复变函数引论Proving(E)
- 格式:pdf
- 大小:59.82 KB
- 文档页数:2
复变函数论数学
复变函数论是数学的一个分支,研究复变函数的性质和变换。
复变函数是指定义在复平面上的函数,取值为复数。
它比实变函数更加复杂,有许多独特的性质和应用。
复变函数论主要包括以下内容:
1. 复数及其性质:复数是由实部和虚部组成的数,与实数的性质有所不同,例如有无穷多个复数的平方是-1。
复数还有其他重要性质,如乘法和除法的公式等。
2. 复变函数的导数和积分:与实变函数一样,复变函数也有导数和积分的概念。
但是,与实变函数不同的是,导数和积分具有更多的性质和奇异性。
3. 复变函数的级数表示:复变函数可以用级数表示,这种表示方法称为洛朗级数。
洛朗级数是一种特殊的幂级数,包含着函数的所有信息。
4. 解析函数和亚纯函数:解析函数是指在某个开区域内有导数的复变函数。
它具有许多重要的性质,如极值定理和最大-最小原理等。
亚纯函数是指在一定范围内可导,但是可能在某些点上存在奇异性的函数。
5. 积分定理和残量定理:积分定理和残量定理是复变函数论中最重要的定理之一。
它们可以通过对复变函数积分来计算它的值。
积分定理与Cauchy积分定理和Cauchy-Goursat定理等有关。
残量定理是通过计算奇点处的残量来求解积分。
复变函数论在物理学、工程学等领域有广泛的应用,例如电动力学、热力学和信号处理等。
复变函数论(A )Ⅰ. Cloze Tests (20102=⨯ Points )1. If nn n n i i z ⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=1173,thenlim =+∞→n n z .2. If C denotes the circle centered at 0z positively oriented and n is apositive integer ,then)(10=-⎰Cn dz z z . 3. The radius of convergence of∑∞=++13)123(n n z n nis .4. The singular points of the function )3(cos )(22+=z z zz f are . 5. 0 ,)ex p(s Re 2=⎪⎭⎫⎝⎛n z z , where n is a positive integer.6.=)sin (3z e dzd z. 7. The main argument and the modulus of the number i -1 are . 8. The square roots of i -1 are . 9. The definition of z e is . 10. Log )1(i -= .Ⅱ. True or False Questions (1553=⨯ Points)1. If a function f is analytic at a point 0z ,then it is differentiable at 0z .( )2. If a point 0z is a pole of order k of f ,then 0z is a zero of order k off /1.( )3. A bounded entire function must be a constant.( )4. A function f is analytic a point 000iy x z += if and only if whose real andimaginary parts are differentiable at ),(00y x .( )5. If f is continuous on the plane and =+⎰Cdz z f z ))((cos 0 for every simpleclosed path C , then z e z f z 4sin )(+ is an entire function. ( )Ⅲ. Computations (3557=⨯ Points)1. Find⎰=-+1||)2)(12(5z z z zdz.2. Find the value of ⎰⎰==-+228122)1(sin z z z z dzz dz z ze . 3. Let )2)(1()(--=z z zz f ,find the Laurent expansion off on the annulus{}1||0:<<=z z D .4. Given λλλλd z z f C⎰-++=345)(2,where {}3|:|==z z C ,find )1(i f +-'.5. Given )1)(1(sin 1)(2+-+=z z zz f ,find )1),(Res()1),(Res(-+z f z f .Ⅳ. Verifications (30310=⨯ Points)1. Show that if )(0)()(C z z f k ∈∀≡, then )(z f is a polynomial of order k <.2. Show that 012797lim 242=+++⎰+∞→R C R dz z z z , where R C is the circle centered at 0 with radius R .3. Show that the equation 012524=-+-z z z has just two roots in the unite disk复变函数论(B )Ⅰ. Cloze Tests (20102=⨯ Points )1. If nn n n i i z ⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=1162,thenlim =+∞→n n z .2. If C denotes the circle centered at 0z positively oriented and n is apositive integer ,then)(10=-⎰Cn dz z z . 3. The radius of the power series∑∞=+12)1(n n z nis .4. The singular points of the function )1(sin )(2+=z z zz f are . 5. 0 ,)ex p(s Re 2=⎪⎭⎫⎝⎛n z z , where n is a positive integer.6.=z e dzd z2cos . 7. The main argument and the modulus of the number i -1 are . 8. The square roots of 1+i are . 9. The definition of z cos is . 10. Log )1(i += .Ⅱ. True or False Questions (1553=⨯ Points)1. If a function f is differentiable at a point 0z ,then it is continuous at 0z .( )2. If a point 0z is a pole of order m of f ,then 0z is a zero of order m off /1.( )3. An entire function which maps the plane into the unite disk must be aconstant.( )4. A function f is differentiable at a point 000iy x z += if and only if whosereal and imaginary parts are differentiable at ),(00y x and the CauchyRiemann conditions hold there.( )5. If a function f is continuous on the plane and=⎰Cdz z f )(0 for everysimple closed contour C , then z z f sin )( is an entire function. ( )Ⅲ. Computations (3557=⨯ Points)1. Find⎰=-+1||)2)(12(z z z zdz.2. Find the value of ⎰⎰==-+223122)1(sin z z z z dzz dz z ze . 3. Let )2)(1()(--=z z zz f ,find the Laurent expansion off on the annulus{}1||0:<<=z z D .4. Given λλλλd z z f C⎰-++=142)(2,where {}3|:|==z z C ,find )1(i f +-'.5. Given )1)(1(sin )(2+-=z z zz f ,find )1),(Res()1),(Res(-+z f z f .Ⅳ. Verifications (30310=⨯ Points)1. Show that the function iy x e e z z f ---=)2()(2is an entire function.2. Show that if )(0)()(C z z f m ∈∀≡, then )(z f is a polynomial of orderm <.3. Show that 0651lim 242=+++⎰+∞→R C R dz z z z , where R C is the circle centered at 0 with radius R .复变函数论(C )Ⅰ. Cloze Tests (20102=⨯ Points )1. If nnn n i i z ⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+=3131,thenlim =+∞→n n z .2. If C denotes any simple closed contour and 0z is a point inside C , then)(sin 0=-⎰Cn dz z z z, where n is an integer. 3. The radius of convergence of the power series∑∞=-12)63(n n z nis .4. The singular points of the function )2(cos )(244-+=z z z z z f are .5. 0 ,)ex p(s Re =⎪⎭⎫⎝⎛m z z , where m is a positive integer.6. The main argument and the modulus of the number iie 45π are . 7. The integral of the function )(sin )(2ti t t t w += on ]1,1[- is . 8. The definition of z sin is . 9. Log )1(i -= .10. The solutions of the equation 013=-zi e are .Ⅱ. True or False Questions (1553=⨯ Points)1. If a function f is continuous at a point 0z ,thenit is differentiable at 0z .( )2. If a point 0z is a pole of order m of f ,then there is a function ϕ that isanalytic at 0z with 0)(0≠z ϕ such that mz z z z f )()()(0-=ϕ on somedeleted neighborhood of 0z .( )3. An entire function which is identically zero on a line segment must beidentically zero.( )4. A function f is differentiable on open set D if and only if whose real andimaginary parts are differentiable on D and the Cauchy Riemann conditions hold on D .( )5. If a function f is continuous on the plane and=⎰Cdz z f )(0 for everysimple closed path C , then 0)(=z f for all z . ( )Ⅲ. Computations (3557=⨯ Points)1. Find⎰=++1||)23)(13(9z z z zdz.2. Find the value of ⎰⎰==-+-222142)1(sin z z z dzz dz z zz . 3. Let )2)(1(3)(2++=z z z z f ,find the Laurent expansion of f on the annulus{}1||0:<<=z z D .4. Given ξξξξd z z f C ⎰-++=543)(2,where {}4|:|==z z C ,find )2(i f +'.5. Find ⎪⎪⎭⎫⎛+i z z ,)1(4Res 222. Ⅳ. Verifications (30310=⨯ Points)1. Show that 0233lim 242=+++⎰+∞→RC R dz z z z , where R C is the circle centered at 0 with radius R .2. Suppose that f is analytic and ||f is a constant on a domain a domainD , prove that a z f =)( for some constant a and all D z ∈.3. Show that the equation z z z z -=+-127234 has just three roots in the unite disk.《复变函数论》试题(D )Ⅰ. Cloze Tests (20102=⨯ Points )1. If nnn n i i z ⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=1153,then lim =+∞→n n z . 2. If C denotes the circle centered at 0z positively oriented and n is apositive integer ,then)(10=-⎰C n dz z z . 3. The radius of the power series∑∞=++13)12(n n z n nis .4. The singular points of the function )3(cos )(2+=z z zz f are .5. 0 ,)ex p(s Re 2=⎪⎭⎫⎝⎛n z z , where n is a positive integer.6.=)sin (5z e dzd z. 7. The main argument and the modulus of the number i -1 are . 8. The square roots of 1+i are . 9. The definition of z e is . 10. Log )1(i += .Ⅱ. True or False Questions (1553=⨯ Points)1. If a function f is differentiable at a point 0z ,then it is analytic at 0z .( )2. If a point 0z is a pole of order k of f ,then 0z is a zero of order k off /1.( )3. A bounded entire function must be a constant.( )4. A function f is analytic a point 000iy x z += if and only if whose real andimaginary parts are differentiable and the Cauchy Riemann conditions hold in a neighborhood of ),(00y x .( )5. If a function f is continuous on the plane and=⎰Cdz z f )(0 for everysimple closed contour C , then z e z f z sin )(+ is an entire function. ( )Ⅲ. Computations (3557=⨯ Points)1. Find⎰=-+1||)2)(12(z z z zdz.2. Find the value of ⎰⎰==-+223122)1(sin z z z z dzz dz z ze . 3. Let )2)(1()(--=z z zz f ,find the Laurent expansion off on the annulus{}1||0:<<=z z D .4. Given λλλλd z z f C⎰-++=142)(2,where {}3|:|==z z C ,find )1(i f +-'.5. Given )1)(1(sin )(2+-=z z zz f ,find )1),(Res()1),(Res(-+z f z f .Ⅳ. Proving (30310=⨯ Points)1. Show that if )(0)()(C z z f m ∈∀≡, then )(z f is a polynomial of order m <.2. Show that 012783lim 242=+++⎰+∞→R C R dz z z z , where R C is the circle centered at 0 with radius R .3. Show that the equation 012524=-+-z z z has just two roots in the unitedisk.《复变函数论》试题(E )Ⅰ. Cloze Tests (20102=⨯ Points )1. If nn n i n n z ⎪⎭⎫⎝⎛++-=211,thenlim =+∞→n n z . 2. If C denotes the circle centered at 0z and n is an integer ,then)(1210=-⎰C n dz z z i π. 3. The radius of the power series∑∞=+12)1(n n z nis .4. The singular points of the function 1cos )(2+=z zz f are . 5. 0 ,sin s Re 2=⎪⎭⎫⎝⎛n z z , where n is a positive integer.6.=z e dzd z2sin . 7. The main argument and the modulus of the number i +1 are . 8. The square roots of )0(>A Ai are . 9. The definition of z cos is . 10. Log )22(i += .Ⅱ. True or False Questions (1553=⨯ Points)1. If a function f is differentiable at a point 0z ,then it is continuous at 0z .( )2. If a point 0z is a zero of order n of f ,then 0z is a pole of order n off /1.( )3. There is a non-constant entire function which maps the plane into the disk1000||<z .( )4. A function f is differentiable at a point 000iy x z += if and only if whosereal and imaginary parts are differentiable at ),(00y x and the Cauchy Riemann conditions hold there.( )5. If a function f is continuous on the plane and=⎰Cdz z f )(0 for everysimple closed contour C , then it is an entire function. ( )Ⅲ. Computations (3557=⨯ Points)1. Find the integral ⎰+C zdz z e 12, where C is the circle 7||=z .2. Find the value of ⎰⎰==+-+235121)1(sin z z z z dzz dz z ze . 3. Let )2)(1(1)(--=z z z f ,find the Laurent expansion off on the annulus{}1||0:<<=z z D .4. Given λλλλd z z f C⎰-++=765)(2,where {}4|:|==z z C ,find )1(i f +'.5. Given )0(2:,2)(πθθ≤≤=+=i e z C zz z f ,find dz z f C⎰)(.Ⅳ. Proving (30310=⨯ Points)1. Show that 020914lim 242=++-⎰+∞→RC R dz z z z , where R C is the circle centered at 0 with radius R .2. Suppose that f is an entire function and there is a constant M and apositive integer m such that )(|||)(|C ∈∀≤z z M z f m . Prove thatm m z a z a z a z f +++= 221)(for some constants 1a , m a a ,,2 and all z in the plane.3·Show that the equation 01438=-+-z z z has just three roots in the unite disk2005-2006学年第一学期期末考试2003级数学与应用数学专业《复变函数论》试题(C )Ⅰ. Cloze Tests (20102=⨯ Points )1. If nnn n i i z ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=2121,then lim =+∞→n n z . 2. If C denotes any simple closed contour and 0z is a point inside C , then)(10=-⎰Cn dz z z , where n is an integer. 3. The radius of the power series∑∞=123n n z nis .4. The singular points of the function )2(cos )(24-=z z zz f are .5. 0 ,)ex p(s Re =⎪⎭⎫⎝⎛nz z , where n is a positive integer. 6. The main argument and the modulus of the number iie 42π are . 7. The integral of the function )(sin )(4i t t t w += on ]1,1[- is .8. The definition of z cos is .9. Log )1(i -= .10. The solutions of the equation 012=-zi e are .Ⅱ. True or False Questions (1553=⨯ Points)1. If a function f is continuous at a point 0z ,then it is differentiable at 0z .( )2. If a point 0z is a pole of order m of f ,then there is analytic function ϕat 0z with 0)(0≠z ϕ such that m z z z z f )()()(0-=ϕ on some deleted neighborhood of 0z .( )3. An entire function which is identically zero on the real axis must be zero.( )4. A function f is differentiable on a domain D if and only if whose realand imaginary parts are differentiable on D and the Cauchy Riemann conditions hold on D .( )5. If a function f is continuous on the plane and=⎰C dz z f )(0 for everysimple closed contour C , then 0)(=z f for all z . ( )Ⅲ. Computations (3557=⨯ Points)1. Find ⎰=++1||)23)(13(z z z zdz .2. Find the value of ⎰⎰==-+-22216)1(sin z z z dz z dz z z z . 3. Let )2)(1()(2++=z z z z f ,find the Laurent expansion of f on the annulus {}1||0:<<=z z D .4. Given ξξξξd z z f C⎰-++=143)(2,where {}4|:|==z z C ,find )2(i f +'. 5. Evaluate ),)1((Res 222i z z +.Ⅳ. Proving (30310=⨯ Points)1. Show that 02316lim 242=+++⎰+∞→R C R dz z z z , where R C is the circle centered at 0 with radius R .2. Suppose that f is differentiable and ||f is a constant on a domain D , prove that A z f =)( for some constant A and all D z ∈.3. Show that the equation 0127234=-++-z z z z has just three roots in the unite disk.复变函数考试试题(G )1. 求通过1z 和2z 的线段的参数方程(用复数形式表示)。
复变函数与积分变换概念公式一、复变函数复变函数是指定义在复平面上的函数,即函数的自变量和因变量均为复数。
复数可用标准形式表示为 z = x + yi,其中 x 和 y 分别表示实部和虚部。
复变函数可以将一个复数映射到另一个复数,即 f(z) = u(x, y) + iv(x, y),其中 u 和 v 分别表示实部和虚部。
复变函数通常具有解析性,即满足柯西-黎曼方程,即:∂u/∂x=∂v/∂y∂u/∂y=-∂v/∂x复变函数的求导规则也与实变函数类似,可以通过对u和v分别对x和y求偏导得到。
复变函数的积分也可类似地进行,即将曲线积分转换为线积分,并利用格林公式等方法进行计算。
积分变换是指将一个函数通过积分的方式转换为另一个函数,常见的积分变换包括拉普拉斯变换、傅里叶变换和z变换等。
1.拉普拉斯变换拉普拉斯变换是一种将实函数转换为复函数的积分变换方法,可以用于求解微分方程和信号处理等问题。
拉普拉斯变换的定义为:F(s) = L{f(t)} = ∫[0,∞] f(t)e^(-st)dt其中 f(t) 为已知的函数,s 为复变量。
拉普拉斯变换具有线性性质,即 L{af(t) + bg(t)} = aF(s) + bG(s),其中 a 和 b 为常数,f(t) 和g(t) 分别为待变换的函数。
2.傅里叶变换傅里叶变换是一种将复函数表示为基本正弦和余弦函数的线性组合的积分变换方法,主要用于信号处理和频谱分析等领域。
傅里叶变换的定义为:F(ω) = F{f(t)} = ∫[-∞,+∞] f(t)e^(-jωt)dt其中 f(t) 为已知的函数,ω 为角频率。
傅里叶变换也具有线性性质,即 F{af(t) + bg(t)} = aF(ω) + bG(ω),其中 a 和 b 为常数,f(t) 和 g(t) 分别为待变换的函数。
3.z变换z变换是一种将离散信号表示为z的幂次的线性组合的积分变换方法,主要用于差分方程的求解和数字信号处理等领域。
第一章:复数与复变函数这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。
一、复数及其表示法介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。
二、复数的运算高中知识,加减乘除,乘方开方等。
主要是用新的表示方法来解释了运算的几何意义。
三、复数形式的代数方程和平面几何图形就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。
四、复数域的几何模型——复球面将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。
五、复变函数不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。
六、复变函数的极限和连续性与实变函数的极限、连续性相同。
第二章:解析函数这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。
一、解析函数的概念介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。
所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。
而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。
二、解析函数和调和函数的关系出现了新的概念:调和函数。
就是对同一个未知数的二阶偏导数互为相反数的实变函数。
而解析函数的实部函数和虚部函数都是调和函数。
而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。
三、初等函数和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。
第三章:复变函数的积分这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。
但是很多知识都和实变函数的知识是类似的。
可以理解为实变函数积分问题的一个兄弟。
上海市考研数学复习资料复变函数重要定理总结复变函数是数学分析中的一个重要分支,它研究的是具有两个自变量、复数值的函数。
在数学领域,复变函数具有广泛的应用,尤其是在实分析、几何学、物理学等方面。
为了帮助准备上海市考研的同学们复习复变函数知识,下面将对其中的重要定理进行总结。
1. 复数定义定理复变函数中,我们首先需要了解复数的基本定义。
复数定义定理指出,复数是由实数和虚数构成的,可以表示为 z = a + bi 的形式,其中a 和b 分别表示实部和虚部,i 是虚数单位。
2. 柯西—黎曼方程柯西—黎曼方程是复变函数理论的核心定理之一。
它表明一个复变函数在某个区域内可导的充要条件是它满足柯西—黎曼方程。
柯西—黎曼方程分别表示为:∂u/∂x = ∂v/∂y 和∂u/∂y = -∂v/∂x其中,u 和 v 分别表示复变函数的实部和虚部。
满足柯西—黎曼方程的函数称为全纯函数。
3. 柯西—黎曼积分定理柯西—黎曼积分定理是复变函数的基本定理之一,它建立了复变函数与沿闭合曲线的积分之间的关系。
柯西—黎曼积分定理可以表述为:∮C f(z) dz = 0其中,C 是一个闭合曲线,f(z) 是在 C 内全纯的复变函数。
4. 柯西积分公式柯西积分公式是复变函数理论中的重要定理之一,它描述了全纯函数的积分与函数在曲线内部的取值之间的关系。
柯西积分公式可以表示为:f(a) = 1/(2πi) * ∮C f(z)/(z-a) dz其中,C 是一个围绕点 a 的闭合曲线,f(z) 是在 C 内全纯的复变函数。
5. 柯西积分定理柯西积分定理是柯西积分公式的推广和拓展,它描述了在连通区域内全纯函数的积分与边界上的取值之间的关系。
柯西积分定理可以表示为:∮C f(z) dz = 2πi * f(z0)其中,C 是一个围绕连通区域内的任意简单闭合曲线,f(z) 是在 C 内全纯的复变函数,z0 是 C 内的任意一点。
6. 极值定理复变函数中的极值定理指出,在全纯函数的定义域内,除非函数为常数,否则函数在其定义域内不可能同时取得最大值和最小值。
复变函数论总结摘要:对数学物理方法的第一篇复变函数论每一章每一节做了总结,对这一章也有了深入的认识,通过积分与柯西积分定理和柯西积分公式,学习了圆域内泰勒级数的展开与环域内洛朗级数的展开,以及应用留数定理计算实变函数定积分,傅立叶积分与傅立叶变换。
关键词:复数;导数;解析;积分;柯西公式、定理;幂级数展开;留数;傅立叶积分与傅立叶变换1引言《复变函数论主要内容》第一章复变函数complex function第二章复变函数的积分complex function integral第三章幂级数展开power series expansion第四章留数定理residual theorem第五章傅立叶变换Fourier integral transformation第一章复变函数§1.1 复数及复数的运算§1.2 复变函数§1.3导数§1.4解析函数§1.1 复数及复数的运算1.复数的概念的数被称为复数,其中。
;;i为虚数单位,其意义为当且仅当时,二者相等复数与平面向量一一对应z平面虚轴y. (x,y)rx实轴模幅角(k)注意:复数“零”(即实部和虚部都等与零的复数)的幅角没有明确意义2.复数的表示代数表示三角表示指数表示一个复数z的共轭复数注意:在三角表示和指数表示下,两个复数相等当且仅当模相等且幅角相差3.无限远点在复变函数论中,通常还将模为无限大的复数也跟复平面上的一点对应,而且称这一点为无限远点,我们把无限远点记作,它的模为无限大,幅角则没有明确意义4.复数的运算复数的加法法则:复数与的和定义是两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
复数的加法满足交换律和结合律,且,当同一方向时等号成立。
复数的减法法则:且有复数的乘法法则:乘法的交换律、结合律与分配律都成立复数的除法法则:注意:采用三角式或指数式比较方便。
Ⅳ. Proving
1. Show that the function is an entire function.
iy x e e z z f −−−=)2()(22. Show that if , then is a polynomial of order .
)(0)()(C z z f m ∈∀≡)(z f m <3. Show that 06
51lim 242=+++∫+∞→R C R dz z z z , where is the circle centered at with radius R C 0R .
4. Suppose that and f f are differentiable on a domain , prove that D A z f =)( for some constant A and all D z ∈.
5. Show that the equation has just two roots in the unite disk.
01424=−+−z z z 6. Show that 02316lim 242=+++∫+∞→R
C R dz z z z , where is the circle centered at with radius R C 0R .
7. Suppose that is differentiable and is a constant on a domain , prove
that for some constant f ||f D A z f =)(A and
all D z ∈. 8. Show that the equation has just three roots in the unite disk.
0127234=−++−z z z z 9. Show that if , then is a polynomial of order .
)(0)()(C z z f k ∈∀≡)(z f k <10. Show that 012
797lim 242=+++∫+∞→R C R dz z z z , where is the circle centered at with radius R C 0R .
11. Show that the equation has just two roots in the unite disk.
012524=−+−z z z 12. Show that 020
914lim 242=++−∫+∞→R C R dz z z z , where is the circle centered at with radius R C 0R .
13. Suppose that is an entire function and there is a constant f M and a positive integer such that . Prove that
m )(|||)(|C ∈∀≤z z M z f m
m m z a z a z a z f +++=L 221)(for some constants , and all in the plane.
1a m a a ,,2L z 14. Show that the equation has just three roots in the unite disk.
01438=−+−z z z 15. Show that if , then is a polynomial of order . )(0)()(C z z f m ∈∀≡)(z f m <
16. Show that 012
783lim 242=+++∫+∞→R C R dz z z z , where is the circle centered at with radius R C 0R .
17. Show that the equation has just two roots in the unite disk.
012524=−+−z z z 18. Show that 020975lim 242=++−∫+∞→R
C R dz z z z , where is the circle centered at with radius R C 0R .
19. Suppose that is an entire function and there is a constant f M and a positive
integer such that . Prove that
m )(|||)(|C ∈∀≤z z M z f m
m m z a z a z a z f +++=L 221)(for some constants , and all in the plane.
1a m a a ,,2K z 20. Show that the equation 1438+−=z z z has just three roots in the unite disk.
21. Show that 02316lim 242=+++∫+∞→R
C R dz z z z , where is the circle centered at with radius R C 0R .
22. Suppose that is differentiable and is a constant on a domain , prove
that for some constant f ||f D A z f =)(A and
all D z ∈. 23. Show that the equation has just three roots in the unite
disk.
0127234=−++−z z z z 24. Show that 0233lim 242=+++∫+∞→R
C R dz z z z , where is the circle centered at with radius R C 0R .
25. Show that if , then is a polynomial of order .
)(0)()(C z z f m ∈∀≡)(z f m <26. Show that 012
783lim 242=+++∫+∞→R C R dz z z z , where is the circle centered at with radius R C 0R .
27. Show that the equation has just two roots in the unite disk. 012524=−+−z z z。