.∴2212a =-.∴26a =-.2.若一等差数列{n a }的首项15a =-,其前11项的平均值为5,又若从中抽取一项,余下的10项的平均值为4,则抽去的是( )A.8aB.9a C .10a D.11a 答案:D解析:1111110111152S a d ⨯=+=⨯, 可得d=2.由1140n S a -=,得15n a =.即1(1)n a a n d =+-=15.∴n=11.故选D.3.已知数列{n a }是等差数列,若471045617a a a a a a ++=,+++…12131477a a a +++=且13k a =,则k= .答案:18解析:∵779917317117773a a a a =,=,=,=, ∴23d =. 又∵9(9)k a a k d -=-.∴13-72(9)3k =-⨯. ∴k=18.4.已知a,b,a+b 成等差数列,a,b,ab 成等比数列,且0<log ()1m ab <,则m 的取值范围是 .答案:(8),+∞5.设等差数列{n a }的前n 项和为n S ,已知312a =, 121300S S >,< .求公差d 的取值范围.解:依题意有 311211312121211120213121302a a d S a d S a d ⎧=+=,⎪⎪⨯=+>,⎨⎪⨯⎪=+<.⎩ 解之得公差d 的取值范围为2437d -<<-. 题组二 数列与函数知识的综合应用6.等比数列{n a }的各项均为正数,且564718a a a a +=,则log 31a +log 32a +…+log 310a 等于( )A.12B.10C.1+log 35D.2+log 35答案:B解析:log 31a +log 32a +…+log 310a =log 312(a a …10)a =log 5356()a a =log 103(3)10=.7.已知等差数列{n a }的前n 项和为n S ,若m>1,且21121038m m m m a a a S -+-+-=,=,则m 等于 ( )A.38B.20C.10D.9答案:C 解析:∵2110m m m a a a -++-=,又112m m m a a a -++=,∴(2)0m m a a -=.∴2m a =.又∵2112121()(21)382m m m m S a a m a ---=+=-=, ∴2m-1=19.∴m=10.8.在△ABC 中,tanA 是以-4为第三项,4为第七项的等差数列的公差,tanB 是以13为第三项,9为第六项的等比数列的公比,则这个三角形是( )A.钝角三角形B.锐角三角形C.等腰直角三角形D.以上都不对答案:B9.等差数列中,若()m n S S m n =≠,则m n S += .答案:0题组三 数列在实际问题中的应用10.已知镭经过100年剩留原来质量的95.76%,设质量为1的镭经过x 年后剩留量为y,那么y和x 之间的关系是( ) A.y=0.957 1006xB.y=0.957 1006xC.09576()100x y .= D.y=1-0.042 1004x答案:A11.根据市场调查结果,预测某种家用商品从年初的n 个月内累积的需求量(n S 万件)近似地满足n S =(2190n n -25)(1n n -=,2,…,12).按此预测,在本年度内,需求量超过1.5万件的月份是( )A.5月、6月B.6月、7月C.7月、8月D.8月、9月 答案:C解析:当n=1时1116a S ,==; 当2n ≥时12330210n n n n n a S S -,=-=-+-, 即2330210n n n a =-+-. 当n=7或n=8时1n a ,>.5.12.成等差数列的三个正数的和等于15,并且这三个数分别加上2 、5、13后成为等比数列{n b }中的3b 、b 4、,b 5 .(1)求数列{n b }的通项公式;(2)数列{n b }的前n 项和为n S ,求证:数列{54n S +}是等比数列. 解:(1)设成等差数列的三个正数分别为a-d,a, a+d . 依题意,得a-d+a+a+d=15,解得a=5.所以{n b }中的345b b b ,,依次为7-d,10,18+d,依题意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去). 故{n b }的第3项为5,公比为2,由2312b b =⋅,即2152b =⋅,解得154b =. 所以{n b }是以54为首项,2为公比的等比数列,其通项公式为 n b = 1352524n n --⋅=⋅. (2)证明:数列{n b }的前n 项和5(12)412n n S -==- 25524n -⋅-,即54n S += 252n -.⋅ 所以15115552424252524Sn n S n S n +-+⋅+=,==-+⋅. 因此{54n S +}是以52为首项,公比为2的等比数列.。
课时作业(三十三)A [第33讲 数列的综合应用][时间:45分钟 分值:100分]基础热身1.数列{a n }中,a 1=1,对所有的n ≥2都有a 1·a 2·a 3·…·a n =n 2,则a 3=( ) A.32 B.94 C.259 D.2516 2.[2011·东北三校一模] ( )A .求数列⎩⎨⎧⎭⎬⎫1n 的前10项和 B .求数列⎩⎨⎧⎭⎬⎫12n 的前10项和C .求数列⎩⎨⎧⎭⎬⎫1n 的前11项和D .求数列⎩⎨⎧⎭⎬⎫12n 的前11项和3.一条信息,若一人得知后用一小时将信息传给两个人,这两个人又用一小时各传给未知信息的另外两个人,如此继续下去,要传遍100万人口的城市,所需的时间大约为( )A .三个月B .一个月C .10天D .20小时4.已知数列{a n }的首项a 1=1,且点A n (a n ,a n +1)在函数y =xx +1的图象上.则该数列{a n }的通项公式是a n =________.能力提升 5.[2011·济南二模] 数列{a n }的前n 项和为S n ,若S n =2n 2-17n ,则当S n 取得最小值时n 的值为( ) A .4或5 B .5或6 C .4 D .5 6.[2011·天津卷] 已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .110 7.[2011·衡水模拟] 设等比数列的公比为q ,前n 项和为S n ,若S n ,S n +1,S n +2成等差数列,则公比q ( )A .等于-2B .等于1C .等于1或-2D .不存在8.[2011·合肥一中月考] 各项均为正数的等比数列{a n }的公比q ≠1,a 2,12a 3,a 1成等差数列,则a 3a 4+a 2a 6a 2a 6+a 4a 5=( )A.5+12B.5-12C.3-52D.2+529.[2011·陕西卷] 植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为( )A .①和⑳B .⑨和⑩C .⑨和⑪D .⑩和⑪ 10.数列{a n }中,a 1=2,点(log 3a n ,a n +1)在函数y =2×3x 的图象上,则{a n }的通项公式为a n =________.11.[2011·虹口区质检] 数列{a n }的前n 项和S n =n 2+n -3,则通项公式a n =________.12.[2011·广东六校联考] 已知数列{a n }满足a 1=23,且对任意的正整数m 、n 都有a m +n =a m ·a n .若数列{a n }的前n 项和为S n ,则S n =________.13.[2011·菏泽二模] 已知a n =2n -1(n ∈N +),把数列{a n }的各项排成如图K33-2所示的三角数阵.记S (m ,n )表示该数阵中第m 行中从左到右的第n 个数,则S (10,6)对应数阵中的数是________.1 3 5 7 9 11 13 15 17 19… 图K33-214.(10分)[2012·惠州模拟] 当p 1,p 2,…,p n 均为正数时,称np 1+p 2+…+p n为p 1,p 2,…,p n 的“均倒数”.已知数列{a n }的各项均为正数,且其前n 项的“均倒数”为12n +1.(1)求数列{a n }的通项公式;(2)设c n =a n2n +1(n ∈N *),试比较c n +1与c n 的大小.15.(13分)已知数列{a n }中,a 1=1,a n +1=a n2a n +1(n ∈N *).(1)求数列{a n }的通项公式a n ;(2)设:2b n =1a n+1,求数列{b n b n +1}的前n 项和T n .难点突破16.(12分)设数列{b n }满足:b 1=12,b n +1=b 2n +b n . (1)求证:1b n +1=1b n -1b n +1;(2)若T n =1b 1+1+1b 2+1+…+1b n +1,对任意的正整数n,3T n -log 2m -5>0恒成立.求m 的取值范围.课时作业(三十三)A【基础热身】1.B [解析] a 2=22a 1=4,a 3=32a 1a 2=94.故选B.2.B [解析] 可知S =12+14+…+120,所以其描述的是数列⎩⎨⎧⎭⎬⎫12n 的前10项和.3.D [解析] 每小时传递人数构成数列2,4,8,…,所以n 小时共传递人数S n =1-2n 1-2=2n-1≈106,所以n ≈20小时.4.1n [解析] 因为a n +1=a n a n +1且a 1=1,所以1a n +1=1+1a n ,所以1a n +1-1a n=1. 所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,1为公差的等差数列.1a n =1+(n -1)×1=n ,所以a n =1n .【能力提升】5.C [解析] 二次函数f (x )=2x 2-17x 的对称轴为直线x =174,因为n ∈N +,所以当n =4时,S n =2n 2-17n 有最小值.故选C.6.D [解析] 由a 27=a 3·a 9,d =-2,得(a 1-12)2=(a 1-4)(a 1-16),解之得a 1=20,∴S 10=10×20+10×92(-2)=110. 7.B [解析] 依题意有2S n +1=S n +S n +2,当q ≠1时,有2a 1(1-q n +1)=a 1(1-q n )+a 1(1-q n +2),解得q =1,但q ≠1,所以方程无解;当q =1时,满足条件.故选B.8.B [解析] 依题意,有a 3=a 1+a 2,设公比为q ,则有q 2-q -1=0,所以q =1+52(舍去负值).a 3a 4+a 2a 6a 2a 6+a 4a 5=a 2a 4(q +q 2)a 2a 4(q 2+q 3)=1q =21+5=5-12.故选B. 9.D [解析] 从实际问题中考虑将树苗放在最中间的坑旁边,则每个人所走的路程和最小,一共20个坑,为偶数,在中间的有两个坑为10和11号坑,故答案选D.10.2n [解析] 由已知得a n +1=2×3log 3a n =2a n ,显然{a n }的各项不为零,所以a n +1a n=2,数列{a n }是首项为2,公比为2的等比数列,a n =2×2n -1=2n .11.⎩⎪⎨⎪⎧-1(n =1),2n (n ≥2)[解析] n =1时,a n =-1;n ≥2时,a n =S n -S n -1=2n , 所以a n =⎩⎪⎨⎪⎧-1(n =1),2n (n ≥2).12.2-2n +13n [解析] 令m =1,得a n +1=a 1·a n ,即a n +1a n =a 1=23,可知数列{a n }是首项为a 1=23,公比为q =23的等比数列,于是S n =a 1(1-q n)1-q=23×⎣⎡⎦⎤1-⎝⎛⎭⎫23n 1-23, =2⎣⎡⎦⎤1-⎝⎛⎭⎫23n =2-2n +13n .13.101 [解析] 观察知每一行的第1个数构成数列:1,3,7,13,21,…,相邻两项构成递推关系:a n +1=a n +2n ,所以a 10=a 9+18=a 8+16+18=a 7+14+34=a 6+12+48=a 5+10+60=a 4+8+70=13+78=91,即第10行的第1个数为91,所以第10行第6个数为101. 14.[解答] (1)由已知有a 1+a 2+…+a n -1+a n =n (2n +1), 则a 1+a 2+…+a n -1=(n -1)(2n -1), 两式相减,得a n =4n -1(n ≥2).又1a 1=12×1+1,解得a 1=3=4×1-1, ∴a n =4n -1(n ∈N *).(2)∵c n =a n 2n +1=4n -12n +1=2-32n +1,c n +1=a n +12n +3=2-32n +3,∴c n +1-c n =32n +1-32n +3>0,即c n +1>c n .15.[解答] (1)由a n +1=a n 2a n +1得1a n +1-1a n=2且1a 1=1,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,以2为公差的等差数列,所以1a n =1+2(n -1)=2n -1,得a n =12n -1.(2)由2b n =1a n +1得2b n =2n -1+1=2n ,∴b n =1n,从而b n b n +1=1n (n +1),则T n =b 1b 2+b 2b 3+…+b n b n +1=11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1 =1-1n +1=nn +1.【难点突破】16.[解答] (1)因为b 1=12,b n +1=b 2n +b n =b n (b n +1),所以对任意的n ∈N *,b n >0. 所以1b n +1=1b n (b n +1)=1b n -1b n +1,即1b n +1=1b n -1b n +1. (2)T n =⎝⎛⎭⎫1b 1-1b 2+⎝⎛⎭⎫1b 2-1b 3+…+⎝⎛⎭⎫1b n -1b n +1=1b 1-1b n +1=2-1b n +1. 因为b n +1-b n =b 2n >0, ∴b n +1>b n ,所以数列{b n }是单调递增数列. 所以数列{T n }关于n 递增. 所以T n ≥T 1.因为b 1=12,所以b 2=b 1(b 1+1)=34,所以T 1=2-1b 2=23,所以T n ≥23.因为3T n -log 2m -5>0恒成立, 所以log 2m <3T n -5恒成立, 所以log 2m <-3,所以0<m <18.。
人教a必修3数学测试题答案及解析一、选择题1. 若函数f(x) = 2x + 3,则f(-1)的值为:A. -5B. -1C. 1D. 5答案:A解析:将-1代入函数f(x) = 2x + 3中,得到f(-1) = 2*(-1) +3 = -2 + 3 = 1。
2. 已知等差数列{an}的前三项分别为3,7,11,则该数列的公差d为:A. 2B. 3C. 4D. 5答案:B解析:等差数列的公差d可以通过第二项减去第一项得到,即d =7 - 3 = 4。
3. 函数y = x^2 - 6x + 8的顶点坐标为:A. (3, -1)B. (3, 1)C. (-3, -1)D. (-3, 1)答案:B解析:将函数y = x^2 - 6x + 8写成顶点式形式,即y = (x -3)^2 - 1,所以顶点坐标为(3, -1)。
二、填空题4. 已知圆的方程为x^2 + y^2 = 25,圆心坐标为:答案:(0, 0)解析:圆的标准方程为(x - a)^2 + (y - b)^2 = r^2,其中(a, b)为圆心坐标,r为半径。
根据题目中的方程x^2 + y^2 = 25,可知圆心坐标为(0, 0)。
5. 函数y = 2x^3 - 3x^2 + 1的导数为:答案:6x^2 - 6x解析:根据导数的定义,对于函数y = 2x^3 - 3x^2 + 1,其导数为y' = 6x^2 - 6x。
三、解答题6. 已知函数f(x) = x^3 - 3x^2 + 2x,求函数的单调区间。
答案:解析:首先求函数的导数f'(x) = 3x^2 - 6x + 2。
令f'(x) > 0,解得x > 2或x < 1/3。
因此,函数在(-∞, 1/3)和(2, +∞)上单调递增,在(1/3, 2)上单调递减。
7. 已知等比数列{bn}的前三项分别为2,6,18,求该数列的通项公式。
答案:bn = 2 * 3^(n-1)解析:等比数列的通项公式为bn = b1 * q^(n-1),其中b1为首项,q为公比。
高二数学高中数学新课标人教A版试题答案及解析1.执行如图1所示的程序框图,如果输入的,则输出的属于()A.B.C.D.【答案】D【解析】当时,运行程序如下,,当时,,则,故选D.【考点】程序框图二次函数2.过点引直线分别交轴正半轴于两点,当面积最小时,直线的方程是__________.【答案】【解析】设直线方程为(当且仅当即时取等号 ) .【点晴】本题主要考查直线方程和重要不等式,属于中档题型.但是本题比较容易犯错,使用该公式时一定要牢牢抓住一正、二定、三相等这三个条件,如果不符合条件则:非正化正、非定构定、不等作图(单调性).平时应熟练掌握双钩函数的图像,还应加强非定构定、不等作图这方面的训练,并注重表达的规范性,才能灵活应对这类题型.3.如图,输入时,则输出的________.【答案】【解析】由算法流程图提供的算法程序可知:当时,输出,应选答案C。
4.二项式的展开式中常数项是()A.-28B.-7C.7D.28【答案】C【解析】常数项,故选B.【考点】二项式的展开式.5.设是复数,则下列命题中的假命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】对于A中,若,则,所以是正确的;对于B中,若,则和互为共轭复数,所以是正确的;对于C中,设,若,则,,所以是正确的;对于D中,若,则,而,所以不正确,故选D.【考点】复数的概念与运算.6.设函数(1)若时,解不等式;(2)若不等式的对一切恒成立,求实数的取值范围.【答案】(1)(2)【解析】(1)当时,||+||,利用零点分段法解不等式或者利用图象解不等式;(2)若不等式的对一切恒成立,则,因为时,,故恒成立,,.试题解析:(1)解:||+||,即或或或或所以原不等式的解集为[](2)||+||对一切恒成立,,恒成立,即恒成立,当时,,【考点】1、绝对值不等式解法;2、函数的最值.7.已知函数,设为的导函数,根据以上结果,推断_____________.【答案】【解析】.8.用反证法证明命题“设为实数,则方程没有实数根”时,要做的假设是A.方程至多有一个实根B.方程至少有一个实根C.方程至多有两个实根D.方程恰好有两个实根【答案】A【解析】至少有一个实根的反面为没有实根 ,所以选A.9.若,则的值是()A.6B.4C.3D.2【答案】D【解析】略10.某长方体的三视图如右图,长度为的体对角线在正视图中的投影长度为,在侧视图中的投影长度为,则该长方体的全面积为()A.B.C.6D.10【答案】B【解析】由三视图设长方体中同一顶点出发的三条棱长为、、,则有,解方程组得到,所以该长方体的面积为,故选B.【考点】1、空间几何体的三视图;2、空间几何体的表面积.11.利用数学归纳法证明不等式的过程中,由变成时,左边增加了()A.1项B.项C.项D.项【答案】D【解析】由题意得,当时,不等式的左侧为,当时,不等式的左侧为,所以变成时,左边增加了,共有项,故选D.【考点】数学归纳法.12.已知圆与圆的公共点的轨迹为曲线,且曲线与轴的正半轴相交于点.若曲线上相异两点满足直线的斜率之积为.(1)求的方程;(2)证明直线恒过定点,并求定点的坐标.【答案】(1);(2)证明见解析,.【解析】(1)确定,可得曲线是长轴长,焦距的椭圆,即可求解椭圆的方程;(2)分类讨论,设出直线的方程,代入椭圆的方程,利用韦达定理,结合直线的斜率之积为,即可证直线恒过定点,并求出定点的坐标.试题解析:(1)设⊙,⊙的公共点为,由已知得,,故,因此曲线是长轴长,焦距的椭圆,所以曲线;(2)由曲线的方程得,上顶点,记,若直线的斜率不存在,则直线的方程为,故,且,因此,与已知不符,因此直线AB的斜率存在,设直线,代入椭圆:①因为直线与曲线有公共点,所以方程①有两个非零不等实根,故,又,,由,得即所以化简得:,故或,结合知,即直线恒过定点.【考点】椭圆的标准方程;直线与椭圆的位置关系的应用.【方法点晴】本题主要考查了椭圆的标准方程、直线与椭圆的位置关系的应用、判定直线过定点问题等知识点的综合考查,解答中设出直线的方程,代入椭圆的方程,利用判别式和根与系数的关系及韦达定理,结合直线的斜率之积为是解答本题的关键,注重考查了分析问题和解答问题的能力及转化与化归思想的应用,试题有一定的难度,属于中档试题.13.在△ABC中,角A,B,C的对边分别为a,b,c,cos=.(1)求cos B的值;(2)若,b=2,求a和c的值.【答案】(1)(2)【解析】解:(1)∵cos=,∴sin=, 2分∴cos B=1-2sin2=. 5分(2)由可得a·c·cos B=2,又cos B=,故ac=6, 6分由b2=a2+c2-2ac cos B可得a2+c2=12, 8分∴(a-c)2=0,故a=c,∴a=c=10分【考点】解三角形点评:解决的关键是根据诱导公式以及二倍角公式和向量的数量积结合余弦定理来求解,属于中档题。
高一数学数列综合应用试题答案及解析1.数列1,-3,5,-7,9,的一个通项公式为()A.B.C.D.【答案】B【解析】由数列中1,-3,5,-7,9,可以看出:符号正负相间,通项的绝对值为1,3,5,7,9 为等差数列,其通项公式.【考点】本题考查了等差数列的通项公式,属于基础题2.数列满足,则 .【答案】.【解析】当时,,;当时,由于,,两式相减得,不满足.【考点】由得.3.数列中,=2,,则=().A.2+ln n B.2+ (n-1) ln n C.2+ n ln n D.1+n+ln n【答案】A【解析】所以得.故选A.【考点】迭加消元求和.4.已知数列{an }的通项公式an=,若前n项和为6,则n=_________.【答案】48【解析】试题分析:,;令,解得.【考点】数列的前项和.5.数列的前n项和记为,点(n,)在曲线()上(1)求数列的通项公式;(2)设,求数列的前n项和的值.【答案】(1);(2).【解析】(1)由与满足的关系式,由可求得的通项公式;(2)由一个等差数列和一个等比数列的乘积采用错位相减法求和的方法求数列的和.试题解析:(1)由条件得()当当也适合所以通项公式为:.(2)、2两式相减得,解得【考点】(1)由的表达式求数列的通项公式;(2)错位相减求和.6.若数列中,则其前项和取最大值时,__________.【答案】或【解析】令,则,又∵,∴当时,,,当时,,∴当取最大值时,或.【考点】数列的性质.7.已知数列的前n项和满足(1)写出数列的前3项、、;(2)求数列的通项公式;(3)证明对于任意的整数有【答案】(1)、、;(2);(3)见解析.【解析】(1)是考查已知递推公式求前几项,属于基础题,需注意的是S1=a1,需要先求出a1才能求出a2,这是递推公式的特点;(2)解答需要利用公式进行代换,要注意n=1和n≥2的讨论,在得到,可以利用叠加法求解;(3)解答需要在代换后,适当的变形,利用不等式放缩法进行放缩.试题解析:(1)由,得,由,得,由,得;(2)当时,,,……,经验证:也满足上式,所以,;(3)证明:由通项知当,且n 为奇数时当且m为偶数时,当且m为奇数时∴对任意有【考点】1、递推数列;2、放缩法.8.给定函数的图像如下列图中,经过原点和(1,1),且对任意,由关系式得到数列{},满足,则该函数的图像为()【答案】A【解析】由题意,知:,即在图中应该是满足的所有点,只有A选项正确.【考点】数列的基本概念.9.已知数列的前n项和为,,且(),数列满足,,对任意,都有。
高二数学数列综合应用试题答案及解析1.()A.3B.-3C.6D.-6【答案】A【解析】经计算验证可得:数列是以6为周期的一个数列,所以.【考点】数列的递推公式.2..如果{an }为递增数列,则{an}的通项公式可以为( ).A.an =-2n+3 B.an=-n2-3n+1 C.an= an=1+log2n【答案】D【解析】A选项是n的一次函数,一次系数为-1∴为递减数列B选项是n的二次函数,且对称轴为n=∴第一,二项相同.C是n的指数函数,且底数为,是递减数列D是n的对数函数,且底数为2,是递增函数.故选D【考点】数列的函数特性.3. Sn 是数列{an}的前n项和,,则,,,,由此可以归纳出()A.B.C.D.【答案】C.【解析】直接根据数列的通项公式及,,,,利用归纳法推理可得.【考点】归纳推理.4.已知数列满足,归纳出的一个通项公式为()A.B.C.D.【答案】A【解析】由递推公式,可得,,,故可猜测的一个通项公式为.【考点】归纳推理.5.在数列中,,且前n项的算术平均数等于第n项的倍().(1)写出此数列的前5项;(2)归纳猜想的通项公式,并用数学归纳法证明.【答案】(1);(2),证明过程详见解析.【解析】(1)根据条件中描述前项的算术平均数等于第项的倍,可以得到相应其数学表达式为,结合,分别取,得,;(2)根据(1)中所求,可以猜测,利用数学归纳法,假设当时,结论成立,则当时,根据(1)中得到的式子,令,可以求得,即当时,猜想也成立,从而得证.(1)由已知,分别取,得,;∴数列的前5项是: 6分;(2)由(1)中的分析可以猜想 8分,下面用数学归纳法证明:①当时,猜想显然成立 9分,②假设当时猜想成立,即 10分,那么由已知,得,即.∴,即,又由归纳假设,得,∴,即当时,猜想也成立.综上①和②知,对一切,都有成立 13分.【考点】1.数列的通项公式;2.数学归纳法.6.下列命题中,真命题的序号是 .①中,②数列{}的前n项和,则数列{}是等差数列.③锐角三角形的三边长分别为3,4,,则的取值范围是.④等差数列{}前n项和为。
高考数学精品复习资料2019.5专题三十二数列及其综合应用【高频考点解读】能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.【热点题型】题型一数列综合应用题例1、已知log2x,log2y,2成等差数列,则M(x,y)的轨迹的图象为()【提分秘籍】数列综合应用题的解题步骤1.审题——弄清题意,分析涉及哪些数学内容,在每个数学内容中,各是什么问题.2.分解——把整个大题分解成几个小题或几个“步骤”,每个小题或每个“步骤”分别是数列问题、函数问题、解析几何问题、不等式问题等.3.求解——分别求解这些小题或这些“步骤”,从而得到整个问题的解答.4.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解.【举一反三】数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…的前n项和S n>1 020,那么n的最小值是()A.7B.8C.9D.10【热点题型】题型二常见的数列模型例2、有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要() A.6秒钟B.7秒钟C.8秒钟D.9秒钟【提分秘籍】1.等差数列模型:通过读题分析,由题意抽象出等差数列,利用等差数列有关知识解决问题.2.等比数列模型:通过读题分析,由题意抽象出等比数列,利用等比数列有关知识解决问题.3.递推公式模型:通过读题分析,由题意把所给条件用数列递推表达出来,然后通过分析递推关系式求解.4.分期付款模型设贷款总额为a,年利率为r,等额还款数为b,分n期还完,则b=r+r n+r n-1a.【举一反三】等比数列{a n}的前n项和为S n,若a1=1,且4a1,2a2,a3成等差数列,则S4=________.【热点题型】题型三等差与等比数列的综合问题例3、(高考浙江卷)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.【提分秘籍】对于等差、等比数列的综合问题,应重点分析等差、等比数列的通项,前n 项和以及等差、等比数列项之间的关系,往往用到转化与化归的思想方法.【举一反三】已知等差数列{a n }的公差和首项都不等于0,且a 2,a 4,a 8成等比数列,则a 1+a 5+a 9a 2+a 3=( )A .2B .3C .5D .6【热点题型】题型四 数列与函数的综合应用例4、已知函数f(x)=ln x的图象是曲线C,点A n(a n,f(a n))(n∈N*)是曲线C上的一系列点,曲线C在点A n(a n,f(a n))处的切线与y轴交于点B n(0,b n).若数列{b n}是公差为2的等差数列,且f(a1)=3.(1)分别求出数列{a n}与数列{b n}的通项公式;(2)设O为坐标原点,S n表示△OA n B n的面积,求数列{a n S n}的前n项和T n.【提分秘籍】解决函数与数列的综合问题应该注意的事项(1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.【举一反三】(高考全国新课标卷Ⅱ)等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为________.【热点题型】题型五数列的实际应用例5、某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天支付的薪酬是前一天薪酬的2倍,工作时间为n天.(1)设工作n天,记三种付酬方式薪酬总金额依次为A n,B n,C n,写出A n,B n,C n关于n 的表达式;(2)如果n=10,你会选择哪种方式领取报酬?【提分秘籍】求解数列应用问题,必须明确属于哪种数列模型,是等差数列,还是等比数列;是求通项问题,还是求项数问题,或者是求和问题.然后将题目中的量建立关系,利用数列模型去解决.【举一反三】根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (单位:万件)近似地满足S n =n90(21n -n 2-5)(n =1,2,…,12).按此预测,在本年度内,需求量超过1.5万件的月份是( )A .5月、6月B .6月、7月C .7月、8月D .8月、9月【高考风向标】1.(20xx·湖南卷) 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.2.(20xx·安徽卷) 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p.3.(20xx·湖北卷) 已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{a n}的通项公式.(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.4.(20xx·江西卷) 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n ,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .5.(20xx·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.6.(20xx·四川卷) 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .7.(20xx·浙江卷) 已知数列{a n}和{b n}满足a1a2a3…a n=(2)b n(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(1)求a n与b n.(2)设c n=1a n-1b n(n∈N *).记数列{cn}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈均有S k≥S n.8.(高考辽宁卷)下面是关于公差d >0的等差数列{a n }的四个命题: P 1:数列{a n }是递增数列; P 2:数列{na n }是递增数列; P 3:数列{a nn }是递增数列;P 4:数列{a n +3nd }是递增数列. 其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 49.(高考重庆卷)已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8=________.10. (高考广东卷)设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.【随堂巩固】1.已知数列{a n},{b n}满足a1=1,且a n,a n+1是函数f(x)=x2-b n x+2n的两个零点,则b8+a9=()A.24 B.32C.48 D.642.已知数列{a n}为等差数列,数列{b n}是各项为正数的等比数列,其公比q≠1,若a4=b4,a12=b12,则()A.a8=b8B.a8>b8C.a8<b8D.a8>b8或a8<b83.已知正项等差数列{a n}满足:a n+1+a n-1=a2n(n≥2),等比数列{b n}满足:b n+1b n-1=2b n(n≥2),则log2(a2+b2)=()A.-1或2 B.0或2C .2D .14.各项都是正数的等比数列{a n }的公比q ≠1,且a 2,12a 3,a 1成等差数列,则q 的值为( )A.1-52B.5-12C.5+12D.5+12或5-125.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a cos C ,b cos B ,c cos A 成等差数列,若b =3,则a +c 的最大值为( )A.32B .3C .2 3D .96.若关于x 的方程x 2-x +a =0与x 2-x +b =0(a ≠b )的四个根组成首项为14的等差数列,则a +b 的值是( )A.38B.1124C.1324D.31727.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2.若函数f (x )=sin 2x +2cos 2x2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .18.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一月(按30天计),共织390尺布”,则每天比前一天多织________尺布.(不作近似计算)9.已知数列{a n }满足a n a n +1a n +2a n +3=24,且a 1=1,a 2=2,a 3=3,则a 1+a 2+a 3+…+a 2 013=________.10.已知公比为q 的等比数列{a n }的前6项和S 6=21,且4a 1,32a 2,a 2成等差数列.(1)求a n ;(2)设{b n }是首项为2,公差为-a 1的等差数列,其前n 项和为T n ,求不等式T n -b n >0的解集.11.已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的正整数n 的最小值.12.已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在函数f (x )=12x 2+12x 的图象上.(1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +2的前n 项和为T n ,不等式T n >13log a (1-a )对任意正整数n 恒成立,求实数a 的取值范围.。
课时作业(三十三)B [第33讲 数列的综合应用][时间:45分钟 分值:100分]基础热身1.一张报纸厚度为a ,对折(沿一组对边的中点连线折叠)7次后,报纸的厚度为( )A .8aB .64aC .128aD .256a2.某放射性物质的质量每天衰减3%,若此物质衰减到其质量的一半以下,则至少需要的天数是(参考数据lg0.97=-0.0132,lg0.5=-0.3010)( )A .22B .23C .24D .253. 在数列{a n }中,a 1=2,当n 为正奇数时,a n +1=a n +2,当n 为正偶数时,a n +1=2a n ,则a 6=( )A .11B .17C .22D .234.夏季高山上的气温从山脚起每升高100米降低0.7度,已知山脚气温为26度,山顶气温为14.1度,那么此山相对山脚的高度为________米.能力提升5.已知数列{a n }中,a 1=-1,a n +1·a n =a n +1-a n ,则数列通项a n =( )A.1nB.2nC .-1nD .-2n6. 已知数列{a n }中,a 1=35,a n =1-1a n -1(n ≥2),则a 2011=( ) A .-12 B .-23C.35D.527. 设数列{a n }为等差数列,其前n 项和为S n ,a 1+a 4+a 7=99,a 2+a 5+a 8=93.若对任意n ∈N *,都有S n ≤S k 成立,则k 的值为( )A .22B .21C .20D .198. 《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .1升 B.6766升 C.4744升 D.3733升 9.已知等差数列{a n }的首项a 1及公差d 都是整数,前n 项和为S n ,若a 1>1,a 4>3,S 3≤9,设b n =1na n ,则使b 1+b 2+…+b n <99100成立的最大n 值为( ) A .97 B .98 C .99 D .10010.某厂在2011年底制订生产计划,要使2021年底的总产量在原有基础上翻两番,则年平均增长率为________.11. 已知数列{a n }中,a 201=2,a n +a n +1=0(n ∈N +),则a 2011=________.12. 在数列{a n }中,若a 1=2,且对任意的正整数p ,q 都有a p +q =a p a q ,则a 8的值为________.13.已知a n =3n ,把数列{a n }的各项排列成如下的三角形状:a 1a 2 a 3 a 4a 5 a 6 a 7 a 8 a 9………………记A (m ,n )表示第m 行的第n 个数,则A (11,12)=________.14.(10分) 已知数列{a n }是首项为2,公比为12的等比数列,S n 为{a n }的前n 项和. (1)求数列{a n }的通项a n 及S n ;(2)设数列{b n +a n }是首项为-2,公差为2的等差数列,求数列{b n }的通项公式及其前n 项和T n .15.(13分)某市2011年共有1万辆燃油型公交车.有关部门计划于2012年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%,试问:(1)该市在2018年应该投入多少辆电力型公交车?(2)到哪一年底,电力型公交车的数量开始超过该市公交车总量的13?(参考数据lg 65732lg1.5≈7.5)难点突破16.(12分) 设b >0,数列{a n }满足a 1=b ,a n =nba n -1a n -1+n -1(n ≥2). (1)求数列{a n }的通项公式;(2)证明:对于一切正整数n,2a n ≤b n +1+1.课时作业(三十三)B【基础热身】1.C [解析] 报纸的厚度为27a =128a .故选C.2.B [解析] 依题意有(1-3%)n <0.5,所以n >lg0.5lg0.97≈22.8.故选B. 3.C [解析] 逐项计算得该数列的前6项依次为:2,4,8,10,20,22,故选C.4.1700 [解析] 从山脚到山顶气温的变化成等差数列,首项为26,末项为14.1,公差为-0.7,设数列的项数为n ,则14.1=26+(n -1)×(-0.7),解得n =18,所以山的高度为h =(18-1)×100=1700(米).【能力提升】5.C [解析] 已知变形为1a n +1-1a n=-1,设b n =1a n ,则{b n }是等差数列,b 1=-1,b n =-1+(n -1)×(-1)=-n ,所以a n =-1n.故选C. 6.C [解析] 由递推公式得a 2=-23,a 3=52,a 4=35,a 5=-23,…,所以数列{a n }是周期数列,周期为3,于是a 2011=a 2010+1=a 1=35.故选C. 7.C [解析] 依题意即求S n 最大时的项数n .将两已知等式相减,可得公差d =-2,所以3a 1+9d =99,解得a 1=39,所以a n =39-2(n -1)=41-2n .当a n >0时,S n 取得最大值,所以41-2n >0,得n <20.5,所以k =n =20.故选C.8.B [解析] 从上到下各节记为a 1,a 2,…,a 9,公差为d ,则有⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 9+a 8+a 7=4,即⎩⎪⎨⎪⎧ 4a 1+6d =3,3a 1+21d =4,解得⎩⎨⎧ d =766,a 1=1322,所以a 5=a 1+4d =1322+4×766=6766.故选B. 9.B [解析] 因为S 3=3a 2≤9,即a 2≤3,且a 1>1,a 4>3,首项及公差d 为整数,所以可得a 1=2,d =1,所以a n =n +1,所以b n =1n (n +1)=1n -1n +1,b 1+b 2+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,所以n n +1<99100成立的最大n 值为98.故选B. 10.104-1 [解析] 令2011年底的产量为1,则2021年底的产量为4,则(1+x )10=4,所以x =104-1.11.2 [解析] 由已知得a n +1=-a n ,所以a 202=-2,a 203=2,a 204=-2,…,可以看出,奇数项为2,偶数项为-2,所以a 2011=2.12.256 [解析] 令p =q =1,则a 2=4,令p =q =2,则a 4=16,令p =q =4,则a 8=256.13.3112 [解析] 由图形知,各行数字的个数构成首项为1,公差为2的等差数列,所以前10行数字个数的和为10×1+10×92×2=100,故A (11,12)为{a n }的第112项,所以A (11,12)=a 112=3112.14.[解答] (1)因为数列{a n }是首项a 1=2,公比q =12的等比数列, 所以a n =2·⎝⎛⎭⎫12n -1=22-n ,S n =2⎝⎛⎭⎫1-12n 1-12=4⎝⎛⎭⎫1-12n . (2)依题意得:b n +a n =-2+2(n -1)=2n -4,所以b n =2n -4-a n =2n -4-22-n .设数列{b n +a n }的前n 项和为P n ,则P n =n (-2+2n -4)2=n (n -3), 所以T n =P n -S n =n (n -3)-4⎝⎛⎭⎫1-12n =n 2-3n -4+22-n . 15.[解答] (1)该市逐年投入的电力型公交车的数量组成等比数列{a n }, 其中a 1=128,q =1.5,则在2018年应该投入的电力型公交车为a 7=a 1q 6=128×1.56=1458(辆).(2)记S n =a 1+a 2+…+a n ,依据题意,得S n 10000+S n >13,即S n >5000, 于是S n =128(1-1.5n )1-1.5>5000, 即1.5n >65732,则有n >lg 65732lg1.5≈7.5,因此n ≥8. 所以,到2019年底,电力型公交车的数量开始超过该市公交车总量的13. 【难点突破】16.[解答] (1)由a 1=b >0,知a n =nba n -1a n -1+n -1>0, n a n =1b +1b ·n -1a n -1. 令A n =n a n ,A 1=1b, 当n ≥2时,A n =1b +1bA n -1 =1b +…+1b n -1+1bn -1A 1 =1b + (1)n -1+1b n . ①当b ≠1时,A n =1b ⎝⎛⎭⎫1-1b n 1-1b=b n -1b n (b -1), ②当b =1时,A n =n .∴a n =⎩⎪⎨⎪⎧nb n (b -1)b n -1,b ≠1,1, b =1.(2)证明:当b ≠1时,欲证2a n =2nb n (b -1)b n -1≤b n +1+1,只需证2nb n ≤(b n +1+1)b n -1b -1. ∵(b n +1+1)b n -1b -1=b 2n +b 2n -1+…+b n +1+b n -1+b n -2+…+1=b n ⎝⎛⎭⎫b n +1b n +b n -1+1b n 1+…+b +1b >b n (2+2+…+2) =2nb n ,∴2a n =2nb n (b -1)b n -1<1+b n +1. 当b =1时,2a n =2=b n +1+1.综上所述2a n ≤b n +1+1.。