167;5子空间的交与和直和
- 格式:ppt
- 大小:1.20 MB
- 文档页数:58
5.5 子空间的和与直和授课题目:子空间的和与直和.教学目标:1.理解并掌握子空间的概念.2.掌握子空间的判别方法,熟悉几种常见的子空间. 3.掌握子空间的交与和的概念.授课时数:3学时教学重点:子空间的判别. 教学难点:子空间的交与和. 教学过程: 一 子空间的的和回忆:令W 是数域F 上向量空间V 的一个非空子集.如果W 对于V 的加法以及标量与向量的乘法来说是封闭的,那么就称W 是V 的一个子空间. 一个向量空间V 本身和零空间叫做V 的平凡子空间。
V 的非平凡子空间叫做V 的真子空间。
1. 定义:设12,W W V ⊆,则称V 的子集{}121122/,W W αααα+∈∈ 为1212w w W W +与的和,记为即12W W +={}121122/,W W αααα+∈∈定理5.5.1:若12,W W 均为V 的两个子空间,则12W W +仍然是子空间.证明:12,W W θθθθθ∈∈∴=+∈ 12W W +故12W W +≠φ对121212,,,,a b F W W αβαααβββ∀∈∉+=+=+有,111222,,,W W αβαβ∈∈ 12W W +均为v 子空间.∴111222,a b W a b W αβαβ+∈+∈于是()()()()1212112212a b a b a b a b W W αβααββαβαβ+=+++=+++∈+∴12W W +是V 的子空间。
推广:12,,,n W W W V n 为的个子空间,则{}12121122/,,,n n n n W W W W W W αααααα+++=+++∈∈∈仍然是V 的子空间.补充:若W =L ()ααα,,, ,(),,,W L βββ=证明:∈γ12W W +,有βαγ+=,12,W W αβ∈∈ 设r r k k k αααα+++= 2211t t l l l ββββ+++= 2211∴ =+=βαγr r k k k ααα+++ 2211+βββt l l l +++ 2211 ∴12W W +=L ()t r βββααα,,,,,,,2121定理5.5.2 维数定理。
线性代数中的子空间与直和在线性代数中,子空间是指由向量空间中的一部分向量所组成的空间。
子空间在线性代数中起着重要的作用,它们可以帮助我们理解向量空间的结构以及解决许多实际问题。
本文将介绍子空间的概念、性质以及与之相关的直和运算。
一、子空间的定义与性质子空间是指一个向量空间中的一个非空子集合,且满足以下三个条件:(1)零向量属于该子集合;(2)对于该子集合中的任意两个向量,它们的线性组合仍然属于该子集合;(3)该子集合对于向量的加法和标量的乘法封闭。
简而言之,子空间就是一个满足向量空间的定义的向量集合。
对于子空间,有一些重要的性质需要注意。
首先,子空间的交集仍然是一个子空间,即两个子空间的交集是一个子空间。
其次,子空间的和也是一个子空间,即两个子空间的和是一个子空间。
最后,子空间的维数不超过父空间的维数,即子空间的维数小于等于父空间的维数。
二、直和的定义与性质在了解了子空间的基本概念后,我们可以介绍直和的概念。
直和是指将多个子空间进行合并得到的新的子空间。
具体来说,给定两个子空间U和V,它们的直和表示为U⊕V,定义为所有可以写成u+v的形式的向量的集合,其中u属于U,v属于V。
直和有一些重要的性质。
首先,直和的维数等于所有子空间维数的和,即dim(U⊕V) = dim(U) + dim(V)。
其次,子空间U和V的直和U⊕V是直和的充要条件是U和V的交集只包含零向量。
三、子空间与直和的应用子空间与直和的概念在线性代数中具有广泛的应用。
在实际问题中,我们经常需要将一个向量空间分解成几个子空间的直和,以便更好地理解向量空间的结构。
例如,在图像处理中,我们可以将一幅图像分解为由亮度和色彩组成的子空间的直和。
通过对每个子空间独立地处理,我们可以对图像进行降噪、增强等操作,从而得到更好的视觉效果。
此外,子空间与直和也在最小二乘法等问题的求解中起着重要作用。
通过将问题的解空间分解为多个子空间的直和,我们可以更方便地求解问题的最优解。
线性代数
子空间的交、和与直和
张祥朝
复旦大学光科学与工程系
2013-5-9
两个线性子空间的交是线性子空间,但两个线性子空间
10:34则集合
也是一个线性子空间,
proof
性子空间的和的定义很容易看出:(3) 多个子空间的和:
10:34
以上4 个线性子空间都是2 维的10:34
引理2.3:线性子空间中的线性无关的向量组可以被扩充成该子空间的一组基。
proof proof
10:34
主元所在的列对应的向量组就是一个极大线性无关组10:34
基础解系:
10:34
下面介绍子空间的和的一种重要的特殊情形----直和.必要性是显然的, 下证充分性.
10:34
10:34
10:34
证明:
所以W 是线性子空间。
10:34
证明:由定义, 有10:34
引理2.3:线性子空间中的线性无关的向量组可以
这个向量组不是W的基, 则用同样的方法扩
性无关的向量组, 直到不能扩充为止.
10:34
证明:
10:34注意到
只要证明线性无关
设
有
10:34所以
即
有
back
明:由维数公式可以得到(2)与(3)的等价性。
证明(1)与(2)的等价性。
10:34
back
由于基的扩充是不唯一的,所以当W是不平凡子空间时,
它的补子空间是不唯一的。
10:34
证明:
10:34
=0所以
其中则有
于是
={0}所以
10:34。
子空间的直和与直和分解在线性代数中,我们学习了向量空间的概念和性质。
而向量空间可以由子空间构成,子空间是向量空间中的一个非空集合,满足加法和标量乘法封闭性的子集。
本文将探讨子空间之间的直和和直和分解。
一、子空间的直和在向量空间V中,如果存在子空间U和W,满足两个条件:1.U∩W={0};2. V是U和W的和集,即任意向量v∈V可以表示为u+w 的形式,其中u∈U,w∈W;那么我们称子空间U和W的直和为子空间V的直和。
直和的概念可以类比于数字的加法。
例如,我们将数字3表示为1+2,其中1和2是3的因子。
同样地,如果向量v可以表示为u+w,其中u和w是v的因子,那么我们可以将向量v看作是子空间U和W 的直和。
二、子空间的直和分解在向量空间V中,如果存在子空间U和W,满足两个条件:1.U∩W={0};2. 任意向量v∈V,都可以唯一地表示为u+w的形式,其中u∈U,w∈W;那么我们称v关于子空间U和W的直和分解。
直和分解是一种将向量分解为两个子空间的方法。
这种分解在很多算法和数学问题中都有广泛的应用。
例如,对于矩阵的特征值分解和奇异值分解等问题,都可以采用直和分解的方式来求解。
三、子空间的例子与应用1. 平面的直和分解:考虑平面上的向量空间R^2,其中存在两个子空间U和W,分别表示x轴和y轴上的向量。
显然,两个子空间的交集为零向量{0},任意向量v可以唯一地表示为x轴和y轴上的分量之和。
因此,平面的直和分解是R^2的一种典型示例。
2. 空间的直和分解:类似地,在三维空间R^3中,我们可以将空间分为三个子空间:XY平面、YZ平面和ZX平面。
这三个平面两两相交于一条直线,即它们的交集为零向量{0}。
因此,任意向量v可以唯一地表示为这三个平面上的分量之和。
子空间的直和和直和分解在线性代数的理论和实践中具有重要作用。
它们不仅可以帮助我们理解向量空间的性质和结构,还可以应用于各种数学和工程问题中,例如线性方程组的求解、矩阵分解和数据压缩等。
子空间的交与和子空间是线性代数中的一个重要概念,它是线性空间的一个子集,同时也是一个线性空间。
首先,让我们来了解什么是子空间。
在线性代数中,一个非空子集被称为线性空间的子空间,当且仅当满足以下三个条件:(1)它包含零向量;(2)对于任意的向量v和w属于子空间,v+w也属于子空间;(3)对于任意的标量c和向量v属于子空间,c*v也属于子空间。
简单来说,子空间是原线性空间的一个部分,它继承了原线性空间的线性结构。
子空间的交集是指两个子空间的共同部分,形象地说,可以理解为两个子空间的交集就像是它们的重叠部分。
而子空间的和可以理解为将两个子空间的元素进行组合形成的一个新的子空间。
子空间的交集和子空间的和有着一些特殊的性质。
首先,两个子空间的交集仍然是一个子空间。
这是因为子空间的交集包含零向量,对任意的向量v和w,v+w属于两个子空间,所以也属于它们的交集,对任意的标量c和向量v,c*v属于两个子空间,所以也属于它们的交集。
其次,两个子空间的和也是一个子空间。
这是因为子空间的和也包含零向量(两个子空间分别包含零向量),对任意的向量v和w,v+w属于两个子空间,所以也属于它们的和,对任意的标量c和向量v,c*v属于两个子空间,所以也属于它们的和。
另外,子空间的交集和子空间的和之间存在一定的关系。
具体而言,两个子空间的交集包含于它们的和。
这是因为,对于任意的向量,如果它属于两个子空间的交集,那么它必然也属于它们的和。
但是,两个子空间的和不一定是它们的交集。
要注意的是,两个子空间的和是否等于它们的交集还需要进一步验证。
总之,子空间的交集和子空间的和在线性代数中起着重要的作用。
它们是子空间的一种组合形式,具有一定的性质和关系。
对于理解子空间的结构和性质,以及解决相关问题都具有重要的指导意义。
掌握子空间的交集和子空间的和,有助于深入理解线性代数的相关知识,并应用于实际问题的求解中。
子空间的直和的充要条件子空间的直和是线性代数中一个重要的概念。
在研究向量空间时,我们常常遇到将一个向量空间分解成若干个子空间的情况,而子空间的直和就是一种特殊的分解方式。
本文将介绍子空间的直和的充要条件。
假设V是一个向量空间,U和W是V的两个子空间。
我们称V是U和W的直和,记作V=U⊕W,如果满足以下两个条件:1. V=U+W:任意向量v∈V都可以写成v=u+w的形式,其中u∈U,w∈W。
2. U∩W={0}:U和W的交集只包含零向量。
我们来证明V=U⊕W的充分性。
假设V=U⊕W,我们需要证明满足上述两个条件。
对于第一个条件,我们可以将任意向量v∈V表示为v=u+w的形式,其中u∈U,w∈W。
由于V=U⊕W,所以v的表示是唯一的。
对于第二个条件,假设存在一个非零向量x∈U∩W。
由于x∈U,所以x也属于V。
那么我们可以找到另外两个向量u'∈U和w'∈W,使得x=u'+w'。
因为x∈W,所以w'∈W;因为x∈U,所以u'∈U。
因此,x=u'+w'既是U和W的一个表示,也是V的一个表示。
但由于v的表示是唯一的,所以u'+w'=u+w。
因此,我们可以得到u-u'=w'-w。
由于u-u'∈U,w'-w∈W,所以u-u'∈U∩W。
但由于U∩W={0},所以u-u'=0,即u=u',w=w'。
因此,x=u'+w'=u+w=0。
这与x是一个非零向量矛盾。
因此,U∩W={0}。
接下来,我们来证明V=U⊕W的必要性。
假设V=U⊕W,我们需要证明满足上述两个条件。
对于第一个条件,任意向量v∈V都可以写成v=u+w的形式,其中u∈U,w∈W。
因此,V=U+W。
对于第二个条件,假设存在一个非零向量x∈U∩W。
那么x既属于U 也属于W,所以x可以写成x=0+0的形式。
子空间直和的判定与证明一、直和的定义:设V1,V2是线性空间V的子空间,如果和V1+V2中每个向量α的分解式α=α1+α2,α1∊V1,α2∊V2,是惟一的,这个和就称为直和,记为V1⊕V2.二、判定定理:1.定理:和V1+V2是直和的充分必要条件是等式α1+α2=0,αi∊Vi (i=1,2)只有在αi全为零向量时才成立.证明:要证明零向量的分解式是唯一的即可。
必要性:显然成立;充分性:设α∊V1+V2,它有两个分解式α=α1+α2=β1+β2,αi,βi∊Vi (i=1,2)于是(α1-β1)+(α2-β2)=0.其中αi-βi∊Vi (i=1,2).由定理的条件,应有α1-β1=0,αi=βi (i=1,2).这就是说,向量α的分解式是唯一的。
2.定理:和V1+V2为直和的充分必要条件是 V1∩V2={0}.证明:充分性:假设α1+α2=0,αi∊Vi (i=1,2)那么α1=-α2∊ V1∩V2.由假设α1=α2=0.这就是证明了V1+V2是直和。
必要性:任取向量α∊V1∩V2,于是零向量可以表成0=α+(-α),α∊V1,—α∊V2.因为是直和,所以α=-α=0,这就证明了V1∩V2={0}.3.定理:设V1,V2是线性空间V的子空间,令W= V1+V2,则W= V1⊕V2的充分必要条件是维(W)=维(V1)+维(V2).证明:充分性:维(W)=维(V1)+维(V2),由维数公式知,维(V1∩V2)=0,则 V1∩V2={0},由定理2得,V1+V2是直和。
必要性:因为维(W)+维(V1∩V2)=维(V1)+维(V2),由定理2得,V1+V2是直和的充分必要条件是V1∩V2={0},这与维(V1∩V2)=0等价,则维(W)=维(V1)+维(V2).4.定理:设U是线性空间V的一个子空间,那么一定存在一个子空间W,使V=U⊕W.证明:取U得一组基α1,……,αm,把它扩充为V的一组基α1,……,αm,αm+1,……,αn,令W=L(αm+1,……,αn).W即满足条件。