稳态误差单位阶跃响应1
- 格式:ppt
- 大小:1.70 MB
- 文档页数:79
一阶系统单位阶跃响应的稳态误差
在一阶系统的单位阶跃响应中,稳态误差是指输出信号与输入信号之间的差异。
根据控制工程中的定义,单位阶跃输入信号是指斜率为1的阶跃函数。
而稳态误差可以通过系统的传递函数和控制系统的特性来计算。
考虑一个一阶系统的传递函数为G(s),其中s为复变量。
传递函数通常表示为:
G(s) = K / (Ts + 1)
其中K是系统的增益,T是系统的时间常数。
该传递函数表示了输入信号和输出信号之间的关系。
对于单位阶跃输入信号的稳态误差计算,我们可以使用斯蒂夫斯特恩稳态误差公式。
根据该公式,单位阶跃输入信号的稳态误差为:
ess = 1 / (1 + Kp)
其中Kp为开环系统的静态增益,定义为K乘以传递函数在零频率下的增益。
在一阶系统中,Kp就等于K。
因此稳态误差可以表示为:
ess = 1 / (1 + K)
以上是一阶系统单位阶跃响应的稳态误差的计算公式。
请注意,这是一个一般情况下的表达式,具体的数值计算需要根据系统的具体参数进行。
单位阶跃响应的动态指标单位阶跃响应是指系统对输入信号为单位阶跃函数而产生的响应。
单位阶跃函数是一种特殊的信号,它在t=0时从0突变到1,其数学表达式可以表示为u(t)=1(t>=0)。
单位阶跃响应在控制系统领域具有广泛的应用,可以用于分析系统动态特性和评估系统性能。
1.时间指标时间指标是用来描述单位阶跃响应的时间特性。
主要包括:上升时间Tr、峰值时间Tp、峰值超调量Mp、稳态误差、超调量Ts以及调节时间Ts。
上升时间Tr是指输出达到峰值的时间,通常定义为单位阶跃函数的输入信号从0到1所需的时间。
上升时间越短,说明系统响应速度越快。
峰值时间Tp是指输出响应的峰值出现的时间,通常指单位阶跃响应达到最大值的时间。
峰值超调量Mp是指单位阶跃响应的最大超调量,通常用百分比表示。
超调量Mp越小,说明系统的稳定性越好。
稳态误差是指单位阶跃响应达到稳定值后与期望值之间的偏差。
稳态误差越小,说明系统的跟踪性能越好。
超调量Ts是指单位阶跃响应达到最大值时,相对于单位阶跃信号的幅值比例差。
超调量越小,系统的稳定性和响应速度越好。
调节时间Ts是指单位阶跃响应从0到达接近稳态的时间,通常定义为响应曲线距离稳态值5%的时间。
2.频率指标频率指标用于描述单位阶跃响应的频率特性。
主要包括:截止频率ωc、相位裕量PM、增益裕量GM以及带宽。
截止频率ωc是指单位阶跃响应曲线的截止频率,也是系统的带宽。
带宽越大,表示系统对高频信号的响应越快。
相位裕量PM是指单位阶跃响应曲线相位曲线与水平轴之间的最小夹角,用来衡量系统的相位稳定性。
相位裕量越大,系统的相位稳定性越好。
增益裕量GM是指单位阶跃响应曲线增益曲线在截止频率处的衰减量。
增益裕量越大,系统的稳定性越好。
带宽是指单位阶跃响应的频率范围,通常定义为单位阶跃信号的幅频特性曲线上的-3dB点对应的频率范围。
以上是单位阶跃响应的主要动态指标。
这些指标可以帮助工程师分析系统的性能特性和优化系统的设计。
自动控制原理(上)习 题3-1 设系统的结构如图3-51所示,试分析参数b 对单位阶跃响应过渡过程的影响。
考察一阶系统未知参数对系统动态响应的影响。
解 由系统的方框图可得系统闭环响应传递函数为/(1)()()111K Ts Ks Kbs T Kb s Ts +Φ==++++ 根据输入信号写出输出函数表达式:111()()()()()11/()K Y s s R s K s T Kb s s s T bK =Φ⋅=⋅=-++++对上式进行拉式反变换有1()(1)t T bKy t K e-+=-当0b >时,系统响应速度变慢;当/0T K b -<<时,系统响应速度变快。
3-2 设用11Ts +描述温度计特性。
现用温度计测量盛在容器内的水温,发现1min 可指示96%的实际水温值。
如果容器水温以0.1/min C ︒的速度呈线性变化,试计算温度计的稳态指示误差。
考察一阶系统的稳态性能分析(I 型系统的,斜坡响应稳态误差)解 由开环传递函数推导出闭环传递函数,进一步得到时间响应函数为:()1t T r y t T e -⎛⎫=- ⎪⎝⎭其中r T 为假设的实际水温,由题意得到:600.961Te-=-推出18.64T =,此时求输入为()0.1r t t =⋅时的稳态误差。
由一阶系统时间响应分析可知,单位斜坡响应的稳态误差为T ,所以稳态指示误差为:lim ()0.1 1.864t e t T →∞==3-3 已知一阶系统的传递函数()10/(0.21)G s s =+今欲采用图3-52所示负反馈的办法将过渡过程时间s t 减小为原来的1/10,并保证总的放大倍数不变,试选择H K 和0K 的值。
解 一阶系统的调节时间s t 与时间常数成正比,则根据要求可知总的传递函数为10()(0.2/101)s s Φ=+由图可知系统的闭环传递函数为000(10()()1()0.211010110()0.21110H HHHK G s K Y s R s K G s s K K K s s K ==++++==Φ++)比较系数有101011011010HHK K K ⎧=⎪+⎨⎪+=⎩ 解得00.9,10H K K ==3-4 已知二阶系统的单位阶跃响应为1.5()1012sin(1.6+53.1t y t e t -=-)试求系统的超调量%σ,峰值时间p t ,上升时间r t 和调节时间s t 。
自动控制理论复习题一、名词解释:1、频率响应 2、反馈 3、稳态误差4、最大超调量 5、单位阶跃响应6、相位裕量7、滞后一超前校正;8、稳态响应;9、频率特性;10、调整时间;11、峰值时间;12、截止频率;13、谐振峰值;14、谐振频率15、幅值穿越频率;16、相位穿越频率;17、幅值裕量;18、自动控制、19、状态变量、20、零阶保持器二、分别建立图示系统的微分方程,求传递函数,并说出图(c ),(d)属于何种 较正网络。
图中)(t x i ,)(0t x 为输入、输出位移;)(t u i ,)(0t u 为输入、输出电压。
三、已知系统方框图如下,求传递函数)(,)(,)(000s X s X s X)(a )(b )t )t )(c )(t x i 1)(0t x )(d )(0s )(b X i )s X i )s四、已知系统的开环的幅相特性(Nyguist )如图所示,图中P 为开环传递函数G(s)H(s)五、计算 1、设某二阶系统的单位阶跃响应曲线如图所示,如果该系统为单位反馈型式,试确定其开环传递函数。
2、某系统如图所示,n p t 调整时间 s t 。
(设误差带宽度取±2% ))(c )(a))(a )(b ))六、已知系统的开环传递函数)()(s H s G 的幅频特性曲线如图示,且)()(s H s G 为最小相位系统。
试求)()(s H s G = ?七、某系统的开环传递函数为)12()1()()(-+=s s sK s H s G ,试画出其乃奎斯特图,并说明当K取何值时系统稳定?八、已知系统闭环传递函数为))()(01221101a s a s a s a s a a s a s X s X n n n n i +++⋅⋅⋅+++=-- 试证明系统对速度输入的稳态误差为零。
十、判断正误1、各项时域指标(最大超调量,调整时间等)是在斜坡信号作用下定义的。
2、对于结构不稳定系统,可以通过改变某些系统结构参数而使其稳定。
一阶系统阶跃响应稳态误差一阶系统阶跃响应稳态误差是指系统在输入信号为阶跃函数时,系统输出的稳态值与期望值之间的差距。
在实际控制系统中,稳态误差是一个非常重要的指标,它能够反映系统的性能和精度。
首先,我们来看一下什么是一阶系统。
一阶系统是指系统的传递函数只有一个一次项,没有高阶项。
这类系统在工程中非常常见,例如RC电路、惯性阻尼系统等。
那么,为什么会出现阶跃响应稳态误差呢?这是因为一阶系统的特性决定了它的输出响应不会无限制地趋近于期望值。
在阶跃信号输入后,系统会经历一个过程,逐渐趋近于稳态值。
但由于一阶系统的特性,它无法完全达到期望值,会产生一个稳态误差。
阶跃响应稳态误差有三种常见情况:零稳态误差、有限稳态误差和无限稳态误差。
首先是零稳态误差,这种情况下系统的输出会在一定的时间内趋近于期望值,并最终达到稳态值,稳态误差为零。
这种情况在很多实际控制系统中是非常理想的,代表了系统具有较高的精度和鲁棒性。
其次是有限稳态误差,这种情况下系统的输出会在一定的时间内趋近于期望值,但最终无法完全达到稳态值,稳态误差为一个有限值。
这可能是由于系统参数不准确、干扰、噪声等因素导致的,需要设计者进一步优化系统参数或加入补偿控制手段来减小稳态误差。
最后是无限稳态误差,这种情况下系统的输出会在一定的时间内逐渐趋近于稳态值,但无论经过多长时间也无法达到期望值,稳态误差为无穷大。
这可能是由于系统结构不合理、控制方式不当等原因导致的,需要彻底重新设计系统结构或改变控制策略来解决。
针对一阶系统阶跃响应稳态误差问题,我们可以采取一些常见的方法来改善系统性能。
例如,可以通过增加比例控制器、积分控制器、微分控制器等来提高系统闭环性能和稳态精度;可以通过调整控制参数、优化系统结构等来减小稳态误差;可以采用预测控制、模型预测控制等先进的控制方法来提高系统的响应速度和精度。
综上所述,阶跃响应稳态误差是一阶系统中常见的问题,对于实际控制系统具有重要的指导意义。