7.子空间的直和
- 格式:ppt
- 大小:1.05 MB
- 文档页数:29
§7. 子空间的直和一 直和的定义引入设 为线性空间V 的两个子空间,由维数公式 有两种情形:此时 即, 必含非零向量. 此时 不含非零向量,即 情形2)是子空间的和的一种特殊情况直和一、直和的定义设 为线性空间V 的两个子空间,若和中每个向量 的分解式是唯一的,和 就称为直和,记作 注: ① 分解式 唯一的,意即 121212dim dim dim()dim()V V V V V V +=++ 12121)dim()dim dim V V V V +<+12dim()0,V V > 12V V12122)dim()dim dim V V V V +=+12dim()0,V V = 12V V {}120V V = 12,V V 12V V +12112,,V V ααααα=+∈∈12.V V ⊕12,V V a 12V V +12ααα=+若有 则 ② 分解式唯一的不是在任意两个子空间的和中都成立. 例如,,3R 的子空间这里, 在和 中,向量的分解式不唯一,如 所以和 不是直和. 而在和 中,向量 (2,2,2) 的分解式是唯一的, 事实上,对 都只有唯一分解式:故 是直和.二、直和的判定1、(定理8) 和 是直和的充要条件是零向量 分解式唯一,即若则必有 证:必要性. 是直和,的分解式唯一. ,,,1212111222,V V αααββαβαβ=+=+∈∈1122,.αβαβ==11222333(,),(,),()V L V L V L εεεεε===123(1,0,0),(0,1,0),(0,0,1)εεε===12V V +(2,2,2)(2,3,0)(0,1,2)(2,1,0)(0,1,2)=+-=+12V V+13V V +(2,2,2)(2,2,0)(0,0,2)=+12313(,,),a a a V V α∀=∈+123(,,0)(0,0,).a a a α=+12V V +12V V +1211220,,V V αααα+=∈∈120.αα==12V V + 12,V V αα∴∀∈+1211220,,V V αααα+=∈∈若而0有分解式 充分性. 设 ,它有两个分解式 于是其中由零向量分解成唯一,且有即 的分解式唯一. 故 是直和.2、和 是直和 证:“ ” 若 则有 即 是直和.“ ” 任取 于是零向量可表成由于 是直和,零向量分解式唯一,故3、和 是直和证:由维数公式+0=00,120,0.αα∴==,,,1212111222,V V αααββαβαβ=+=+∈∈+0=00,1122,αβαβ==1211220,,.V V αααα+=∈∈{}120V V ⇔= .{}12120V V αα=-∈= 12,V V α∈ 120(),,.V V αααα=+-∈-∈0.αα∴=-={}120.V V = 1212dim()dim dim V V V V ⇔+=+12V V α∈+1122()()0αβαβ-+-=111222,V V αβαβ-∈-∈11220,0.αβαβ-=-=12V V +12V V +⇐120,αα∴==12V V +⇒12V V +12V V +有,是直和. (由2、得之)总之,设 为线性空间V 的子空间,则下面 四个条件等价:1) 是直和 2)零向量分解式唯一3) 4) 4、(定理10) 设U 是线性空间V 的一个子空间,则必存在一个子空间W ,使称这样的W 为U 的一个余子空间. 证:取U 的一组基把它扩充为V 的一组基则 注余子空间 一般不是唯一的(除非U 是平凡子空间).如,在3R 中,设 121212dim dim dim()dim()V V V V V V +=++ 1212dim()dim dim V V V V +=+12dim()0V V ⇔= {}120V V ⇔= 12V V ⇔+12,V V12V V +{}120V V = 1212dim()dim dim V V V V +=+.V U W =⊕,,,12m ααα ,,,,,,121m m n ααααα+ ,,,12(),m m n W L ααα++= 令.V U W =⊕1212(1,1,0),(1,0,0),(0,1,1),(0,0,1)ααββ====121122(,),(),(),U L W L W L ααββ===令则 但 5、设 分别是线性子空间 的一组基,则是直和 线性无关. 证:由题设,若 线性无关, 则它是 的一组基. 从而有是直和.反之,若 直和,则从而 的秩为r +s .所以 线性无关.三、推广 多个子空间的直和1、定义 都是线性空间V 的子空间,若和中每个向量 的分解式 是唯一的,则和 就称为直和,记作31212,R U W U W W W =⊕=⊕≠;1212,,,,,,r sεεεηηη 12,V V 12V V +1212,,,,,,,r s εεεηηη⇔ ,,1121(,),dim r V L V r εεε== 2122(,,,),dim s V L V s ηηη== ,,121212(,,,,,).r s V V L εεεηηη∴+= 1212,,,,,,,r sεεεηηη 12V V +1212dim()dim dim V V r s V V +=+=+12V V ∴+12V V +1212dim()dim dim V V V V r s +=+=+1212,,,,,,,r s εεεηηη 1212,,,,,,,r sεεεηηη 12,,,s V V V 121s i s i V V V V ==+++∑ ,,121,2,,s i i V i sααααα=+++∈= 1si i V =∑12s V V V ⊕⊕⊕ α2、判定设 都是线性空间V 的子空间,则下面 四个条件等价:1) 是直和2)零向量分解式唯一,即3) 4) 例1 设V1 、V2分别是齐次线性方程组① 与② 解空间:② 证明: 证:解齐次线性方程组①,得其一个基础解系再解齐次线性方程组②.由即得②的一个基础解系 12,,,sV V V ,120,s i i V αααα+++=∈ 0,1,2,,i i sα== 必有1si i W V ==∑{}0,1,2,,i j j i V V i s ≠==∑ 1dim dim sii W V ==∑①120n x x x +++= 12n x x x === 12n P V V =⊕121(1,0,,0,1)(0,1,,0,1)(0,0,,1,1)n εεε-=-=-=- ,,,1121().n V L εεε-∴= 12n x x x === 121000n n n n x x x x x x --=⎧⎪-=⎨⎪-=⎩ (1,1,,1)ε=考虑向量组由于线性无关,即它为n P 的一组基.又 例2、每一个n 维线性空间都可以表示成 n 个一维 子空间的直和.证:设 是 n 维线性空间V 的一组基,则而得证. 小结:直和的定义与三个判定方法。
绪论单元测试1.对于线性空间的学习,要从三个方面讨论:定义,线性关系(主要是在有限维空间中),子空间。
A:对B:错答案:A2.对于线性空间中线性关系的研究有一个非常重要的概念,就是n维线性空间的基,有了基就可以把数域P上抽象的n维线性空间模型化成具体的空间Pn,而把抽象的向量模型化成它的坐标,即有序数组。
A:错B:对答案:B3.对于线性空间的认识,不仅要知道线性空间的定义,还要了解基本性质以及认识一些具体的线性空间。
A:错B:对答案:B4.线性空间立足于它的基础——集合,于是可以通过学习线性空间的子空间来更好的把握全空间,对于子空间的学习,需要把握其存在性、有限维空间中子空间的构造——生成子空间以及子空间的运算。
A:错B:对答案:B第一章测试1.全体实对称矩阵关于矩阵的加法和数量乘法构成实数域上维的线性空间。
A:对B:错答案:B2.每一n维线性空间都可以表示成n个一维子空间的直和。
A:错B:对答案:B3.数域P上两个有限维线性空间同构的充要条件是它们有相同的维数。
A:对B:错答案:A4.在中,子集构不成子空间。
A:对B:错答案:A5.在中,向量在基,,,下的坐标是()。
A:(1,0,0,2)B:(—1,0,0,2)C:(2,—1,1,0)D:(2,—1,0,0)答案:D6.在数域P上的n维线性空间V中,由基到基的过渡矩阵是A,由基到基的过渡矩阵是B。
那么由基到基的过渡矩阵是()。
A:B:C:D:答案:D7.设是线性空间中三个互素的多项式,但其中任意两个都不互素。
则()。
A:是的一个基B:最大公因式是一次多项式C:线性相关D:线性无关答案:D8.子空间的和是直和的充要条件是()。
A: dimdim+dimB:C:D:⊂答案:ABC9.下列说法正确的有()。
A:复数域关于数的加法和乘法构成有理数域上的线性空间B:有理数域关于数的加法和乘法构成实数上的线性空间C:实数域关于数的加法和乘法构成自身上的线性空间D:实数域关于数的加法和乘法构成复数域上的线性空间答案:AC10.在数域P上的线性空间V中,如果向量满足且。
第六章 线性空间学习单元7: 子空间的直和_________________________________________________________● 导学学习目标:了解子空间的直和的概念;理解子空间的直和的判别;掌握证明线性空间V 是两个子空间的直和的证明方法。
学习建议:本学习单元的理论比较抽象,建议大家认真看书,深刻理解概念及定理的条件与结论,通过例题掌握证明方法。
重点难点:重点:深刻理解子空间的直和的概念与判别法。
难点:线性空间分解成两个子空间的直和的证明。
_________________________________________________________● 学习内容一、直和的概念观察两个子空间的和的特点例 212,{(,,0)|,},{(0,,)|,}V P V a b a b P V x y x y P ==∈=∈,则12V V V +=,但V 中向量表为1V 与2V 中向量的和时表法不唯一,如(1,7,4)(1,2,0)(0,5,4)(1,3,0)(0,4,4)=+=+ 又12{(,,0)|,},{(0,0,)|}V a b a b P V x x P =∈=∈。
则12V V V +=,而V 中向量表为1V 与2V 中向量的和时表法唯一。
定义 V 为P 上线性空间,12,V V V ≤,如果12V V +中向量表为1V 与2V 中向量的和时,表法唯一,即由1212111222,,,,V V αααββαβαβ=+=+∈∈可推出1122,αβαβ==,则称这个和为直和,记为12V V ⊕。
二、直和的判别定理 设12,V V 为数域P 上线性空间V 的两个子空间,则下列几条等价。
(1)1212V V V V +=⊕;(2)12V V +中零向量表法唯一;(3)12{0}V V =I ;(4)1212dim()dim dim V V V V +=+。
推广定理 设1,,s V V V ≤L ,则下列几条等价。
子空间的和不是直和的例子
以下是 9 条关于子空间的和不是直和的例子:
1. 想一想平面上两条相交的直线所张成的子空间,这可不是直和呀!比如房间里的两面墙,它们有一个共同的交界线,这就像子空间的和不是直和一样。
2. 音乐中的不同音符组合,有时候几个音符凑在一起形成的子空间可就不是直和呀!难道不是很像不同乐器发出的声音混合起来,不是简单的直和那样单纯。
3. 再看看调色板上的几种颜色混合,哎呀,那混合出的颜色所对应的子空间可不是直和呀!就如同把红色和蓝色混在一起得到紫色,这可不是红色子空间和蓝色子空间的直和呢。
4. 你瞧那复杂的人际关系网,每个人的圈子叠加起来形成的子空间绝不是直和呀!这和几个人的小团体交织在一起的情况不是很相似吗?
5. 回忆一下化学反应中各种物质的作用,产生的新物质对应的子空间可不是直和哦!就好比几种物质搅和在一起发生奇妙变化,可不是直和那么简单明了。
6. 观察一下车水马龙的街道上各种车辆的行驶轨迹,那形成的子空间可不是直和呀!这多像各种车辆的路线交织在一起,复杂得很呢。
7. 想想大脑中不同的思维模式拼凑起来的子空间,可不是直和呀!这不就如同各种思绪在脑子里混战,哪那么容易是直和。
8. 看看拼图游戏中那些拼图碎片组成的画面,这其中的子空间就不是直和嘛!不就类似于把各种形状的碎片凑在一起形成一幅复杂的图。
9. 思考一下星空里那些相互交织的星系,它们形成的子空间绝对不是直和呀!这难道不像宇宙中各种力量相互作用,不是简单相加能说清楚的。
我的观点结论就是:子空间的和不是直和的情况在生活中真是无处不在呀,得仔细去体会和感受呢!。