子空间的直和
- 格式:ppt
- 大小:1.85 MB
- 文档页数:14
子空间的直和的充要条件一、引言在线性代数中,子空间是向量空间的一个重要概念。
直和则是子空间的一个重要性质。
本文将介绍子空间的直和以及充要条件。
二、子空间2.1 定义向量空间V中的非空子集U称为V的子空间,如果U对于向量加法和数乘运算也构成一个向量空间。
2.2 子空间的性质•零向量属于任意子空间•对于任意u,v属于U,u+v也属于U•对于任意k,u属于U,ku也属于U三、直和3.1 定义设V是线性空间,W1和W2是V的两个子空间。
如果满足以下两个条件,则称W1与W2的直和为V:•V = W1 + W2:即任意v属于V都可以表示为v = w1 + w2,其中w1属于W1,w2属于W2。
•W1 ∩ W2 = {0}:即W1与W2只有零向量交集。
3.2 直和的几何理解直和可以理解为两个子空间在几何上没有交集,并且它们的所有组合可以覆盖整个向量空间V。
四、充要条件子空间的直和有以下充要条件:4.1 直和的充要条件一设W1和W2是向量空间V的两个子空间,则V是它们的直和当且仅当对于任意v属于V,存在唯一的v1属于W1和v2属于W2,使得v = v1 + v2。
4.2 直和的充要条件二设W1和W2是向量空间V的两个子空间,则V是它们的直和当且仅当维数公式成立:dim(V) = dim(W1) + dim(W2)。
4.3 证明充分性证明:如果存在唯一的v1属于W1和v2属于W2,使得v = v1 + v2,那么对于任意v属于V,都可以表示为v = v1 + v2。
这说明V = W1 + W2。
另外,假设存在一个非零向量w同时属于W1与W2,则w既属于W1又属于W2,那么存在唯一的w’属于W1和w’‘属于W2,使得w = w’ + w’’。
由此可知w也可以表示为其他两个不同向量之和,与唯一性矛盾。
因此,W1与W2的交集只有零向量。
必要性证明:如果V是两个子空间W1和W2的直和,那么对于任意v属于V,都可以表示为v = w1 + w2,其中w1属于W1,w2属于W2。
子空间直和的判定与证明一、直和的定义:设V1,V2是线性空间V的子空间,如果和V1+V2中每个向量α的分解式α=α1+α2,α1V1,α2V2,是惟一的,这个和就称为直和,记为V1⊕V2.二、判定定理:1.定理:和V1+V2是直和的充分必要条件是等式α1+α2=0,αiVi (i=1,2)只有在αi全为零向量时才成立.证明:要证明零向量的分解式是唯一的即可。
必要性:显然成立;充分性:设αV1+V2,它有两个分解式α=α1+α2=β1+β2,αi,βiVi (i=1,2)于是(α1-β1)+(α2-β2)=0.其中αi-βiVi (i=1,2).由定理的条件,应有α1-β1=0,αi=βi (i=1,2).这就是说,向量α的分解式是唯一的。
2.定理:和V1+V2为直和的充分必要条件是V1∩V2={0}.证明:充分性:假设α1+α2=0,αiVi (i=1,2)那么α1=-α2 V1∩V2.由假设α1=α2=0.这就是证明了V1+V2是直和。
必要性:任取向量αV1∩V2,于是零向量可以表成0=α+(-α),αV1,—αV2.因为是直和,所以α=-α=0,这就证明了V1∩V2={0}.3.定理:设V1,V2是线性空间V的子空间,令W= V1+V2,则W= V1⊕V2的充分必要条件是维(W)=维(V1)+维(V2).证明:充分性:维(W)=维(V1)+维(V2),由维数公式知,维(V1∩V2)=0,则V1∩V2={0},由定理2得,V1+V2是直和。
必要性:因为维(W)+维(V1∩V2)=维(V1)+维(V2),由定理2得,V1+V2是直和的充分必要条件是V1∩V2={0},这与维(V1∩V2)=0等价,则维(W)=维(V1)+维(V2).4.定理:设U是线性空间V的一个子空间,那么一定存在一个子空间W,使V=U⊕W.证明:取U得一组基α1,……,αm,把它扩充为V的一组基α1,……,αm,αm+1,……,αn,令W=L(αm+1,……,αn).W即满足条件。
第六章 线性空间学习单元7: 子空间的直和_________________________________________________________● 导学学习目标:了解子空间的直和的概念;理解子空间的直和的判别;掌握证明线性空间V 是两个子空间的直和的证明方法。
学习建议:本学习单元的理论比较抽象,建议大家认真看书,深刻理解概念及定理的条件与结论,通过例题掌握证明方法。
重点难点:重点:深刻理解子空间的直和的概念与判别法。
难点:线性空间分解成两个子空间的直和的证明。
_________________________________________________________● 学习内容一、直和的概念观察两个子空间的和的特点例 212,{(,,0)|,},{(0,,)|,}V P V a b a b P V x y x y P ==∈=∈,则12V V V +=,但V 中向量表为1V 与2V 中向量的和时表法不唯一,如(1,7,4)(1,2,0)(0,5,4)(1,3,0)(0,4,4)=+=+ 又12{(,,0)|,},{(0,0,)|}V a b a b P V x x P =∈=∈。
则12V V V +=,而V 中向量表为1V 与2V 中向量的和时表法唯一。
定义 V 为P 上线性空间,12,V V V ≤,如果12V V +中向量表为1V 与2V 中向量的和时,表法唯一,即由1212111222,,,,V V αααββαβαβ=+=+∈∈可推出1122,αβαβ==,则称这个和为直和,记为12V V ⊕。
二、直和的判别定理 设12,V V 为数域P 上线性空间V 的两个子空间,则下列几条等价。
(1)1212V V V V +=⊕;(2)12V V +中零向量表法唯一;(3)12{0}V V =I ;(4)1212dim()dim dim V V V V +=+。
推广定理 设1,,s V V V ≤L ,则下列几条等价。
子空间的直和与因子空间子空间是线性代数中的重要概念,它在研究向量空间时起着关键的作用。
子空间的直和和因子空间是子空间的重要衍生概念,它们在向量空间的分割和表示上发挥着重要的作用。
一、子空间的直和子空间的直和是指由两个或多个子空间组成的全新子空间。
设V是向量空间,W1和W2是V的两个子空间。
如果V中的任意一个向量既可以表示为W1中的一个向量和W2中的一个向量之和,又可以唯一地这样表示,那么我们就称V是W1和W2的直和,记作V=W1⊕W2。
例如,若V=R3,W1是R3中所有满足x1+x2+x3=0的向量构成的子空间,W2是R3中所有满足2x1-3x2+x3=0的向量构成的子空间。
则V是W1和W2的直和。
直和的概念可以推广到多个子空间的情况。
设V是向量空间,W1、W2、...、Wn是V的n个子空间。
如果V中的任意一个向量既可以表示为W1、W2、...、Wn中的向量之和,又可以唯一地这样表示,那么我们就称V是W1、W2、...、Wn的直和,记作V=W1⊕W2⊕...⊕Wn。
子空间的直和具有以下性质:1. 若V=W1⊕W2,则V中的任意一个向量都可以唯一地表示为W1中的一个向量和W2中的一个向量之和。
2. 若V=W1⊕W2⊕...⊕Wn,则V中的任意一个向量都可以唯一地表示为W1、W2、...、Wn中的向量之和。
二、因子空间因子空间(也称为商空间)是指用一个向量空间V的子空间W对V进行分割而得到的新的向量空间。
设V是向量空间,W是V的子空间,我们记为V/W。
在V/W中,等价类[x]代表了所有形如x+w的向量的集合,其中x属于V,w属于W。
换言之,[x]是由W平移x得到的平行于W的子空间。
因子空间的概念可以理解为对子空间的一种降维运算。
通过因子空间,我们可以将原始向量空间V映射到一个低维的向量空间,而这个低维空间的维度就是原始向量空间V中子空间W的维度。
因子空间在理论研究和实际计算中都有广泛的应用和意义。
三、子空间的直和与因子空间的关系子空间的直和与因子空间之间存在着密切的关系。
子空间的直和与直和分解在线性代数中,我们学习了向量空间的概念和性质。
而向量空间可以由子空间构成,子空间是向量空间中的一个非空集合,满足加法和标量乘法封闭性的子集。
本文将探讨子空间之间的直和和直和分解。
一、子空间的直和在向量空间V中,如果存在子空间U和W,满足两个条件:1.U∩W={0};2. V是U和W的和集,即任意向量v∈V可以表示为u+w 的形式,其中u∈U,w∈W;那么我们称子空间U和W的直和为子空间V的直和。
直和的概念可以类比于数字的加法。
例如,我们将数字3表示为1+2,其中1和2是3的因子。
同样地,如果向量v可以表示为u+w,其中u和w是v的因子,那么我们可以将向量v看作是子空间U和W 的直和。
二、子空间的直和分解在向量空间V中,如果存在子空间U和W,满足两个条件:1.U∩W={0};2. 任意向量v∈V,都可以唯一地表示为u+w的形式,其中u∈U,w∈W;那么我们称v关于子空间U和W的直和分解。
直和分解是一种将向量分解为两个子空间的方法。
这种分解在很多算法和数学问题中都有广泛的应用。
例如,对于矩阵的特征值分解和奇异值分解等问题,都可以采用直和分解的方式来求解。
三、子空间的例子与应用1. 平面的直和分解:考虑平面上的向量空间R^2,其中存在两个子空间U和W,分别表示x轴和y轴上的向量。
显然,两个子空间的交集为零向量{0},任意向量v可以唯一地表示为x轴和y轴上的分量之和。
因此,平面的直和分解是R^2的一种典型示例。
2. 空间的直和分解:类似地,在三维空间R^3中,我们可以将空间分为三个子空间:XY平面、YZ平面和ZX平面。
这三个平面两两相交于一条直线,即它们的交集为零向量{0}。
因此,任意向量v可以唯一地表示为这三个平面上的分量之和。
子空间的直和和直和分解在线性代数的理论和实践中具有重要作用。
它们不仅可以帮助我们理解向量空间的性质和结构,还可以应用于各种数学和工程问题中,例如线性方程组的求解、矩阵分解和数据压缩等。
子空间直和的判定与证明子空间的直和是指两个或多个子空间的并等于它们的直和。
在线性代数中,我们经常需要判断两个子空间的直和关系,并且需要给出证明。
下面将详细介绍子空间直和的判定和证明方法。
首先,我们先回顾子空间的定义。
设V是一个线性空间,U和W是V 的两个非空子集。
如果U和W都是V的子空间,并且U和W的和空间等于V,即U+W=V,则称U和W是V的一个直和,记作V=U⊕W。
接下来我们来讨论子空间直和的判定方法。
设V是一个线性空间,U 和W是V的两个子空间。
要判断U和W是否是V的直和,我们需要验证以下三个条件:1.U+W=V:也就是说,对于V中的任意一个向量v,都可以表示为v=u+w的形式,其中u属于U,w属于W。
2.U∩W={0}:也就是说,U和W的交集只包含零向量。
3.U和W的交集只有零向量时,任意向量u+w=0的表示方式唯一、也就是说,如果u1+w1=u2+w2,其中u1和u2属于U,w1和w2属于W,则u1=u2,w1=w2当满足上述三个条件时,我们可以得出结论,U和W是V的直和。
接下来我们来看一个具体的例子,并给出证明。
例子:设V=R^3,U和W是V的两个子空间,其中U={(x,y,z),x+y+z=0}W={(x,y,z),x=y=z}我们需要判断U和W是否是V的直和。
首先,我们验证条件1:对于V中的任意一个向量(x,y,z),是否都可以表示为v=u+w的形式,其中u属于U,w属于W。
可以取一个任意向量(x,y,z),我们需要找到u和w,使得x=u+w满足。
观察U的定义可以得到,当x+y+z=0时,向量(x,y,z)属于U。
同理,当x=y=z时,向量(x,y,z)属于W。
当我们取u=(x,y,z)和w=(0,0,0)时,显然u属于U,w属于W,并且u+w=(x,y,z)。
所以,条件1满足,即U+W=V。
其次,我们验证条件2:是否有U∩W={0}。
显然,U和W的交集就是满足x+y+z=0且x=y=z的向量。
子空间直和的判定与证明一、直和的定义:设V1,V2是线性空间V的子空间,如果和V1+V2中每个向量α的分解式α=α1+α2,α1∊V1,α2∊V2,是惟一的,这个和就称为直和,记为V1⊕V2.二、判定定理:1.定理:和V1+V2是直和的充分必要条件是等式α1+α2=0,αi∊Vi (i=1,2)只有在αi全为零向量时才成立.证明:要证明零向量的分解式是唯一的即可。
必要性:显然成立;充分性:设α∊V1+V2,它有两个分解式α=α1+α2=β1+β2,αi,βi∊Vi (i=1,2)于是(α1-β1)+(α2-β2)=0.其中αi-βi∊Vi (i=1,2).由定理的条件,应有α1-β1=0,αi=βi (i=1,2).这就是说,向量α的分解式是唯一的。
2.定理:和V1+V2为直和的充分必要条件是 V1∩V2={0}.证明:充分性:假设α1+α2=0,αi∊Vi (i=1,2)那么α1=-α2∊ V1∩V2.由假设α1=α2=0.这就是证明了V1+V2是直和。
必要性:任取向量α∊V1∩V2,于是零向量可以表成0=α+(-α),α∊V1,—α∊V2.因为是直和,所以α=-α=0,这就证明了V1∩V2={0}.3.定理:设V1,V2是线性空间V的子空间,令W= V1+V2,则W= V1⊕V2的充分必要条件是维(W)=维(V1)+维(V2).证明:充分性:维(W)=维(V1)+维(V2),由维数公式知,维(V1∩V2)=0,则 V1∩V2={0},由定理2得,V1+V2是直和。
必要性:因为维(W)+维(V1∩V2)=维(V1)+维(V2),由定理2得,V1+V2是直和的充分必要条件是V1∩V2={0},这与维(V1∩V2)=0等价,则维(W)=维(V1)+维(V2).4.定理:设U是线性空间V的一个子空间,那么一定存在一个子空间W,使V=U⊕W.证明:取U得一组基α1,……,αm,把它扩充为V的一组基α1,……,αm,αm+1,……,αn,令W=L(αm+1,……,αn).W即满足条件。
直和与直和分解的概念与运算直和(Direct Sum)是线性代数中的重要概念,用于描述向量空间的直接组合。
直和分解是将一个向量空间分解为两个或多个子空间的直接组合。
本文将详细介绍直和及直和分解的概念与运算。
一、直和的概念在线性代数中,直和是指将两个或多个向量空间的直接组合形成一个新的向量空间。
设V和W是两个向量空间,它们的直和记作V ⊕W。
直和满足以下几个条件:1. V ⊕ W中的每个向量都可以唯一地表示为v + w,其中v ∈ V,w ∈ W。
2. 当且仅当v = 0且w = 0时,v + w = 0。
直和的概念可以扩展到更多的向量空间。
例如,对于三个向量空间V、W和U,它们的直和可以表示为V ⊕ W ⊕ U。
直和的概念在向量空间的研究中有着广泛的应用,特别是在表示论和模论中。
二、直和分解的概念直和分解是将一个向量空间分解为两个或多个子空间的直接组合。
设V是一个向量空间,若存在子空间U和W,使得V = U ⊕ W,那么称V具有直和分解。
直和分解可以看作是将向量空间V拆分为两个互补的子空间U和W。
对于直和分解V = U ⊕ W,有以下几个关键特性:1. V中的每个向量v都可以唯一地写成u + w的形式,其中u ∈U,w ∈ W。
2. U和W的交集只包含零向量,即U ∩ W = {0}。
3. 对于任意u ∈ U和w ∈ W,有u + w = 0,则u = w = 0。
直和分解的概念也可以扩展到更多的子空间的情况,例如V = U1⊕ U2 ⊕ U3,其中U1、U2和U3是V的三个互补子空间。
三、直和的运算直和具有很好的运算性质,可以通过直和运算将两个向量空间进行组合。
设V和W是两个向量空间,它们的直和记作V ⊕ W。
直和运算满足以下几个性质:1. 交换律:V ⊕ W = W ⊕ V,即直和的顺序可以交换。
2. 结合律:(V ⊕ W) ⊕ U = V ⊕ (W ⊕ U),即直和的结合顺序不影响结果。
3. 同一性:V ⊕ {0} = V,即向量空间与零向量的直和仍为原向量空间。