湖南省长沙市长郡中学2018-2019学年高二下学期期末考试数学(文)试题Word版含答案
- 格式:doc
- 大小:933.97 KB
- 文档页数:9
长郡中学2018-2019学年度高二第二学期期末考试数学(理科)一、选择题。
1.设集合{}{}21,2,3,3410A B x x mx ==-+=,若{}1A B ⋂=,则m =( )A. 1B. 12-C.12D. -1【答案】A 【解析】 【分析】由{}1A B ⋂=得1A ∈且1B ∈,把1代入二次方程求得1m =,最后对m 的值进行检验. 【详解】因为{}1A B ⋂=,所以1A ∈且1B ∈, 所以3410m -+=,解得1m =.当1m =时,1{1,}3B =,显然{}1A B ⋂=,所以1m =成立,故选A. 【点睛】本题考查集合的交运算,注意求出参数m 的值后要记得检验.2.已知函数()21y f x =-的定义域为[]0,3,则函数()y f x =的定义域为( )A. [2,1][1,2]--UB. []1,2C. []0,3D. []1,8-【答案】D 【解析】 【分析】函数()21y f x =-中21x -的取值范围与函数()y f x =中x 的范围一样.【详解】因为函数()21y f x =-的定义域为[]0,3,所以03x ≤≤,所以2118x -≤-≤,所以函数()y f x =的定义域为[]1,8-.选D.【点睛】求抽象函数定义域是一种常见题型,已知函数的定义域或求函数的定义域均指自变量x 的取值范围的集合,而对应关系f 所作用的数范围是一致的,即括号内数的取值范围一样.3.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称,若角α是第三象限角,且1sin 3α=-,则cos β=( )A.3B. 3-C.13D. 13-【答案】A 【解析】 【分析】由单位圆中的三角函数线可得:终边关于y 轴对称的角α与角β的正弦值相等,所以1sin 3β=-,再根据同角三角函数的基本关系,结合余弦函数在第四象限的符号,求得cos β=3.【详解】角α与角β终边关于y 轴对称,且α是第三象限角,所以β为第四象限角,因为1sin 3α=-,所以1sin 3β=-,又22sin cos 1ββ+=,解得:cos β=3,故选A. 【点睛】本题考查单位圆中三角函数线的运用、同角三角函数的基本关系,考查基本的运算求解能力.4.已知命题“x R ∀∈,使得212(1)02x a x +-+>”是真命题,则实数a 的取值范围是( ) A. (.1)-∞- B. (3,)-+∞C. (13)-, D. ()3.1-【答案】C 【解析】 【分析】利用二次函数与二次不等式的关系,可得函数的判别式∆<0,从而得到13a -<<. 【详解】由题意知,二次函数的图象恒在x 轴上方,所以21(1)4202a ∆=--⋅⋅<, 解得:13a -<<,故选C.【点睛】本题考查利用全称命题为真命题,求参数的取值范围,注意利用函数思想求解不等式.5.已知某批零件的长度误差ξ(单位:毫米)服从正态分布2(1)3N ,,从中随机取一件.其长度误差落在区间(4)7,内的概率为( ) (附:若随机变量ξ服从正态分布N 2(,)μσ,则()68.26%P μσξμσ-<<+≈,(22)95.44%P μσξμσ-<<+≈)A. 4. 56%B. 13.59%C. 27. 18%D.31. 74%【答案】B 【解析】 【分析】利用3σ原则,分别求出(24),(57)P P ξξ-<<-<<的值,再利用对称性求出(47)13.59%P ξ<<=.【详解】正态分布2(1)3N ,中,1,3μσ==, 所以(24)(1313)68.26%P P ξξ-<<=-<<+≈,(57)(123123)95.44%P P ξξ-<<=-⨯<<+⨯≈,所以(57)(24)(47)13.59%2P P P ξξξ-<<--<<<<=≈,故选B.【点睛】本题考查正态分布知识,考查利用正态分布曲线的对称性求随机变量在给定区间的概率.6.定义在R 上的奇函数()f x 满足()()22f x f x -=+,且当(2,0)x ∈-时,()31xf x =-,则()9f =( ) A. 2- B. 2C. 23-D.23【答案】D 【解析】【分析】由等式()()22f x f x -=+可得函数()f x 的周期4T=,得到()9(1)f f =,再由奇函数的性质得()9(1)(1)f f f ==--,根据解析式()31xf x =-求出2(1)3f -=-,从而得到()9f 的值.【详解】因为()())()2(42f x f f x x f x -=⇒+=+,所以()f x 的周期4T =,所以()229(1)(1)()33f f f ==--=--=,故选D. 【点睛】由等式()()22f x f x -=+得函数()f x 的周期4T=,其理由是:(2)x -为函数()f x 自变量的一个取值,(2)x +为函数()f x 自变量的另一个取值,这两个自变量的差始终为4,函数值始终相等,所以函数的周期为4.7.函数()tan(2)3f x x π=-的单调递增区间为( )A. 5[,]()212212k k k Z ππππ-+∈ B. 5[,]()1212k k k Z ππππ-+∈C. 5(,)()212212k k k Z ππππ-+∈ D. 2(,)()63k k k Z ππππ++∈ 【答案】C 【解析】 【分析】利用复合函数的单调性,直接把23x π-代入tan y x =的单调递增区间,求出x 的范围即函数()f x 的单调递增区间.【详解】因为2232k x k πππππ-<-<+,解得:5,212212k k x k Z ππππ-<<+∈, 所以函数的单调递增区间为:5(,)()212212k k k Z ππππ-+∈,故选C. 【点睛】本题考查正切函数单调递增区间,注意单调区间为一个开区间,同时要注意不能错解成222232k x k πππππ-<-<+,即把正、余弦函数的周期2k π与正切函数的周期k π混淆.8.函数()cos x f x e x =⋅在()()0,0f 处切线斜率为( )A. 0B. 1-C. 1【答案】C 【解析】分析:首先求得函数()f x 的导函数,然后结合导函数研究函数的切线即可. 详解:由函数的解析式可得:()()()'cos sin cos sin xxxf x e x e x ex x =+⨯-=-,则()()()0'0cos0sin01101f e =-=⨯-=,即函数()xf x e cosx =⋅在()()0,0f 处切线斜率为1.本题选择C 选项.点睛:本题主要考查导函数与原函数切线之间的关系,意在考查学生的转化能力和计算求解能力.9.已知函数()sin(2)3f x x π=+,将其图象向右平移(0)ϕϕ>个单位长度后得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为( ) A.12πB.512π C.6π D.56π 【答案】B 【解析】 【分析】由平移变换得到()sin(22)3g x x πϕ=-+,由偶函数的性质得到sin(22)13x πϕ-+=±,从而求min 512πϕ=. 【详解】由题意得:()sin[2())]sin(22)33g x x x ππϕϕ=-+=-+,因为()g x 为偶函数,所以函数()g x 的图象关于0x =对称,所以当0x =时,函数()g x 取得最大值或最小值,所以sin(2)13πϕ-+=±,所以2,32k k Z ππϕπ-+=+∈,解得:1,22k k Z ππϕ=--∈, 因为0ϕ>,所以当1k =-时,min 512πϕ=,故选B.【点睛】平移变换、伸缩变换都是针对自变量x 而言的,所以函数()f x 向右平移(0)ϕϕ>个单位长度后得到函数()g x ,不能错误地得到()sin (2)3g x x x πϕ=+-.10.已知函数2(1),10()1x x f x x ⎧+-≤≤⎪=⎨<≤⎪⎩,则11()f x dx -⎰=( ) A. 3812π- B. 44π+ C. 3412π+D.3412π- 【答案】C 【解析】 【分析】由积分运算、微积分基本定理、积分的几何意义分别求出2101(1),,34x dx π-+==⎰⎰,从而求得1134()12f x dx π-+=⎰. 【详解】因为10111()()(),f x dx f x dx f x dx --=+⎰⎰⎰由微积分基本定理得:0023011111()(1)(1)|33f x dx x dx x ---=+=+=⎰⎰,由积分的几何意义得:1(),4f x dx π==⎰⎰所以1134()12f x dx π-+=⎰,故选C. 【点睛】本题考查积分的运算法则及积分的几何意义的运用,考查数形结合思想和运算求解能力.11.若函数()()sin 2f x x b ϕ=++,对任意实数x 都有()2,133f x f x f ππ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭,则实数b 的值为( ) A. 2-和0 B. 0 和1C. 1±D. 2±【答案】A 【解析】 由()3f x f x π⎛⎫+=- ⎪⎝⎭得函数一条对称轴为π6x =,因此ππsin()1π()36k k ϕϕ+=±⇒=+∈Z ,由213f π⎛⎫=- ⎪⎝⎭得4ππsin(π)1112036k b b b +++=-⇒=-±⇒=-或 ,选A. 点睛:求函数解析式sin()(0,0)y A x B A ωϕω=++>>方法:(1)max min max min,22y y y y A B -+==. (2)由函数的周期T 求2,.T πωω= (3)利用“五点法”中相对应的特殊点求ϕ. (4)由 ππ()2x k k ωϕ+=+∈Z 求对称轴12.已知3tan 44πα⎛⎫+= ⎪⎝⎭,则2cos 4πα⎛⎫-= ⎪⎝⎭( ) A.725B.925C.1625D.2425【答案】B 【解析】π1tan 3tan 41tan 4ααα+⎛⎫+==⎪-⎝⎭,解得1tan 7α=-,故2π1cos 2π1sin 212cos sin cos 4222ααααα⎛⎫+- ⎪+⎛⎫⎝⎭-===+ ⎪⎝⎭,其中222sin cos tan 7sin cos sin cos tan 150αααααααα===-++,故19sin cos 225αα+=. 点睛:本题驻澳考查三角恒等变换,考查两角和的正切公式,考查降次公式和二倍角公式,考查利用同角三角函数关系求解齐次方程.首先先根据两角和的正切公式求得tan α,然后利用降次公式和诱导公式化简要求解的式子,再利用齐次方程来求出结果.最突出的是选项的设置,如果记错降次公式或者诱导公式,则会计算出,A C 选项.13.设函数()()224,ln 25xf x e xg x x x =+-=+-,若实数,a b 分别是()(),f x g x 的零点,则( )A. ()()0g a f b <<B. ()()0f b g a <<C. ()()0g a f b <<D.()()0f b g a <<【答案】A 【解析】由题意得,函数()(),f x g x 在各自的定义域上分别为增函数, ∵()()120,130f e g =->=-<, 又实数,a b 分别是()(),f x g x 的零点 ∴1,1a b <>,∴()(1)0,()(1)0g a g f b f , 故()()0g a f b <<。
湖南省长郡中学高二数学下学期期末考试试题文长郡中学2018-2019学年度高二第二学期期末考试数学(文科)时量:120分钟 满分:100分 一、选择题:本大题共15个小题.每小题3分,共45分.在每小题给出的四个选项中.只有一项是符合题目要求. 1.x > y 是lgx >lgy 的A.充分不必要条件 B 必要不充分条件C.充要条件D.既不充分也不必要条件 ★2.设集合A={}{}12x x B x x a <<=<,若A B ⊆,则a 的取值范围是 A. {}2a a ≤ B. {}1a a ≤ C. {}1a a ≥ D. {}2a a ≥ 3.若点P(-3.4)是角α的终边上一点.则sin 2α= A. 2425-B. 725-C. 1625D. 854.曲线3()21f x x x =-+在点(l ,f (1))处的切线方程为A. y =x -1B. y= -x +1C. y =2x -2D. y = -2x +2 5.记等差数列{}n a 的前n 项和为S n ,若a 5=3,S 13=91,则a 1+a 11= A7 B. 8 C. 9 D. 10 6.等比数列{}n a 的前n 项和为S n ,已S 2 =a 1 +2a 3,a 4=1,则S 4= A.78 B. 158C. 14D.15 7.函数()sin()f x x ωϕ=+ (其中02πϕ<<)的图象如图所示,为了得到()y f x =的图象.只需把sin y x ω=的图象上所有点A.向右平移6π个单位长度 B.向右平移12π个单位长度C 向左平移6π个单位长度 D.向左平移12π个单位长度8.己知△ABC的内角A 、B 、C的对边分别为a 、b 、c ,且2cos (cos cos ),1,3C a B b A c a b +===,则c =C. 9.若数列{}n a 满足71()2,83,8n n a n n a a n -⎧-+>⎪=⎨⎪≤⎩,若对任意的n N *∈都有n a >1n a +,则实数a的取值范围是A. 1(0,)3B. (0,12) C. 11(,)32 D. 1(,1)210.在△ABC 中,角A 、B 、C 所对的边为a 、b 、c ,若4cos 5A =,且边5,c a ==边b=A. 3或5B.3C.2或5D.511.已知函数32()2f x ax x x c =-++在R 上有极值点,则a 的取值范围是 A. 4(0,)3 B. (,0)-∞ C. 4[0,)3 D. 4(,)3-∞ ★12.已知数列{}n a 的通项公式*12log()n n n a n N +=∈,设其前n 项和为S n ,则使S n > -4成立的自然数n 有A.最大值14B.最小值14C.最大值15D.最小值1513.在△ABC 中,60A ︒∠=,b =1,其面积S =∆A BC 外接圆直径为A.3B. 3C. 314.设数列{}n a 的前n 项和为Sn ,若2222312222244123na a a a n n++++=-,且0n a ≥,则S 100等于A. 5048B.5050C. 10098D. 10100 ★15.已知函数y =f (x ),对任意的(,)22x ππ∈-满足'()cos ()sin 0f x x f x x +>,其中'()f x 是函数f (x )的导函数,则下列不等式成立的是()()34f ππ->-()()34f ππ<()()34f ππ-<-()()34f ππ-> 二、填空题:本大题共5小题.每小题3分.共15分.16.已知复数2()z a ai a R =+∈,若z =z 在复平面内对应的点位于第四象限,复数z=________。
长郡中学2018-2019学年度高二第二学期期末考试数学(理科)时量:120分钟 满分:100分一、选择题(每小题3分,共45分)1.设集合A={}{}21,2,3,3410B x x mx =-+=.若A B ={1}.则m =A.1B. 12-C. 12D.一1 ★2.已知函数y =f (x 2-1)的定义域为[0.3],则函数y =f (x )的定义域为A. [2,1][1,2]--B. [1.2]C. [0.3]D.[一1.8]3.在平面直角坐标系x O y 中.角α与角β均以O x 为始边.它们的终边关于y 轴对称.若角α是第三象限角,且1sin 3α=-,则cos β=A.3 B. 3- C. 13 D. 13- 4.已知命题“x R ∀∈,使得212(1)02x a x +-+>”是真命题,则实数a 的取 值范围是A. (.1)-∞-B. (3,)-+∞C.(一1,3)D.(一3.1) 5.已知某批零件的长度误差(单位:毫米)服从正态分布N(1,32).从中随机 取一件.其长度误差落在区间(4,7)内的概率为(附:若随机变量ξ服从正态分布N 2(,)μσ,则()P μσξμσ-<<+=68.26%,(22)P μσξμσ-<<+=95.44%)A. 4. 56%B. 13.59%C. 27. 18%D. 31. 74%6.定义在R 上的奇函数f (x )满足f (x -2)=f (x +2),且当(2,0)x ∈-时,()31xf x =-,则f (9)= A. 2- B. 2 C. 23- D. 23★7.函数()tan(2)3f x x π=-的单调递增区间为A. 5[,]()212212k k k Z ππππ-+∈ B. 5[,]()1212k k k Z ππππ-+∈ C. 5(,)()212212k k k Z ππππ-+∈ D. 2(,)()63k k k Z ππππ++∈ 8.函数()cos xf x e x =在点(0,(0))f 处的切线斜率为A. 0B.一1C. 1D. 9.已知函数()sin(2)3f x x π=+,将其图象向右平移(0)ϕϕ>个单位长度后得到函数g (x )的图象,若函数g (x )为偶函数,则ϕ的最小值为 A.12π B. 512π C. 6π D. 56π 10.已知函数2(1),10()1x x f x x ⎧+-≤≤⎪=⎨<≤⎪⎩,则11()f x dx -⎰=A. 3812π-B. 44π+C. 3412π+D. 3412π-11若函数()sin(2)f x x b ϕ=++,对任意实数x 都有()()3f x f x π+=-,2()13f π=-,则实数b 的值为A. -2或0B. 0或1C. 1±D. 2±12.已知3tan()44πα+=,则2cos ()4πα-= A. 725 B. 925 C. 1625 D. 242513.设函数2()24,()ln 25x f x e x g x x x =+-=+-,若实数a ,b 分别是 f (x )、g (x )的零点,则A. g (a )<0<f (b )B. f (b )<0<g (a )C.0<g (a )<f (b )D. f (b )<g (a )<0 14.已知函数1()2(0)2xf x x =-<与()2()log x a g x +=的图象上存在关于y 轴对称的点,则a 的取值范围是A. (,-∞B. (,-∞C. (-∞D. (- 15.已知函数()ln (1)22f x x a x a =+-+-,若不等式f (x )>0的解集中整数的个数为3,则a 的取值范围是A. (1ln 3,0]-B. (1ln3,2ln 2]-C. (0,1ln 2]-D. (1ln 3,1ln 2]-- 二、填空题(每小题3分。
长郡中学2017-2018学年度高二第二学期期末考试数学(文科)一、选择题:本大题共15个小题,每小题3分,共45分.1.设集合{|23,}A x x x Z =-<<∈,{2,1,0,1,2,3}B =--,则集合AB 为( )A .{2,1,0,1,2}--B .{1,0,1,2}-C .{1,0,1,2,3}-D .{2,1,0,1,2,3}-- 2.若复数323aii+-是纯虚数,则实数a 等于( ) A .2 B .-2 C .-1 D .1 3.下列函数中,与函数3y x =的单调性和奇偶性一致的函数是( ) A .y x =B .tan y x =C .1y x x=+D . x x y e e -=- 4.已知:命题p :若函数2()f x x x a =+-是偶函数,则0a =;命题q :(0,)m ∀∈+∞,关于x 的方程2210mx x -+=有解.在①p q ∨;②p q ∧;③()p q ⌝∧;④()()p q ⌝∨⌝中真命题的是( )A .②③B .②④ C.③④ D .①④ 5.若1cos (+)=43πα,(0,)2πα∈,则sin α的值为( ) A .426- B .426+ C.718 D .236.已知数列{}n a 是等差数列,满足1252a a S +=,下列结论中错误的是( ) A .90S = B .5S 最小 C.36S S = D .50a =7.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得45BDC ∠=︒,则塔AB 的高是(单位:m )( )A .102B .106 C. 103 D .108.函数sin()ln(2)xf xx=+的图象可能是()A. B. C. D.9.设数列{}n a是首项为1,公比为q(1q≠-)的等比数列,若11n na a+⎧⎫⎨⎬+⎩⎭是等差数列,则233420152016111111a a a a a a⎛⎫⎛⎫⎛⎫++++++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()A.4026 B.4028 C.4030 D.403210.将函数()f x的图象向左平移ϕ个单位,再将所得函数图象上所有点的纵坐标不变,横坐标伸长到原来的2倍,得到函数()sing x x=的图象,若函数()f x在,42ππ⎛⎫⎪⎝⎭上单调递增,则ϕ的值不可能为()A.3πB.25πC.58πD.54π11.已知函数2()(21)xf x ae x a x=--+,若函数()f x在区间(0,ln2)上有最值,则实数a的取值范围是()A.(,1)-∞- B.(1,0)- C.(2,1)-- D.(,0)(0,1)-∞12.如图,四边形ABCD是边长为2的菱形,60BAD∠=︒,E、F分别为BC、CD的中点,则AE EF⋅=()A.12B.32- C.32D.12-13.已知函数2()6sin cos 8cos 3f x x x x ωωω=-+(0ω>),()1y f x =+的部分图象如图所示,且0()4f x =,则0(1)f x +=( )A .6B .4C .-4D .-614.已知n S 为数列{}n a 的前n 项和,11a =,2(1)n n S n a =+,若关于正整数n 的不等式222n n a ta t -≤的解集中的整数解有两个,则正实数t 的取值范围为( ) A .3[1,)2B .3(1,)2C .1,12⎡⎤⎢⎥⎣⎦D .1(,1]1215.已知函数,0(),0x e x f x ax x ⎧≥=⎨<⎩,若方程()()f x f x -=有五个不同的根,则实数a 的取值范围为( )A .(1,)+∞B .(,)e +∞C .(,)e -∞-D .(,1)-∞-二、填空题:本大题共5小题,每题3分,共15分.16.sin1013tan10︒=-︒.17.若复数z x yi =+(x ,y ∈R )满足(1)3z i i +=-,则x y +的值为 .18.设()f x 是定义在R 上的周期为3的函数,当[2,1)x ∈-时,242,20,(),01,x x f x x x ⎧--≤≤=⎨<<⎩则21(())4f f = . 19.下列命题中: (1)23k παπ=+(k Z ∈)是tan 3α=的充分不必要条件;(2)函数()2cos 1f x x =-的最小正周期是π;(3)ABC ∆中,若cos cos sin sin A B A B >,则ABC ∆为钝角三角线; (4)若0a b +=,则函数sin cos y a x b x =-的图象的一条对称轴方程为4x π=;其中是真命题的为(填命题序号) .20.若a 、b 是函数2()f x x px q =-+(0p >,0q >)的两个不同的零点,且a 、b 、-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于 .三、解答题 :本大题共5小题,每小题8分,共40分,要求写出必要的文字说明、证明过程或演算步骤.21. 已知点(1,2)A -和向量(2,3)a =(1)若向量AB 与向量a 同向,且213AB =,求点B 的坐标; (2)若向量a 与向量(3,)b k =-的夹角是钝角,求实数k 的取值范围.22. 在等比数列{}n a 中,11a =,且2a 是1a 与31a -的等差中项. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足(1)1(1)n n n n a b n n ++=+(*n N ∈),求数列{}n b 的前n 项和n S .23. 在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222cos cos sin 3sin sin B C A A B -=-. (1)求角C ; (2)若6A π∠=,ABC ∆的面积为43,为AB 的中点,求CM 的长.24.已知函数21()(1)ln 2f x x ax a x =-+-,1a >. (1)讨论函数()f x 的单调性;(2)证明:若5a <,则对任意1x ,()20,x ∈+∞,12x x ≠,有1212()()1f x f x x x ->--.25.已知函数()(1)x f x bx e a =-+(a ,b ∈R ).(1)如果曲线()y f x =在点(0,(0))f 处的切线方程为y x =,求a 、b 的值;(2)若1a <,2b =,关于x 的不等式()f x ax <的整数解有且只有一个,求a 的取值范围.试卷答案一、选择题1-5:BADDA 6-10:BBABC 11-15:ADDAC二、填空题16.14 17.-5 18.1419.(1)(3)(4) 20.9 三、解答题21.(1)设(,)B x y ,则(1,2)AB x y =-+, 若向量AB 与向量a 同向,则有3(1)2(2)x y -=+, 若向量213AB =,则22(1)(2)52x y -++=, 解可得54x y =⎧⎨=⎩,或38x y =-⎧⎨=-⎩,当38x y =-⎧⎨=-⎩时,(4,6)AB =--,与向量a 反向,不合题意,舍去;当54x y =⎧⎨=⎩时,(4,6)AB =,与向量a 同向,则B 的坐标为(5,4);(2)若向量a 与向量(3,)b k =-的夹角是钝角, 则有630a b k ⋅=-+<且290k +≠,解可得2k <且92k ≠-, 故k 的取值范围是99(,)(,2)22-∞--.22.(1)设等比数列{}n a 的公比为q ,且2a 是1a 与31a -的等差中项,即有13212a a a +-=,即为2112q q +-=,解得2q =,即有1112n n n a a q --==;(2)11(1)1112(1)(1)1n n n n n n a b a n n n n n n -++⎛⎫==+=+- ⎪+++⎝⎭,数列{}n b 的前n 项和21111111211(1222)(1)1222311211n n n n S n n n n --=+++++-+-++=+-=-+-++. 23.(1)由222cos cos sin 3sin sin B C A A B -=-, 得222sin sin sin 3sin sin C B A A B -=-. 由正弦定理,得2223c b a ab -=-, 即2223c a b ab =+-.又由余弦定理,得22233cos 222a b c ab C ab ab +-===. 因为0C π<∠<,所以6C π∠=.(2)因为6A C π∠=∠=,所以ABC ∆为等腰三角形,且顶角23B π∠=. 故2213sin 4324ABC S a B a ∆===,所以4a =. 在MBC ∆中,由余弦定理,得22212cos 416224282CM MB BC MB BC B =+-⋅=++⨯⨯⨯=. 解得27CM =.24.(1)()f x 的定义域为(0,)+∞.211(1)(1)'()a x ax a x x a f x x a x x x--+--+-=-+==.(i )若11a -=即2a =,则2(1)'()x f x x-=,故()f x 在(0,)+∞上单调递增.(ii )若11a -<,而1a >,故12a <<,则当(1,1)x a ∈-时,'()0f x <; 当(0,1)x a ∈-及(1,)x ∈+∞时,'()0f x >,故()f x 在(1,1)a -单调递减,在(0,1)a -,(1,)+∞单调递增.(iii )若11a ->即2a >,同理可得()f x 在(1,1)a -单调递减,在(0,1),(1,)a -+∞单调递增.(2)考虑函数21()()(1)ln 2g x f x x x ax a x x =+=-+-+, 则211'()(1)2(1)1(11)a a g x x a x a a x x--=--+≥⋅--=--- 由于15a <<,故'()0g x >,即()g x 在(4,)+∞单调增加,从而当120x x >>时有12()()0g x g x ->,即1212()()0f x f x x x -+->,故1212()()1f x f x x x ->--,当120x x <<时,有12211221()()()()1f x f x f x f x x x x x --=>---.25.(1)函数()f x 的定义域为R ,'()(1)(1)x x x f x be bx e bx b e =+-=+-.因为曲线()y f x =在点(0,(0))f 处的切线方程为y x =,所以(0)0,'(0)1,f f =⎧⎨=⎩得10,10,a b -=⎧⎨-=⎩解得1,2.a b =⎧⎨=⎩(2)当2b =时,()(21)x f x x e a =-+(1a <), 关于x 的不等式()f x ax <的整数解有且只有一个,等价于关于x 的不等式(21)0x x e a ax -+-<的整数解有且只有一个.构造函数()(21)x F x x e a ax =-+-,x R ∈,所以'()(21)x F x e x a =+-.①当0x ≥时,因为1xe ≥,211x +≥,所以(21)1x e x +≥,又1a <,所以'()0F x >,所以()F x 在(0,)+∞上单调递增.因为(0)10F a =-+<,(1)0F e =>,所以在[0,)+∞上存在唯一的整数00x =使得0()0F x <,即00()f x ax <.②当0x <时,为满足题意,函数()F x 在(,0)-∞内不存在整数使()0F x <,即()F x 在(,1]-∞-上不存在整数使()0F x <.11 因为1x ≤-,所以(21)0x e x +<.当01a ≤<时,函数'()0F x <,所以()F x 在(,1)-∞-内为单调递减函数,所以(1)0F -≥,即312a e≤<; 当0a <时,3(1)20F a e -=-+<,不符合题意.综上所述,a 的取值范围为3[,1)2e .另:也可以用数形结合的方法,酌情给分。
长郡中学2018-2019学年度高二第二学期期末考试 数学(文科)命题人:董凰 审题人:饶金伟 时量:120分钟 满分:100分 一、选择题:本大题共15个小题.每小题3分,共45分.在每小题给出的四个选项中.只有一项是符合题目要求. 1.x > y 是lgx >lgy 的A.充分不必要条件 B 必要不充分条件C.充要条件D.既不充分也不必要条件 ★2.设集合A={}{}12x x B x x a <<=<,若A B ⊆,则a 的取值范围是 A. {}2a a ≤ B. {}1a a ≤ C. {}1a a ≥ D. {}2a a ≥ 3.若点P(-3.4)是角α的终边上一点.则sin 2α= A. 2425-B. 725-C. 1625D. 85 4.曲线3()21f x x x =-+在点(l ,f (1))处的切线方程为A. y =x -1B. y= -x +1C. y =2x -2D. y = -2x +2 5.记等差数列{}n a 的前n 项和为S n ,若a 5=3,S 13=91,则a 1+a 11= A7 B. 8 C. 9 D. 10 6.等比数列{}n a 的前n 项和为S n ,已S 2 =a 1 +2a 3,a 4=1,则S 4= A.78 B. 158C. 14D.15 7.函数()sin()f x x ωϕ=+ (其中02πϕ<<)的图象如图所示,为了得到()y f x =的图象.只需把sin y x ω=的图象上所有点A.向右平移6π个单位长度 B.向右平移12π个单位长度C 向左平移6π个单位长度 D.向左平移12π个单位长度8.己知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos (cos cos ),1,3C a B b A c a b +===,则c =A.B.C. D. 39.若数列{}n a 满足71()2,83,8n n a n n a a n -⎧-+>⎪=⎨⎪≤⎩,若对任意的n N *∈都有n a >1n a +,则实数a的取值范围是A. 1(0,)3 B. (0,12) C. 11(,)32 D. 1(,1)210.在△ABC 中,角A 、B 、C 所对的边为a 、b 、c ,若4cos 5A =,且边5,c a ==边b=A. 3或5B.3C.2或5D.511.已知函数32()2f x ax x x c =-++在R 上有极值点,则a 的取值范围是 A. 4(0,)3 B. (,0)-∞ C. 4[0,)3 D. 4(,)3-∞★12.已知数列{}n a 的通项公式*12log()n n n a n N +=∈,设其前n 项和为S n ,则使S n > -4成立的自然数n 有A.最大值14B.最小值14C.最大值15D.最小值1513.在△ABC 中,60A ︒∠=,b =1,其面积S =∆A BC 外接圆直径为A.3B. 3C. 3D. 14.设数列{}n a 的前n 项和为Sn ,若2222312222244123na a a a n n++++=-,且0n a ≥,则S 100等于A. 5048B.5050C. 10098D. 10100 ★15.已知函数y =f (x ),对任意的(,)22x ππ∈-满足'()cos ()sin 0f x x f x x +>,其中'()f x 是函数f (x )的导函数,则下列不等式成立的是 A.()()34f ππ->-B.()()34f ππ<C.()()34f ππ-<- D.()()34f ππ->二、填空题:本大题共5小题.每小题3分.共15分.16.已知复数2()z a ai a R =+∈,若z =z 在复平面内对应的点位于第四象限,复数z=________。
2018-2019学年湖南省长沙市长郡中学高二下学期期中数学试题一、单选题1.若集合{|12}A x x =-<<,{|13}B x x =剟,则A B =I ( ) A .(1,2)- B .[1,2) C .[1,3] D .(1,3]-【答案】B【解析】根据集合的交集的概念及运算,即可求解A B I ,得到答案. 【详解】由题意,集合{|12}A x x =-<<,{|13}B x x =剟, 根据集合的交集的概念及运算,可得{|12}[1,2)A B x x =≤<=I . 故选:B. 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中熟记集合的交集的概念及运算是解答的关键,着重考查了推运算能力.2.如图所示,一个空间几何体的正视图和侧视图都是相邻两边的长分别为1和2的矩形,俯视图是一个圆,那么这个几何体的体积为( )A .4πB .πC .12πD .13π【答案】B【解析】几何体为底面半径为1高为1的圆柱,计算体积得到答案. 【详解】根据三视图知几何体为底面半径为1高为1的圆柱,故体积2V r h ππ==. 故选:B . 【点睛】本题考查了三视图和几何体的体积,意在考查学生的计算能力和空间想象能力. 3.下列函数中,在区间()0,1上是增函数的是( ) A .y x = B .3y x =-C .1y x=D .24y x =-+【答案】A【解析】根据一次函数,反比例函数,二次函数性质可得3y x =-,1y x=,24y x =-+在()0,1不是增函数,在区间()0,1上,y x x ==是增函数. 【详解】()0,1x ∈时, y x x ==,所以y x =在()0,1上是增函数;13,y x y x=-=在()0,1上均是减函数; 24y x =-+是开口向下以0x =为对称轴的抛物线,所以24y x =-+在在()0,1上是减函数,所以A 正确. 故选:A 【点睛】此题考查函数单调性的判断,需要对常见函数的基本性质熟练掌握. 4.函数2cos ()y x x R =∈的最小值是( ) A .2- B .1-C .1D .2【答案】A【解析】根据余弦函数的性质,得到1cos 1x -≤≤,即可求得函数的最小值,得到答案. 【详解】由题意,根据余弦函数的性质,可得1cos 1x -≤≤, 当cos 1x =-时,函数2cos y x =取得最小值,最小值为2-. 故选:A. 【点睛】本题主要考查了余弦函数的性质的应用,其中解答中熟记余弦函数的值域是解答的关键,着重考查了计算能力. 5.如果0x >,那么14x x+的最小值为( ) A .2 B .3C .4D .5【答案】C【解析】利用基本不等式的性质有144x x +≥=,最后验证取等的情况即可. 【详解】 解: 因为0x >,所以144x x +≥=, 当且仅当14x x =,即12x =时等号成立. 故14x x+的最小值为4. 故选:C 【点睛】本题考查基本不等式求和的最小值,是基础题.解决此类题型一定要注意”一定二正三相等”.6.在空间中,设m ,n 为两条不同直线, α,β为两个不同平面,则下列命题正确的是A .若//m α且//αβ,则//m βB .若αβ⊥,m α⊂,n β⊂,则m n ⊥C .若m α⊥且//αβ,则m β⊥D .若m 不垂直于α,且n ⊂α,则m 必不垂直于n 【答案】C 【解析】【详解】解:由m ,n 为两条不同直线,α,β为两个不同平面,知: 在A 中,若m ∥α且α∥β,则m ∥β或m ⊂β,故A 错误;在B 中,若α⊥β,m ⊂α,n ⊂β,则m 与n 相交、平行或异面,故B 错误; 在C 中,若m ⊥α且α∥β,则由线面垂直的判定定理得m ⊥β,故C 正确; 在D 中,若m 不垂直于α,且n ⊂α,则m 有可能垂直于n ,故D 错误. 故选:C .7.某袋中有9个除颜色外其他都相同的球,其中有5个红球,4个白球,现从中任意取出1个,则取出的球恰好是白球的概率为( ) A .15B .14C .49D .59【答案】C【解析】样本点总数为9,取出的球恰好是白球含4个样本点,计算得到答案. 【详解】从9个球中任意取出1个,样本点总数为9,取出的球恰好是白球含4个样本点,故所求概率为4 9 ,故选:C.【点睛】本题考查了古典概率的计算,属于简单题.8.已知一个算法,其流程图如图所示,则输出结果是()A.7 B.10 C.13 D.16【答案】B【解析】根据程序框图的计算功能,可得x的取值依次构成一个等差数列,结合等差数列的通项公式,即可求解.【详解】由题意,根据程序框图的计算功能,可得x的取值依次构成一个等差数列,且满足首项为1,公差为3,写出这个教列1,4,7,10,…,故输出结果为10.故选B.【点睛】本题主要考查了程序框图的计算与输出,其中解答中根据给定的程序框图,得到该程序框图的计算功能是解答的关键,着重考查了计算能力.9.设x,y满足约束条件则的最大值与最小值的比值为()A.B.C.D.【答案】A【解析】作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案。
湖南省五市十校2019年上学期高二年级期末考试试题文科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合{}{}1,2,3,41,3,5M N ==,,P M N =I ,则P 的子集共有( ) A. 3个 B. 4个C. 5个D. 6个【答案】B 【解析】 【分析】先求出{}1,3P M N =⋂=,由此能求出P 的子集的个数. 【详解】解:Q 集合{}{}1,2,3,41,3,5M N ==,,{}1,3P M N ∴=⋂=P ∴的子集共有224=.故选:B .【点睛】本题考查交集的求法,考查集合的子集个数的求法,是基础题.2.已知复数z 满足(1)4z i i +=,则复数z 的实部为( ) A. 2 B. -2C. 4D. 8【答案】A 【解析】 【分析】把已知等式变形,再由复数代数形式的乘除运算化简根据实部定义得答案. 【详解】解:(1)4z i i +=Q44(1)44221(1)(1)2i i i i z i i i i -+∴====++-+ 则z 的实部为2. 故选:A .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.若0.2232,log 3,log a b c ππ===,则( )A. c a b >>B. b a c >>C. a b c >>D.b c a >>【答案】C 【解析】 【分析】根据指数,对数函数的图像及运算性质可以得解. 【详解】解: 根据指数对数的图像可知 0.22321,0log 31,log 0a b c ππ=><=<=<所以a b c >> 故选:C .【点睛】本题考查利用指数,对数函数的图像及运算性质比较大小,属于基础题.4.(2017新课标全国I 理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A. 1 B. 2 C. 4 D. 8【答案】C 【解析】 设公差为d,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C. 点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.某产品的广告费用x 与销售额y 的统计数据如下表:广告费用(万元) 4 2 3 5 销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 A. 63.6万元 B. 65.5万元C. 67.7万元D. 72.0万元【答案】B 【解析】【详解】试题分析:4235492639543.5,4244x y ++++++====Q ,∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆybx a =+中的ˆb 为9.4, ∴42=9.4×3.5+a ,∴ˆa=9.1, ∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5 考点:线性回归方程6.若双曲线22221(0,0)x y a b a b-=>>的一个焦点F 3a 则双曲线的离心率为( ) 2 3C. 25【答案】C 【解析】 【分析】由题意利用点到直线的距离公式,建立方程,即可求得双曲线的离心率. 【详解】解:双曲线的一个焦点为(c,0)F ,一条渐近线方程为0bx ay -=,所以焦点到渐近线的方程为223bca b a=+,整理得223b a =,即223b a = 所以221132b e a=+=+= 故选:C .【点睛】本题考查双曲线的几何性质,考查点到直线距离公式,属于基础题.7.已知(0,)θπ∈且满足cos2cos θθ=,则tan θ=( )A. 3-B. 33-C. 3D.33【答案】A 【解析】 【分析】根据cos2θ的二倍角公式将原式进行整理可求cos θ值,再根据θ的范围即可求出tan θ. 【详解】解:cos2cos θθ=Q22cos 1cos θθ∴-=22cos cos 10θθ∴--=即()()2cos 1cos 10θθ+-=cos 1θ∴=或12-(0,)Q θπ∈23πθ∴=故tan θ=3- 故选:A .【点睛】本题考查二倍角公式的应用,属于基础题.8.函数()2()2(xf x x tx e t =-为常数且0t >)的图象大致为( )A. B. C. D.【答案】B 【解析】 【分析】判断函数的零点以及零点个数,求函数的导数,研究函数的单调性,利用排除法进行求解. 【详解】解:由()0f x =得220x tx -=,得0x =或2tx =,即函数()f x 有两个零点,排除A ,C ,函数的导数22()(4)(2)[2(4)]xxxf x x t e x tx e x t x t e '=-+-=+--,方程22(4)0x t x t +--=中()2248160t t t =-+=+>V 故()0f x '=有两个不等根,即()f x 有两个极值点,排除D , 故选:B .【点睛】本题主要考查函数图象的识别和判断,利用函数零点,极值点个数和单调性,结合排除法是解决本题的关键,属于基础题.9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为( )(参考数据:sin15°=0.2588,sin7.5°=0.1305)A. 12B. 24C. 48D. 96【答案】B 【解析】 【分析】列出循环过程中S 与n 的数值,满足判断框的条件,即可结束循环,得到答案. 【详解】模拟执行程序,可得:n=6,S=3sin60°=332, 不满足条件S ≥3.10,n=12,S=6×sin30°=3,不满足条件S ≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056, 满足条件S ≥3.10,退出循环,输出n 的值为24. 故选:B .【点睛】本题主要考查了循环框图的应用,其中解答中根据给定的程序框图,逐次循环,注意判断框的条件的应用是解答的关键,着重考查了运算与求解能力,属于基础题。
长郡中学2018-2019学年度高二第二学期期末考试数学(理科)时量:120分钟 满分:100分一、选择题(每小题3分,共45分)1.设集合A={}{}21,2,3,3410B x x mx =-+=.若A B ={1}.则m =A.1B. 12-C. 12D.一1 ★2.已知函数y =f (x 2-1)的定义域为[0.3],则函数y =f (x )的定义域为A. [2,1][1,2]--B. [1.2]C. [0.3]D.[一1.8] 3.在平面直角坐标系x O y 中.角α与角β均以O x 为始边.它们的终边关于y 轴对称.若角α是第三象限角,且1sin 3α=-,则cos β=A.3 B. 3- C. 13 D. 13- 4.已知命题“x R ∀∈,使得212(1)02x a x +-+>”是真命题,则实数a 的取 值范围是A. (.1)-∞-B. (3,)-+∞C.(一1,3)D.(一3.1) 5.已知某批零件的长度误差(单位:毫米)服从正态分布N(1,32).从中随机 取一件.其长度误差落在区间(4,7)内的概率为(附:若随机变量ξ服从正态分布N 2(,)μσ,则()P μσξμσ-<<+=68.26%,(22)P μσξμσ-<<+=95.44%)A. 4. 56%B. 13.59%C. 27. 18%D. 31. 74% 6.定义在R 上的奇函数f (x )满足f (x -2)=f (x +2),且当(2,0)x ∈-时,()31xf x =-,则f (9)=A. 2-B. 2C. 23-D. 23★7.函数()tan(2)3f x x π=-的单调递增区间为A. 5[,]()212212k k k Z ππππ-+∈ B. 5[,]()1212k k k Z ππππ-+∈ C. 5(,)()212212k k k Z ππππ-+∈ D. 2(,)()63k k k Z ππππ++∈ 8.函数()cos xf x e x =在点(0,(0))f 处的切线斜率为A. 0B.一9.已知函数()sin(2)3f x x π=+,将其图象向右平移(0)ϕϕ>个单位长度后得到函数g (x )的图象,若函数g (x )为偶函数,则ϕ的最小值为 A.12π B. 512π C. 6π D. 56π 10.已知函数2(1),10()1x x f x x ⎧+-≤≤⎪=⎨<≤⎪⎩,则11()f x dx -⎰=A. 3812π-B. 44π+C. 3412π+D. 3412π-11若函数()sin(2)f x x b ϕ=++,对任意实数x 都有()()3f x f x π+=-,2()13f π=-,则实数b 的值为A. -2或0B. 0或1C. 1±D. 2±12.已知3tan()44πα+=,则2cos ()4πα-= A. 725 B. 925 C. 1625 D. 242513.设函数2()24,()ln 25x f x e x g x x x =+-=+-,若实数a ,b 分别是f (x )、g (x )的零点,则A. g (a )<0<f (b )B. f (b )<0<g (a )C.0<g (a )<f (b )D. f (b )<g (a )<0 14.已知函数1()2(0)2xf x x =-<与()2()log x a g x +=的图象上存在关于y 轴对称的点,则a 的取值范围是A. (,-∞B. (,-∞C. (-∞D. (- 15.已知函数()ln (1)22f x x a x a =+-+-,若不等式f (x )>0的解集中整数的个数为3,则a 的取值范围是A. (1ln 3,0]-B. (1ln3,2ln 2]-C. (0,1ln 2]-D. (1ln 3,1ln 2]-- 二、填空题(每小题3分。
湖南省长沙市长郡中学2018-2019学年下学期期末考试高二数学(文)试题一、选择题:本大题共15个小题,每小题3分,共45分.1.设集合{|23,}A x x x Z =-<<∈,{2,1,0,1,2,3}B =--,则集合AB 为( )A .{2,1,0,1,2}--B .{1,0,1,2}-C .{1,0,1,2,3}-D .{2,1,0,1,2,3}-- 2.若复数323aii+-是纯虚数,则实数a 等于( ) A .2 B .-2 C .-1 D .13.下列函数中,与函数3y x =的单调性和奇偶性一致的函数是( )A .y =.tan y x = C .1y x x=+D . x x y e e -=- 4.已知:命题p :若函数2()f x x x a =+-是偶函数,则0a =;命题q :(0,)m ∀∈+∞,关于x 的方程2210mx x -+=有解.在①p q ∨;②p q ∧;③()p q ⌝∧;④()()p q ⌝∨⌝中真命题的是( )A .②③B .②④ C.③④ D .①④ 5.若1cos(+)=43πα,(0,)2πα∈,则sin α的值为( )A .46 B .46+ C.718D .3 6.已知数列{}n a 是等差数列,满足1252a a S +=,下列结论中错误的是( ) A .90S = B .5S 最小 C.36S S = D .50a =7.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得45BDC ∠=︒,则塔AB 的高是(单位:m )( )A ...108.函数sin ()ln(2)xf x x =+的图象可能是( )A .B .C. D .9.设数列{}n a 是首项为1,公比为q (1q ≠-)的等比数列,若11n n a a +⎧⎫⎨⎬+⎩⎭是等差数列,则233420152016111111a a a a a a ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .4026 B .4028 C.4030 D .403210.将函数()f x 的图象向左平移ϕ个单位,再将所得函数图象上所有点的纵坐标不变,横坐标伸长到原来的2倍,得到函数()sin g x x =的图象,若函数()f x 在,42ππ⎛⎫⎪⎝⎭上单调递增,则ϕ的值不可能为( ) A .3πB .25π C.58π D .54π11.已知函数2()(21)xf x ae x a x =--+,若函数()f x 在区间(0,ln 2)上有最值,则实数a 的取值范围是( )A .(,1)-∞-B .(1,0)- C. (2,1)-- D .(,0)(0,1)-∞12.如图,四边形ABCD 是边长为2的菱形,60BAD ∠=︒,E 、F 分别为BC 、CD 的中点,则AE EF ⋅=( )A .12 B .32- C.32 D .12- 13.已知函数2()6sin cos 8cos 3f x x x x ωωω=-+(0ω>),()1y f x =+的部分图象如图所示,且0()4f x =,则0(1)f x +=( )A .6B .4C .-4D .-614.已知n S 为数列{}n a 的前n 项和,11a =,2(1)n n S n a =+,若关于正整数n 的不等式222n n a ta t -≤的解集中的整数解有两个,则正实数t 的取值范围为( ) A .3[1,)2B .3(1,)2C .1,12⎡⎤⎢⎥⎣⎦D .1(,1]1215.已知函数,0(),0x e x f x ax x ⎧≥=⎨<⎩,若方程()()f x f x -=有五个不同的根,则实数a 的取值范围为( )A . (1,)+∞B .(,)e +∞C .(,)e -∞-D .(,1)-∞-二、填空题:本大题共5小题,每题3分,共15分.= .17.若复数z x yi =+(x ,y ∈R )满足(1)3z i i +=-,则x y +的值为 .18.设()f x 是定义在R 上的周期为3的函数,当[2,1)x ∈-时,242,20,(),01,x x f x x x ⎧--≤≤=⎨<<⎩则21(())4f f = . 19.下列命题中:(1)23k παπ=+(k Z ∈)是tan α=的充分不必要条件;(2)函数()2cos 1f x x =-的最小正周期是π;(3)ABC ∆中,若cos cos sin sin A B A B >,则ABC ∆为钝角三角线; (4)若0a b +=,则函数sin cos y a x b x =-的图象的一条对称轴方程为4x π=;其中是真命题的为(填命题序号) .20.若a 、b 是函数2()f x x px q =-+(0p >,0q >)的两个不同的零点,且a 、b 、-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于 .三、解答题 :本大题共5小题,每小题8分,共40分,要求写出必要的文字说明、证明过程或演算步骤. 21. 已知点(1,2)A -和向量(2,3)a =(1)若向量AB 与向量a 同向,且AB =B 的坐标; (2)若向量a 与向量(3,)b k =-的夹角是钝角,求实数k 的取值范围. 22. 在等比数列{}n a 中,11a =,且2a 是1a 与31a -的等差中项. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足(1)1(1)n n n n a b n n ++=+(*n N ∈),求数列{}n b 的前n 项和n S .23. 在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222c o s c o s s i ns i n B C A A B -=-.(1)求角C ;(2)若6A π∠=,ABC ∆的面积为AB 的中点,求CM 的长.24.已知函数21()(1)ln 2f x x ax a x =-+-,1a >. (1)讨论函数()f x 的单调性;(2)证明:若5a <,则对任意1x ,()20,x ∈+∞,12x x ≠,有1212()()1f x f x x x ->--.25.已知函数()(1)xf x bx e a =-+(a ,b ∈R ).(1)如果曲线()y f x =在点(0,(0))f 处的切线方程为y x =,求a 、b 的值;(2)若1a <,2b =,关于x 的不等式()f x ax <的整数解有且只有一个,求a 的取值范围.湖南省长沙市长郡中学2018-2019学年下学期期末考试高二数学(文)试题答案一、选择题1-5:BADDA 6-10:BBABC 11-15:ADDAC 二、填空题16.14 17.-5 18.1419.(1)(3)(4) 20.9 三、解答题21.(1)设(,)B x y ,则(1,2)AB x y =-+, 若向量AB 与向量a 同向,则有3(1)2(2)x y -=+,若向量213AB =22(1)(2)52x y -++=,解可得54x y =⎧⎨=⎩,或38x y =-⎧⎨=-⎩,当38x y =-⎧⎨=-⎩时,(4,6)AB =--,与向量a 反向,不合题意,舍去; 当54x y =⎧⎨=⎩时,(4,6)AB =,与向量a 同向,则B 的坐标为(5,4);(2)若向量a 与向量(3,)b k =-的夹角是钝角, 则有630a b k ⋅=-+<且290k +≠,解可得2k <且92k ≠-, 故k 的取值范围是99(,)(,2)22-∞--.22.(1)设等比数列{}n a 的公比为q ,且2a 是1a 与31a -的等差中项,即有13212a a a +-=,即为2112q q +-=,解得2q =,即有1112n n n a a q --==;(2)11(1)1112(1)(1)1n n n n n n a b a n n n n n n -++⎛⎫==+=+- ⎪+++⎝⎭,数列{}n b 的前n 项和21111111211(1222)(1)1222311211n n n n S n n n n --=+++++-+-++=+-=-+-++.23.(1)由222cos cos sin sin B C A A B -=,得222sin sin sin sin C B A A B -=.由正弦定理,得222c b a -=-,即222c a b =+.又由余弦定理,得222cos 222a b c C ab ab +-===.因为0C π<∠<,所以6C π∠=.(2)因为6A C π∠=∠=,所以ABC ∆为等腰三角形,且顶角23B π∠=.故221sin 2ABC S a B ∆===4a =. 在MBC ∆中,由余弦定理,得22212cos 416224282CM MB BC MB BC B =+-⋅=++⨯⨯⨯=.解得CM =.24.(1)()f x 的定义域为(0,)+∞.211(1)(1)'()a x ax a x x a f x x a x x x--+--+-=-+==.(i )若11a -=即2a =,则2(1)'()x f x x-=,故()f x 在(0,)+∞上单调递增.(ii )若11a -<,而1a >,故12a <<,则当(1,1)x a ∈-时,'()0f x <; 当(0,1)x a ∈-及(1,)x ∈+∞时,'()0f x >,故()f x 在(1,1)a -单调递减,在(0,1)a -,(1,)+∞单调递增.(iii )若11a ->即2a >,同理可得()f x 在(1,1)a -单调递减,在(0,1),(1,)a -+∞单调递增. (2)考虑函数21()()(1)ln 2g x f x x x ax a x x =+=-+-+,则21'()(1)(1)11)a g x x a a x -=--+≥-=- 由于15a <<,故'()0g x >,即()g x 在(4,)+∞单调增加,从而当120x x >>时有12()()0g x g x ->,即1212()()0f x f x x x -+->,故1212()()1f x f x x x ->--,当120x x <<时,有12211221()()()()1f x f x f x f x x x x x --=>---.25.(1)函数()f x 的定义域为R ,'()(1)(1)x x x f x be bx e bx b e =+-=+-.因为曲线()y f x =在点(0,(0))f 处的切线方程为y x =,所以(0)0,'(0)1,f f =⎧⎨=⎩得10,10,a b -=⎧⎨-=⎩解得1,2.a b =⎧⎨=⎩(2)当2b =时,()(21)xf x x e a =-+(1a <), 关于x 的不等式()f x ax <的整数解有且只有一个,等价于关于x 的不等式(21)0xx e a ax -+-<的整数解有且只有一个.构造函数()(21)x F x x e a ax =-+-,x R ∈,所以'()(21)xF x e x a =+-.①当0x ≥时,因为1xe ≥,211x +≥,所以(21)1xe x +≥,又1a <,所以'()0F x >,所以()F x 在(0,)+∞上单调递增.因为(0)10F a =-+<,(1)0F e =>,所以在[0,)+∞上存在唯一的整数00x =使得0()0F x <,即00()f x ax <.②当0x <时,为满足题意,函数()F x 在(,0)-∞内不存在整数使()0F x <,即()F x 在(,1]-∞-上不存在整数使()0F x <.因为1x ≤-,所以(21)0xe x +<.当01a ≤<时,函数'()0F x <,所以()F x 在(,1)-∞-内为单调递减函数,所以(1)0F -≥,即312a e≤<; 当0a <时,3(1)20F a e-=-+<,不符合题意. 综上所述,a 的取值范围为3[,1)2e.另:也可以用数形结合的方法,酌情给分。