实验三 一阶系统的脉冲响应与阶跃响应
- 格式:doc
- 大小:231.00 KB
- 文档页数:3
实验四三阶系统的瞬态响应及稳定性分析引言:实际工程中经常遇到三阶系统,对三阶系统的瞬态响应及稳定性进行分析能够帮助我们更好地设计和优化控制系统。
本实验旨在通过实验,研究三阶系统的瞬态响应及稳定性,并加深对其理论知识的理解和掌握。
实验一:三阶系统的瞬态响应1.实验目的:通过三阶系统的瞬态响应实验,观察系统的输出响应情况,了解系统的动态特性。
2.实验仪器:示波器、波形发生器、三阶系统实验箱3.实验原理:三阶系统的瞬态响应是指系统在初始状态发生突变时,输出的响应情况。
三阶系统的瞬态响应主要涉及到系统阶跃响应、系统脉冲响应。
4.实验步骤:a.将波形发生器的正弦波信号输入三阶系统实验箱。
b.设置示波器的观测通道,将示波器的探头连接到三阶系统实验箱的输出端口。
c.调节波形发生器的频率和幅度,观察示波器上得到的输出响应波形。
5.数据处理:a.根据示波器上输出的响应波形,可以观察到系统的超调量、调整时间等指标,根据公式可以计算得到这些指标的具体数值。
b.将实验得到的数据记录下来,进行分析和比较。
1.实验目的:通过三阶系统的稳定性分析实验,了解系统的稳定性及稳定性判据。
2.实验仪器:示波器、三阶系统实验箱3.实验原理:三阶系统的稳定性是指系统在初始状态发生突变或受到外部扰动时,系统是否能够回到稳定状态。
常见的稳定性分析方法包括极点判据、频率响应法等。
4.实验步骤:a.将示波器的探头连接到三阶系统实验箱的输出端口。
b.调节系统的输入信号,观察示波器上得到的系统输出响应波形。
c.根据观察到的输出波形,分析系统的稳定性。
5.数据处理:a.根据实验得到的数据和观察到的波形,可以从输入输出关系中提取出系统的稳定性信息,比如振荡频率、稳定的输出值等。
b.根据提取出的信息,判断系统的稳定性。
实验三:实验结果和分析1.通过实验一,我们可以观察到三阶系统的瞬态响应,并根据输出波形,计算得到系统的超调量、调整时间等指标。
通过对比不同输入频率和幅度下的响应波形,可以分析系统的动态特性。
第1篇一、实验目的1. 了解系统时域响应的基本概念和常用分析方法。
2. 掌握利用MATLAB软件进行系统时域响应分析的方法。
3. 分析不同类型系统的时域响应特性,并掌握系统性能指标的计算方法。
二、实验原理系统时域响应是指系统对输入信号的响应,通常用输出信号随时间变化的曲线表示。
时域响应分析是系统分析与设计中重要的环节,通过对系统时域响应的分析,可以了解系统的动态性能、稳定性和过渡过程等特性。
时域响应分析主要包括以下内容:1. 系统的阶跃响应:阶跃响应是指系统在单位阶跃信号作用下的输出响应,反映了系统在稳态和过渡过程中的动态特性。
2. 系统的脉冲响应:脉冲响应是指系统在单位脉冲信号作用下的输出响应,反映了系统的瞬态特性。
3. 系统的阶跃恢复响应:阶跃恢复响应是指系统在阶跃信号消失后的输出响应,反映了系统的恢复特性。
三、实验设备与软件1. 实验设备:计算机、MATLAB软件2. 实验内容:系统时域响应分析四、实验步骤1. 阶跃响应分析(1)建立系统的传递函数模型;(2)利用MATLAB的step函数绘制阶跃响应曲线;(3)分析阶跃响应曲线,计算系统的性能指标,如上升时间、峰值时间、调节时间、超调量等。
2. 脉冲响应分析(1)建立系统的传递函数模型;(2)利用MATLAB的impulse函数绘制脉冲响应曲线;(3)分析脉冲响应曲线,了解系统的瞬态特性。
3. 阶跃恢复响应分析(1)建立系统的传递函数模型;(2)利用MATLAB的step函数绘制阶跃恢复响应曲线;(3)分析阶跃恢复响应曲线,了解系统的恢复特性。
五、实验结果与分析1. 阶跃响应分析(1)系统阶跃响应曲线如图1所示,上升时间为0.5s,峰值时间为1s,超调量为20%,调节时间为3s。
图1 系统阶跃响应曲线(2)根据阶跃响应曲线,计算系统的性能指标如下:上升时间:t_r = 0.5s峰值时间:t_p = 1s超调量:M = 20%调节时间:t_s = 3s2. 脉冲响应分析(1)系统脉冲响应曲线如图2所示,系统在脉冲信号作用下的瞬态特性较好。
3-3 一 阶 系 统图3-5所示系统。
其输入-输出关系为11111)()(+=+=Ts s Ks R s C (3-3) 式中KT 1=,因为方程(3-3)对应的微分方程的最高阶次是1,故称一阶系统。
实际上,这个系统是一个非周期环节,T 为系统的时间常数。
一、一阶系统的单位阶跃响应因为单位阶跃函数的拉氏变换为s 1,将s s R 1)(=代入方程(3-3),得 sTs s C 111)(+=将)(s C 展开成部分分式,有11()1C s ss T=-+(3-4)对方程(3-4)进行拉氏反变换,并用)(t h 表示阶跃响应)(t C ,有 t Te t h 11)(--= 0t ≥ (3-5)由方程(3-5)可以看出,输出量)(t h 的初始值等于零,而最终将趋于1。
常数项“1”是由s 1反变换得到的,显然,该分量随时间变化的规律和外作用相似(本例为相同),由于它在稳态过程中仍起作用,故称为稳态分量 (稳态响应)。
方程(3-5)中第二项由11/()s T+反变换得到,它随时间变化的规律取决于传递函数1/(1)Ts +的极点,即系统特征方程()10D s Ts =+=的根(1/)T -在复平面中的位置,若根处在复平面的左半平面如图3-6(a)所示,则随着时间 t 的增加, 它将逐渐衰减, 最后趋于零 (如图3-6(b) 所示),称为瞬态响应。
可见,阶跃响应曲线具有非振荡特性,故也称为非周期响应。
显然,这是一条指数响应曲线,其初始斜率等于1/T ,即Te T dt dh t t T t 1|1|010===-= (3-6)这就是说,假如系统始终保持初始响应速度不变,那么当T t =时,输出量就能达到稳态值。
实际上从方程(3-6)可以看出,响应曲线)(t h 的斜率是不断下降的,从0=t 时的T1一直下降到∞=t 时的零值。
因此,当T t =时,指数响应曲线将从零上升到稳态值的%;当T t 2=时,响应曲线将上升到稳态值的%;当T t 3=,T 4和T 5时,响应曲线分别达到稳态值的95%,%和%。
电子信息工程学系实验报告实验项目名称:控制系统阶跃响应与脉冲响应实验实验目的:(1)观察学习控制系统的单位阶跃响应和单位脉冲响应(2)记录单位阶跃响应和单位脉冲响应曲线(3)掌握时间响应分析的一般方法实验环境:Matlab7.1软件实验内容及过程:1、实验内容:已知二阶系统:(1)建立系统模型,观察阶跃响应曲线和单位脉冲响应,并计算系统的闭环根、阻尼比,无阻尼振荡频率,并作记录。
(2)修改参数,分别实验ξ=1,ξ=2的响应曲线,并作记录。
2、实验步骤:(1)运行MATLAB;(2)建立系统模型1)传递函数模型TF2)ZPK模型3)MATLAB的阶跃响应函数3、实验要求:(1)分析系统的阻尼比和无阻尼振荡频率对系统阶跃响应和脉冲响应的影响;(2)分析响应曲线的零初值、非零初值与系统模型的关系;(3)分析响应曲线的稳态值与系统模型的关系;(4)分析系统零点对阶跃响应曲线和单位脉冲响应曲线的影响;实验结果及分析:1、阶跃曲线(step)与脉冲曲线(impulse),三组图分别当ξ=sqrt(10)/10,ξ=1,ξ=2的响应曲线:图1 不同ξ系统响应曲线下面是三种情况下的系统的闭环根、阻尼比,无阻尼振荡频率的结果:Eigenvalue(闭环跟) Damping(阻尼比) Freq. (rad/s)(无阻尼振荡频率)-1.00e+000 + 3.00e+000i 3.16e-001 3.16e+000-1.00e+000 - 3.00e+000i 3.16e-001 3.16e+000Eigenvalue(闭环跟) Damping(阻尼比) Freq. (rad/s)(无阻尼振荡频率)-3.16e+000 1.00e+000 3.16e+000-3.16e+000 1.00e+000 3.16e+000Eigenvalue(闭环跟) Damping(阻尼比) Freq. (rad/s)(无阻尼振荡频率)-8.47e-001 1.00e+000 8.47e-001-1.18e+001 1.00e+000 1.18e+0012、实验结果分析(1)分析系统的阻尼比和无阻尼振荡频率对系统阶跃响应和脉冲响应的影响;系统的阻尼比(0<ζ<1)越大,其阶跃响应超调量越小,上升时间越长;系统的阻尼比ζ决定了其振荡特性:0<ζ<1时,有振荡,ζ>1 时,无振荡、无超调,阶跃响应非周期趋于稳态输出。
一阶系统时间响应分析一阶系统是指具有一个自由度的线性系统,它的传递函数可以表示为H(s)=K/(τs+1),其中K表示系统的增益,τ表示系统的时间常数。
一阶系统常见于许多实际应用中,包括温度控制、物体的加速度、放电过程等。
在进行一阶系统的时间响应分析时,可以通过单位阶跃响应或冲激响应等方法来研究系统的动态特性。
首先,考虑单位阶跃响应,即在t=0时刻输入信号从0跃迁到1的情况。
对于一阶系统,单位阶跃响应可以表示为y(t)=K(1-e^(-t/τ)),其中y(t)表示系统的输出。
可以看出,单位阶跃响应的特征是在初始时刻输出信号从0逐渐上升,最终趋于K。
其中,时间常数τ决定了系统的时间响应速度。
当τ较大时,单位阶跃响应的上升时间较长,系统的响应较为缓慢。
当τ较小时,单位阶跃响应的上升时间较短,系统的响应较为迅速。
另外,增益K决定了单位阶跃响应的最终稳定值。
当增益K较大时,单位阶跃响应的稳定值也较大;当K较小时,单位阶跃响应的稳定值也较小。
除了单位阶跃响应,冲激响应也是研究系统时间响应特性的重要方法之一、冲激响应可以表示为h(t)=K/τ*e^(-t/τ),其中h(t)表示系统的输出。
冲激响应的特征是系统在接收到一个冲激信号(即瞬间施加一次激励)后的输出情况。
可以看出,冲激响应的形式与单位阶跃响应相似,只是其幅度除以了时间常数τ。
冲激响应的峰值位于t=0时刻,由于单位冲激信号具有单位面积,因此冲激响应的峰值等于系统的增益K。
通过对冲激响应的分析,可以得到系统的频率响应。
频率响应是指系统对各种频率输入信号的响应特性,通常用幅频特性和相频特性来表示。
幅频特性表示了系统对不同频率输入信号的幅度传递特性。
对于一阶系统,幅频特性可以表示为,H(jω),=K/√(1+(ωτ)^2),其中ω为频率。
幅频特性的曲线呈现出一个低通滤波器的形状,即在低频时幅度较大,而在高频时幅度逐渐减小。
该特性说明了一阶系统的低频增益和高频截止频率的关系。
红河学院工学院实验报告单
《机械工程控制基础》Matlab 仿真实验报告单
课程名称:
姓名:
日期:
成绩: 年级专业: 学号: 实验场地:
实验序号:1
实验名称:一阶线性系统时间响应的Matlab 仿真实验
一、实验内容。
一阶线性系统1.5s 03
单位脉冲响应、单位阶跃响应、单位斜坡响应的Matlab 仿
真。
二、实验目的。
1、熟悉Matlab 操作
2、掌握Matlab 中一阶线性系统的表达
3、常握Matlab 中一阶线性系统的单位脉冲响应、单位阶跃响应、单位斜坡响应图形的求法。
三、相关Matlab 仿真程序。
clear
num=[3];
den=[0.5 1];
Gs=tf(num,den)
t=0:0.1:20;
figure(1);
impulse(Gs,t)
xlabel('时间')
ylabel('输出')
title('一阶系统单位脉冲响应')
figure(2);
step(Gs,t)
xlabel('时间')
ylabel('输出')
title('一阶系统单位阶跃响应')
figure(3);
r=t;
lsim(Gs,r,t)
xlabel('时间')
ylabel('输出')
title('一阶系统单位斜坡响应')
四、相关Matlab仿真图形。
五、判断系统稳定性,并说明理由。
控制系统仿真与设计实验报告姓名:班级:学号:指导老师:刘峰7.2.2控制系统的阶跃响应一、实验目的1。
观察学习控制系统的单位阶跃响应;2。
记录单位阶跃响应曲线;3.掌握时间相应的一般方法;二、实验内容1.二阶系统G(s)=10/(s2+2s+10)键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。
(1)实验程序如下:num=[10];den=[1 2 10];step(num,den);响应曲线如下图所示:(2)再键入:damp(den);step(num,den);[y x t]=step(num,den);[y,t’]可得实验结果如下:实际值理论值峰值 1.3473 1.2975 峰值时间1。
0928 1。
0649 过渡时间+%5 2.4836 2.6352+%2 3.4771 3。
51362。
二阶系统G(s)=10/(s2+2s+10)试验程序如下:num0=[10];den0=[1 2 10];step(num0,den0);hold on;num1=[10];den1=[1 6.32 10];step(num1,den1);hold on;num2=[10];den2=[1 12.64 10];step(num2,den2);响应曲线:(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线试验程序:num0=[10];den0=[1 2 10];step(num0,den0);hold on;num1=[2.5];den1=[1 1 2。
5];step(num1,den1);hold on;num2=[40];den2=[1 4 40];step(num2,den2);响应曲线如下图所示:3。
时作出下列系统的阶跃响应,并比较与原系统响应曲线的差别与特点,作出相应的实验分析结果。
电子信息工程学系实验报告实验项目名称:控制系统阶跃响应与脉冲响应实验实验目的:(1)观察学习控制系统的单位阶跃响应和单位脉冲响应(2)记录单位阶跃响应和单位脉冲响应曲线(3)掌握时间响应分析的一般方法实验环境:Matlab7.1软件实验内容及过程:1、实验内容:已知二阶系统:(1)建立系统模型,观察阶跃响应曲线和单位脉冲响应,并计算系统的闭环根、阻尼比,无阻尼振荡频率,并作记录。
(2)修改参数,分别实验ξ=1,ξ=2的响应曲线,并作记录。
2、实验步骤:(1)运行MATLAB;(2)建立系统模型1)传递函数模型TF2)ZPK模型3)MATLAB的阶跃响应函数3、实验要求:(1)分析系统的阻尼比和无阻尼振荡频率对系统阶跃响应和脉冲响应的影响;(2)分析响应曲线的零初值、非零初值与系统模型的关系;(3)分析响应曲线的稳态值与系统模型的关系;(4)分析系统零点对阶跃响应曲线和单位脉冲响应曲线的影响;实验结果及分析:1、阶跃曲线(step)与脉冲曲线(impulse),三组图分别当ξ=sqrt(10)/10,ξ=1,ξ=2的响应曲线:图1 不同ξ系统响应曲线下面是三种情况下的系统的闭环根、阻尼比,无阻尼振荡频率的结果:Eigenvalue(闭环跟) Damping(阻尼比) Freq. (rad/s)(无阻尼振荡频率)-1.00e+000 + 3.00e+000i 3.16e-001 3.16e+000-1.00e+000 - 3.00e+000i 3.16e-001 3.16e+000Eigenvalue(闭环跟) Damping(阻尼比) Freq. (rad/s)(无阻尼振荡频率)-3.16e+000 1.00e+000 3.16e+000-3.16e+000 1.00e+000 3.16e+000Eigenvalue(闭环跟) Damping(阻尼比) Freq. (rad/s)(无阻尼振荡频率)-8.47e-001 1.00e+000 8.47e-001-1.18e+001 1.00e+000 1.18e+0012、实验结果分析(1)分析系统的阻尼比和无阻尼振荡频率对系统阶跃响应和脉冲响应的影响;系统的阻尼比(0<ζ<1)越大,其阶跃响应超调量越小,上升时间越长;系统的阻尼比ζ决定了其振荡特性:0<ζ<1时,有振荡,ζ>1 时,无振荡、无超调,阶跃响应非周期趋于稳态输出。
实验三 一阶系统的脉冲响应与阶跃响应
一、实验目的
1. 熟悉一阶系统的无源和有源模拟电路;
2.研究一阶系统时间常数T 的变化对系统性能的影响;
3.研究一阶系统的零点对系统响应的影响。
二、实验设备
1.THBCC-1型 信号与系统·控制理论及计算机控制技术实验平台
2.PC 机(安装“THBCC-1”软件)
三、实验内容
1.无零点时的单位阶跃响应(无源、有源);
2.有零点时的单位阶跃响应(无源、有源);
四、实验原理
1.无零点的一阶系统
无零点一阶系统的有源和无源模拟电路图如图3-1的(a)和(b)所示。
它们的传递函数均为
1
0.2S 1G(S)=+
(a) (b)
图3-1 无零点一阶系统有源、无源电路图
2.有零点的一阶系统(|Z|<|P|)
图3-2的(a)和(b)分别为有零点一阶系统的有源和无源模拟电路图,他们的传递函数为:
1
0.2S 1)0.2(S G(S)=++
(a) (b)
图3-2 有零点(|Z|<|P|)一阶系统有源、无源电路图
3.有零点的一阶系统(|Z|>|P|)
图3-3的(a)和(b)分别为有零点一阶系统的有源和无源模拟电路图,他们的传递函数为:
1
S 10.1S G(S)=++
(a ) (b )
图3-3 有零点(|Z|<|P|)一阶系统有源、无源电路图
五、实验步骤
1. 利用实验台上相关的单元组成图3-1(a)(或(b))所示的一阶系统模拟电路;
2.将“阶跃信号发生器”的输出拔到“正输出”,按下“阶跃信号发生器”的按钮,调节电位器RP1,使之输出电压幅值为1V ,并将“阶跃信号发生器”的“输出端与电路的输入端 “Ui ”相连,电路的输出端“Uo ”接到“数据采集接口单元”的AD1输入端,然后用虚拟示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T ;
3.将步骤2中一阶系统的输入端“Ui ”改接至“数据采集接口单元”的DA1输出端。
打开“THBCC-1”软件的“信号发生器”窗口,选择“方波”,频率为0.1Hz ,幅值为2V ,占空比为5%,偏移为2V 。
再点击“ 启动”按钮。
用虚拟示波器观测系统的脉冲响应。
4.再依次利用实验台上相关的单元分别组成图3-2(a)(或(b))、3-3(a)(或(b))所示的 一阶系统模拟电路,重复实验步骤2、3,观察并记录实验曲线。
注:本实验所需的无源电路单元均可通过面板上的U 20单元的不同接线来实现。
六、实验报告
根据测得的无零点一阶系统阶跃响应曲线,测出其时间常数;
七、实验思考题
简述根据一阶系统阶跃响应曲线确定系统的时间常数T 的两种常用的方法。
八、附录
1.无零点的一阶系统
根据 1
0.2S 1R(S)C(S)+=,令S 1R(S)=则 1)
S(0.2S 1C(S)+= 对上式取拉氏反变换得 t 0.21e 1C(t)--=
当0.2t =时,则0.632e 1C(0.2)1=-=-
上式表明,单位阶跃响应曲线上升到稳态值的63.2%时对应的时间,就是系统的时间常数T=0.2S 。
图3-4为系统的单位阶跃响应曲线。
图3-4 无零点一阶系统的单位阶跃响应曲线
2.有零点的一阶系统(|Z|<|P|)
由传递函数G(S),求得系统单位阶跃的输出 5
S 0.8S 0.21)S(0.2S 1)0.2(S C(S)++=++=
即 5t 0.8e 0.2C(t)-+=
图3-5为系统的单位阶跃响应曲线。
图3-5 有零点一阶系统(|Z|<|P|)的单位阶跃响应曲线
3.有零点的一阶系统(|Z|>|P|)
在单位阶跃输入时,系统的输出为:
1
S 0.9S 11)S(S 10.1S C(S)+-=++= 即 t 0.9e 1c(t)--=
图3-6为该系统得单位阶跃响应。
图3-6 有零点一阶系统(|Z|>|P|)的单位阶跃响应曲线。