高考文科数学真题大全数列高考题老师版
- 格式:docx
- 大小:325.08 KB
- 文档页数:9
1.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )点击观看解答视频A .6B .5C .4D .3答案 C解析 ∵a 4=2,a 5=5,∴a 4a 5=a 1a 8=a 2a 7=a 3a 6=10,∴lg a 1+lg a 2+…+lg a 8=lg (a 1a 2…a 8)=lg (a 1a 8)4=lg (a 4a 5)4=4lg (a 4a 5)=4lg 10=4,选C.2.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2B.73C.83D .3 答案 B解析 由等比数列的性质得:S 3,S 6-S 3,S 9-S 6仍成等比数列,于是,由已知得S 6=3S 3,∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,∴S 9=7S 3,∴S 9S 6=73,故选B. 3.已知等比数列{a n }的前n 项积记为Ⅱn ,若a 3a 4a 8=8,则Ⅱ9=( )点击观看解答视频A .512B .256C .81D .16答案 A解析 由题意可知,a 3a 4a 7q =a 3a 7a 4q =a 3a 7a 5=a 35=8,Ⅱ9=a 1a 2a 3…a 9=(a 1a 9)(a 2a 8)(a 3a 7)(a 4a 6)a 5=a 95,所以Ⅱ9=83=512.故选A.4.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.答案 2n -1解析 ∵⎩⎪⎨⎪⎧ a 1+a 4=9a 2a 3=8,∴⎩⎪⎨⎪⎧ a 1+a 4=9a 1a 4=8,则a 1,a 4可以看作一元二次方程x 2-9x +8=0的两根,故⎩⎪⎨⎪⎧ a 1=1a 4=8或⎩⎪⎨⎪⎧ a 1=8a 4=1, ∵数列{a n }是递增的等比数列,∴⎩⎪⎨⎪⎧ a 1=1a 4=8,可得公比q =2,∴前n 项和S n =2n-1. 5.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析 S 1=a 1,S 2=2a 1-1,S 4=4a 1-6.故(2a 1-1)2=a 1×(4a 1-6)6.成等差数列的三个正数的和等于15,并且这三个数分别加上列{b n }中的b 3,b 4,b 5.(1)求数列{b n }的通项公式;(2)求数列{b n }的前n 项和S n .解 (1)设成等差数列的三个正数分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=15,解得a =5,∴b 3=7-d ,b 4=10,b 5=18+d .∵b 3,b 4,b 5成等比数列,∴b 3b 5=b 24,即(7-d )(18+d )=102,化简,得d 2+11d -26=0,解得d =2或d =-13(舍去),∴b 3=5,b 4=10,b 5=20,∴数列{b n }的公比q =105=2, 数列{b n }的通项公式为b n =b 3q n -3=5×2n -3.(2)由b 3=5,q =2,得b 1=b 3q 2=54, ∴数列{b n }是首项为b 1=54,公比为q =2的等比数列,b11-q n1-q =5×2n-2-54.∴数列{b n}的前n项和S n=。
高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
2024全国卷真题分类汇编(教师版)-数列1.(2024年新课标全国Ⅱ卷)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.【详解】因为数列n a 为等差数列,则由题意得()1111237345a d a d a d a d +++=⎧⎨+++=⎩,解得143a d =-⎧⎨=⎩,则()10110910104453952S a d ⨯=+=⨯-+⨯=.故答案为:95.2.(2024年高考全国甲卷数学(理))等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A .2-B .73C .1D .2【详解】由105678910850S S a a a a a a -=++++==,则80a =,则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.3.(2024年高考全国甲卷数学(理))记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【详解】(1)当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13n n a a -=-,∴数列{}n a 是以4为首项,3-为公比的等比数列,所以()143n n a -=⋅-.(2)111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++ 0211438312343n n -=⋅+⋅+⋅++⋅ 故1233438312343n n T n =⋅+⋅+⋅++⋅所以1212443434343n n n T n --=+⋅+⋅++⋅-⋅ ()1313444313n n n --=+⋅-⋅-()14233143n n n -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.4.(2024年新课标全国Ⅰ卷)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【详解】(1)首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k k a a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.(2)由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.(3)定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>==++++++++.这就证明了结论.。
学科教师辅导教案学员姓名年级授课老师课时数高三辅导科目数学2h 第次课授课日期及时段2021年月日:—:历S n年高考试a题n集锦——数列9 1.〔2021安徽文〕设为等差数列的前n项和,S84a3,a72,那么a=〔〕〔A〕6〔B〕4〔C〕2〔D〕2【答案】A2.〔2021福建理〕等差数列{a}中,a+a=10,a=7,那么数列{a}的公差为()n154nA.1B.2C.3D.4【答案】B3.〔2021福建理〕等差数列{a n}的前n项和S n,假设a12,S312,那么a6()【答案】C4.(2021·全国Ⅰ理)记S n为等差数列{a n}的前n项和.假设a4+a5=24,S6=48,那么{a n}的公差为() A.1B.2C.4D.845a+3d+a+4d=24,a+a=24,11【解析】设{a n}的公差为d,由S6=48,得16×5d=48,解得d=4.应选C.6a+25.〔2021辽宁文〕在等差数列{a}中,a+a=16,那么a+a=n48210(A)12(B)16(C)20(D)24【答案】B6.(2021新标2文)等差数列{an}的公差是2,假设a2,a4,a8成等比数列,那么{an}的前n项和S n〔〕A.n(n1)B.n(n1)C.n(n1)D.n(n1)22【答案】A7.〔2021安徽文〕公比为2的等比数列{a n}的各项都是正数,且a3a11=16,那么a5〔〕【答案】A8.〔2021大纲文〕设等比数列{a n}的前n项和为S n,假设S2=3,S4=15,那么S6=() A.31 B.32 C.63 D.64【答案】C9.〔2021江西理〕等比数列x,3x+3,6x+6,⋯的第四等于()A.-24B.0C.12D.24【答案】A10.(2021新标1文)设首项为1,公比为2的等比数列{a n}的前n项和为S n,那么〔〕3〔A〕21〔〕〔〕〔〕S n B S n3a n2C S n43a n D S n32a na n【答案】D11.〔2021年新课标2文〕设S n是等差数列{a n}的前n项和,假设a1a3a53,那么S5〔〕A.5B.7C.9D.11【答案】A12.〔2021年新课标2文〕等比数列{a n}满足a11,a3a54a41,那么a2〔〕4【答案】C13、〔2021年全国I理〕等差数列{an}前9项的和为27,a10=8,那么a100=〔A〕100〔B〕99〔C〕98〔D〕97【答案】C14.〔2021辽宁〕设等差数列{a n}的公差为d,假设数列{2a1a n}为递减数列,那么〔〕A.d0B.d0C.a1d0D.a1d0【答案】D15.〔2021年新课标2理〕等比数列{a n }满足a 1=3,a 1 a 3 a 5=21,那么a 3 a 5 a 7 ()〔A 〕21 〔B 〕42 〔C 〕63 〔D 〕84【答案】B16.〔2021大纲理〕等差数列a 的前n 项和为S n ,a 55,S 515,那么数列1的na nan1前100项和为A .100B.99C.99D.101101101100100【简解】由,解出a 1与d ,从而a n =n ;1111a nan1n(n1)nn11 1 11 1 1 100S 100(1)( )L ( ) 1 101选A22 3100 101 10117、(2021·全国Ⅱ理,3)我国古代数学名着?算法统宗?中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯? 〞意思是:一座 7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的 2倍,那么塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.【答案】B 【解析】设塔的顶层的灯数为 a ,七层塔的总灯数为S ,公比为q ,17那么由题意知S 7 7a 1 1-q 7=a 1 1-27 =381,解得a 1 = 381,q =2,∴S = 1-q 1-2 =3.应选B.18、(2021 ·全国Ⅲ理,9)等差数列{a n }的首项为 1,公差不为0.假设a 2,a 3,a 6成等比数列,那么{a n }的前6项和为( )A .-24B .-3C .3D .85.【答案】A 【解析】由条件可得22+5d),a 1=1,d ≠0,由a 3=a 2a 6,可得(1+2d)=(1+d)(1解得d =-2.所以S 66×5×-2=-24.应选A.=6×1+219.〔2021 广东理〕递增的等差数列a n 满足a 1 1,a 3a 224,那么a n ______________.【答案】2n-120.(2021上海文)在等差数列 a n 中,假设a 1 a 2 a 3 a 4 30,那么a 2 a 3.【答案】1521.(2021天津)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.假设S 1,S 2,S 4成等比数列,那么a 1的值为__________. 【答案】-1222.(2021·江苏)等比数列{a n }的各项均为实数,其前n 项和为S n ,S 3= 7,S 6=63,那么a 8=________.4 4a 11-q 3 =7,1,1-q41.【答案】32【解析】设{a n }的首项为a 1,公比为q ,那么a 1=4663, 解得1q =2,a1-q =1-q41所以a 8=4×27=25=3223.〔2021江苏〕在各项均为正数的等比数列 {a n }中,假设a 21,a 8a 6 2a 4,那么a 6的值是 .【简解】由解出 q 2=2;a 6=a 2q 4,填结果424.(2021新标文) 等比数列{a n }的前n 项和为S n ,假设S 3+3S 2=0,那么公比q =_______【答案】-225.(2021浙江理)设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.假设S 23a 22,S 43a 42,那么=__.q【答案】3226.〔2021年广东理科〕在等差数列 a n 中,假设a 3a 4a 5 a 6 a 725,那么a 2a 8=【答案】10.27.〔2021年安徽文科〕数列{a n }中,a 11,a nan11〔n2〕,那么数列{a n }的2前9项和等于。
高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
学 科 教 师 辅 导 教 案学员姓名 授课老师授课日期及时段年级 高三课时数2h2018 年 月 日辅导科目数学 第 次课1. (2013安徽文)设—天就题 麴歹(j 2,则a 9=()(A ) 6 (B ) 4 (C ) 2 (D ) 2 【答案】A2. (2012福建理)等差数列{a n }中,a i + a 5=10, a ,= 7,则数列{a n }的公差为()A 1B . 2C . 3D . 4【答案】B3. (2014福建理)等差数列{a n }的前n 项和S n ,若a 1 2§ 12,则a 6 ()【答案】C4. (2017 •全国I 理)记&为等差数列{a n }的前n 项和.若a 4+a 5=24, &=48,则{a n }的公差为()A. 1 B . 2 C . 4 D . 8a 4+a 5= 24,【解析】设{a n }的公差为d,由cSs = 48,5. (2012辽宁文)在等差数列{a n }中,已知a 4+a 8=16,则a z +ax(A ) 12 (B ) 16(C ) 20 (D )24【答案】B6. (2014新标2文)等差数列{a n}的公差是2,若a 2,a%a 8成等比数歹【」,A. n(n 1)B. n(n 1)C. n(n. D. n(n“22【答案】A7. (2012安徽文)公比为2的等比数歹【」{a n }的各项都是正数,【答案】A(a + 3d ) +(a1 + 4d ) =24,得-.6X 5 ,一 6a1 + 2-d =48,解得d=4.故选C.则{a n }的前n 项和S n且 a 3 an =16,则 a 5 (3=15,贝U S 6=()8.(2014大纲文)设等比数列{a n}的前n项和为S,若&=3,A. 31B. 32C. 63D. 64【答案】C9.(2013江西理)等比数列x, 3x+3,6x+ 6,…的第四项等于()【答案】A210. (2013新标1文)设首项为1,公比为2的等比数列{a n }的前n 项和为S n ,则(3 (A) S n 2a n 1(B) S n 3a n 2 (C) S n 4 3a n (D) S n 3 2小【答案】D11. (2015年新课标2文)设&是等差数列{a n }的前n 项和,若为 a 3 a s 3,则S 5 A. 5 B.7 C.9 D . 11【答案】A112. (2015年新课标2又)已知等比数列{a 。
(word完整版)高考文科数学数列复习题有答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高考文科数学数列复习题有答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高考文科数学数列复习题有答案(word版可编辑修改)的全部内容。
高考文科数学数列复习题一、选择题1.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是( )A .5B .4C .3D .22.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于( )A .40B .42C .43D .453.已知等差数列{}n a 的公差为2,若1a 、3a 、4a 成等比数列,则2a 等于( ) A .-4 B .-6 C .-8 D .-10 4.在等差数列{}n a 中,已知11253,4,33,n a a a a n =+==则为( )A 。
48 B.49 C.50 D.51 5.在等比数列{n a }中,2a =8,6a =64,,则公比q 为( )A .2B .3C .4D .8 6。
—1,a,b,c ,-9成等比数列,那么( )A .3,9b ac == B.3,9b ac =-= C.3,9b ac ==- D.3,9b ac =-=- 7.数列{}n a 满足11,(2),n n n a a a n n a -=+≥=则( )A .(1)2n n +B 。
(1)2n n - C. (2)(1)2n n ++ D 。
(新课标全国卷)17,已知等比数列{}n a 中,a311=a ,公比31=q (1)n S 为{}n a 的前n 项和,证明:21n n a S -= (2)设n n a a a b 32313log log log +++=Λ,求数列{}n b 的通项公式(大纲全国卷)17,设等比数列{}n a 的前n 项和为n S ,已知62=a ,30631=+a a ,求n a 和n S(北京卷)12,在等比数列{}n a 中,若211=a ,44=a ,则公比q =________;n a a a +++Λ21=__________20 若数列1:a A n ,2a ,n a a ,3Λ)2(≥n 满足k k a a -+1=1(k=1,2,3)1,-n Λ,则称n A 为E 数列,记n n a a a A S Λ++=21)((1)写出一个E 数列5A 满足031==a a(2)若121=a ,2000=n ,证明:E 数列n A 是递增数列的充要条件是2011=n a(3)在41=a 的E 数列n A 中,求使得)(n A S =0成立的n 的最小值(江西卷)5,设数列{}n a 为等差数列,公差2-=d ,n S 为其前n 项和,若1110S S =,则=1a _______________21,(1)已知两个等比数列{}n a 和{}n b ,满足)0(1>=a a a ,111=-a b ,222=-a b ,333=-a b ,若数列{}n a 唯一,求a 的值(2)是否存在两个等比数列{}n a 和{}n b ,使得11a b -,22a b -,33a b -,44a b -成公差不为0的等差数列若存在,求{}n a 和{}n b 的通项公式;若不存在,请说明理由(安徽卷)7,若数列{}n a 的通项公式为)23()1(--=n a n n ,则=+++1021a a a Λ( )A. 15B. 12C. -12D. -15(2011安徽)18.在数1和100之间输入n 个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记做n T ,再令n n T a lg =,1≥n(1)求数列{n a }的通项公式(2)设1tan tan +=n n n a a b ,求数列{n b }的前n 项和(2011山东)等比数列{n a }中,1a ,2a ,3a 分别是下表第一,第二,第三行中的某一个数,且1a ,2a ,3a 中的任何两个数不在下表的同一列(1)求数列{n a }的通项公式(2)若数列{n b }满足:n n n n a a b ln )1(-+=,求数列{n b }的前n 项和(广东)11,已知{n a }是递增等比数列,22=a ,434=-a a ,则此数列的公比=q _______20,设0>b ,数列{n a }满足b a =1,)2(111≥-+=+-n n a nba a n n n (1)求数列{n a }的通项公式(2)证明:对于一切正整数n ,121+≤+n n b a(天津卷)已知数列{}n a 与{}n b 满足1)2(11+-=+++nn n n n a b a b ,2)1(31--+=n n b ,+∈N n ,且21=a (1)求2a ,3a 的值(2)设1212-+-=n n n a a c ,+∈N n ,证明{}n c 是等比数列(3)设n S 为{}n a 的前n 项和,证明)(311221212221+--∈-≤++++N n n a S a S a S a S n n n n Λ(福建卷)17,已知等差数列{}n a 中11=a ,33-=a(1)求数列{}n a 的通项公式(2)若数列{}n a 的前k 项和35-=K S ,求k 的值(江苏卷)20.设M 为部分正整数组成的集合,数列{}n a 的首项11=a ,前n 项的和为n S ,已知对于任意正整数M k ∈,当整数k n >时,)(2k n k n k n S S S S +=+-+都成立(1)设M={}1,22=a ,求5a 的值 (2)设M={}4,3,求数列{}n a 的通项公式(浙江卷)17,若数列⎭⎬⎫⎩⎨⎧+n n n )32)(4(中最大项是第k 项,则=k __________19,已知公差不为0的等差数列{}n a 的首项1a 为a ()R a ∈,且11a ,21a ,41a 成等比数列(1)求数列{}n a 的通项公式(2)对+∈N n ,试比较n a a a a 2222111132++++Λ与11a 的大小(辽宁卷)若等比数列{}n a 满足n n n a a 161=+,则公比为__________15,n S 为等差数列{}n a 的前n 项和,62S S =,14=a ,则=5a ___________(四川卷)已知{}n a 是以a 为首项,q 为公比的等比数列,n S 为它的前n 项和(1)当1S ,3S ,4S 成等差数列时,求q 的值(2)当m S ,n S ,1S 成等差数列时,求证:对于任意自然数k ,k m a +,k n a +,k a +1也成等差数列(重庆卷)16,设{}n a 是公比为正数的等比数列,21=a ,423+=a a(1) 求{}n a 的通项公式(2) 设{}n b 是首项为1,公差为2的等差数列,求数列{}n n b a +的前n 项和哈n S(湖北卷)17,成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成等比数列{}n b 中的3b ,4b ,5b(1)求数列{}n b 的通项公式(2)数列{}n b 的前n 项和为n S ,求证:数列⎭⎬⎫⎩⎨⎧+45n S 是等比数列。
数列真题汇编(二)数列求通项15道1.(2016全国3卷文)已知各项都为正数的数列{a n }满足a 1=1,a n 2−(2a n+1−1)a n −2a n+1=0. (I )求a 2,a 3; (II )求{a n }的通项公式.解:(Ⅰ)由题意得a 2=12,a 3=14. .........5分(Ⅱ)由a n 2−(2a n+1−1)a n −2a n+1=0得2a n+1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数,所以a n+1a n=12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n−1.2.(2016全国1卷文)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a nb n+1+b n+1=nb n . (Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.【解析】(Ⅰ)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2,所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n −1. (Ⅱ)由(Ⅰ)和a n b n+1+b n+1=nb n ,得b n+1=b n 3,因此{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n ,则S n =1−(13)n 1−13=32−12×3n−1.3.(2018全国1文)已知数列满足,,求的通项公式.解:∵,∴.4.(三星)(全国II )已知a 1=1,S n+1=4a n +2(n ∈N ∗), (1)设b n =a n+1−2a n ,求证:{b n }是等比数列; (2)求a n .备注:题目中 已经将关系式构造好了,三项关系变二项关系后是等比数列;基本类型二求通项{}n a 11a =()121n n na n a +=+{}n a 1112n n nn a b b q n−−===12n n a n −=⋅5.(三星)(全国Ⅰ卷)在数列{a n}中,S n=43a n−13×2n+1+23,S n.求首项{a n}与通项n.备注:S n与a n关系变形之后成类型二解:由题意得S n=2a n+1,解得S6=.又a n+1=S n+1−S n=43a n+1−43a n−13(2n+1−2n),即a n+1=4a n+2n+1,设a n+1+x⋅2n+1=4(a n+x⋅2n),利用待定系数法可得x=1,又a1+2=4≠0,所以数列{a n+2n}是公比为4的等比数列. 所以a n+2n=4×4n−1,即a n=4n−2n.6. (2020全国3卷理)设数列{a n}满足a1=3,a n+1=3a n−4n.(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.【详解】(1)由题意可得a2=3a1−4=9−4=5,a3=3a2−8=15−8=7,由数列{a n}的前三项可猜想数列{a n}是以3为首项,2为公差的等差数列,即a n=2n+1,证明如下:当n=1时,a1=3成立;假设n=k时,a k=2k+1成立.那么n=k+1时,a k+1=3a k−4k=3(2k+1)−4k=2k+3=2(k+1)+1也成立.则对任意的n∈N∗,都有a n=2n+1成立;(2)由(1)可知,a n⋅2n=(2n+1)⋅2nS n=3×2+5×22+7×23+⋯+(2n−1)⋅2n−1+(2n+1)⋅2n,①2S n =3×22+5×23+7×24+⋯+(2n −1)⋅2n +(2n +1)⋅2n+1,② 由①−②得:−S n =6+2×(22+23+⋯+2n )−(2n +1)⋅2n+1 =6+2×22×(1−2n−1)1−2−(2n +1)⋅2n+1=(1−2n)⋅2n+1−2,即S n =(2n −1)⋅2n+1+2.7.(2021全国1卷)已知数列满足,(1)记,写出,,并求数列的通项公式; (2)求的前20项和.【解】(1)b 1=a 2=a 1+1=2,b 2=a 4+a 3+1=a 2+2+1=5 ∵2n 为偶数,∴a 2n+1=a 2n +2,a 2n+2=a 2n+1+1, ∴a 2n+2=a 2n +3即b n+1=b n +3,且b 1=2,∴{b n }是以2为首项,3为公差的等差数列,∴ b n =3n −1. (2)当n 为奇数时,a n =a n+1−1∴{a n }的前20项和为a 1+a 2+...+a 20=(a 1+a 3+...+a 19)+(a 2+a 4+...+a 20)=[(a 2−1)+(a 4−1)+...+(a 20−1)]+(a 2+a 4+...+a 20)=2(a 2+a 4+...+a 20)−10. 由(1)可知,a 2+a 4+...+a 20=b 1+b 2+...+b 10=2×10+10×92×3=155 ,∴{a n }的前 20项和为2x155 -10 =300.8. (2020全国1文)数列{a n }满足a n+2+(−1)n a n =3n −1,前16项和为540,则a 1= ______________.【详解】a n+2+(−1)n a n =3n −1,当n 为奇数时,a n+2=a n +3n −1;当n 为偶数时,a n+2+a n =3n −1. 设数列{a n }前n 项和为S n , S 16=a 1+a 2+a 3+a 4+⋯+a 16=a 1+a 3+a 5⋯+a 15+(a 2+a 4)+⋯(a 14+a 16)=a 1+(a 1+2)+(a 1+10)+(a 1+24)+(a 1+44)+(a 1+70) +(a 1+102)+(a 1+140)+(5+17+29+41) =8a 1+392+92=8a 1+484=540,{}n a 11a =11,,2,n n na n a a n ++⎧=⎨+⋅⎩为奇数为偶数2n n b a =1b 2b {}n b {}n a∴a1=7.故答案为:7.9.(2019全国2卷理)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n−b n+4,4b n+1=3b n−a n−4.(1)证明:{a n+b n}是等比数列,{a n–b n}是等差数列;(2)求{a n}和{b n}的通项公式.解:(1)由题设得4(a n+1+b n+1)=2(a n+b n),即a n+1+b n+1=12(a n+b n).又因为a1+b1=l,所以{a n+b n}是首项为1,公比为12的等比数列.由题设得4(a n+1−b n+1)=4(a n−b n)+8,即a n+1−b n+1=a n−b n+2.又因为a1–b1=l,所以{a n−b n}是首项为1,公差为2的等差数列.(2)由(1)知,a n+b n=12n−1,a n−b n=2n−1.所以a n=12[(a n+b n)+(a n−b n)]=12n+n−12,b n=12[(a n+b n)−(a n−b n)]=12n−n+12.10. (2021全国乙卷理)记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.【解析】(1)解法一:由2S n +1b n=2得S n=2b n2b n−1,且b n≠0,b n≠12,取n=1,由S1=b1=2b12b1−1得b1=32,由于b n为数列{S n}的前n项积,所以2b12b1−1⋅2b22b2−1⋅⋅⋅2b n2b n−1=b n,所以2b12b1−1⋅2b22b2−1⋅⋅⋅2b n+12b n+1−1=b n+1,所以2b n+12b n+1−1=b n+1b n,由于b n+1≠0所以22b n+1−1=1b n,即b n+1−b n=12,其中n∈N∗所以数列{b n }是以b 1=32为首项,以d =12为公差等差数列; 解法二:因为b n 为数列{S n }的前n 项积,所以b nb n−1=S n (n ≥2),由2S n+1b n=2可得2b n−1b n+1b n=2(n ≥2),去分母得2b n −2b n−1=1(n ≥2),所以b n −b n−1=12,数列{b n }是公差为12的等差数列.(2)由(1)可得,数列{b n }是以b 1=32为首项,以d =12为公差的等差数列, ∴b n =32+(n −1)×12=1+n2, S n =2b n2bn−1=2+n1+n , 当n=1时,a 1=S 1=32,当n≥2时,a n =S n −S n−1=2+n1+n −1+n n=−1n (n+1),显然对于n=1不成立,∴a n ={32,n =1−1n (n+1),n ≥2.11.(二星)(全国理)若数列{}的前n 项和为S n =,则数列{}的通项公式是=______. 解:当=1时,==,解得=1,当≥2时,==-()=,即=,∴{}是首项为1,公比为-2的等比数列,∴=.12.(2016全国3卷理科)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0, (Ⅰ)证明{a n }是等比数列,并求其通项公式; (Ⅱ)若S 5=3132,求λ。