分形几何的早期历史研究
- 格式:doc
- 大小:12.89 KB
- 文档页数:2
几何发展史简要概括几何学的发展史是一个漫长而丰富多彩的过程,它伴随着人类文明的发展,不断推动着人类对自然界和宇宙的认识。
以下是几何学发展史的简要概括:1. 早期几何学:早在公元前7世纪,古希腊的数学家们就开始研究几何学。
其中,欧几里德被认为是几何学的奠基人,他的《几何原本》一书成为了数学史上的经典之作。
在这个时期,几何学主要关注平面上图形的性质和度量,如长度、角度、面积等。
2. 解析几何学:到了17世纪,笛卡尔引入了坐标系的概念,将几何图形与代数方程结合起来,从而开创了解析几何学的新纪元。
解析几何学的出现,使得几何学的研究范围从平面扩展到了空间,同时也使得代数和几何在理论上得到了统一。
3. 微分几何学:在19世纪,高斯提出了微分几何学,将几何学的研究重点放在了曲面上。
微分几何学的研究对象包括曲线、曲面以及它们之间的变化和性质。
在这个时期,几何学的研究方法也得到了极大的发展,如微积分、线性代数等数学工具的引入,使得几何学的研究更加深入和广泛。
4. 拓扑学:拓扑学是几何学的一个重要分支,它研究的是图形在连续变形下保持不变的性质。
拓扑学的研究范围非常广泛,包括图形的连通性、紧致性、同胚性等方面。
在20世纪初,随着数学的发展和各学科之间的交叉融合,拓扑学逐渐成为了一个独立的数学分支。
5. 现代几何学:进入20世纪以后,几何学的发展更加多元化和深入。
在这个时期,出现了许多新的几何学分支,如纤维丛几何、黎曼几何、辛几何等。
这些分支的出现,使得几何学的研究范围更加广泛,同时也推动了数学和其他学科的发展。
总的来说,几何学的发展史是一个不断开拓、不断创新的过程。
在这个过程中,许多杰出的数学家们为几何学的发展做出了卓越的贡献。
他们的思想和成果不仅推动了数学的发展,也对其他学科产生了深远的影响。
今天,几何学已经成为一个庞大而复杂的学科体系,它将继续引领着人类对自然界和宇宙的认识和理解。
分形几何作者:来源:《初中生世界·九年级》2014年第08期分形几何学是一门以不规则几何形态为研究对象的几何学. 相对于传统几何学的研究对象为整数维数,如零维的点、一维的线、二维的面、三维的立体乃至四维的时空,分形几何学的研究对象为分数维数,如0.63、1.58、2.72. 因为它的研究对象普遍存在于自然界中,比如云彩、闪电、山脉、树枝、蕨叶以及生物细胞等,因此分形几何学又被称为“大自然的几何学”.康托尔三分集1883年,德国著名数学家康托尔构造了一个奇异的集合:取一条长度为1的直线段,将它三等分,去掉中间一段,将剩下的两段各再三等分,各去掉中间一段,剩下更短的四段各再三等分,这样一直继续操作下去,直至无穷,便可得到康托尔三分集.皮亚诺曲线取一个正方形并把它分成4个相等的小正方形,然后从左上角的正方形开始至左下角的正方形结束,依次将小正方形的中心连接起来;下一步把每个小正方形再分成4个相等的正方形,然后按上述方式把其中心连接起来……如此继续不断作下去,以至无穷,也便形成了一条皮亚诺曲线.一般来说,一维的直线是不可能填满二维的平面的,但是皮亚诺曲线恰恰给出了反例.谢尔宾斯基三角形垫片1915~1916年,波兰数学家谢尔宾斯基构造了这样一种图形:将边长为1的等边三角形均分成四个小等边三角形,去掉中间的一个小等边三角形,再对其余3个小等边三角形进行相同操作,这样操作继续下去直至无穷,所得图形称为谢尔宾斯基三角形垫片. 我们可以发现,剩下的三角形面积在不断操作下趋近于零,但它的周长却趋近于无限大.谢尔宾斯基地毯谢尔宾斯基地毯的构造与谢尔宾斯基三角形相似,区别仅在于谢尔宾斯基地毯是以正方形而非等边三角形为基础的. 将一个实心正方形划分为3×3的9个小正方形,去掉中间的小正方形,再对余下的小正方形重复这一操作便能得到谢尔宾斯基地毯.门杰海绵与谢尔宾斯基金字塔奥地利数学家门杰从三维的单位立方体出发,用与构造谢尔宾斯基地毯类似的方法,构造了门杰海绵(1999年以前,大部分分形著作中,均误称之为谢尔宾斯基海绵);谢尔宾斯基用与构造谢尔宾斯基三角形垫片类似的方法,构造了谢尔宾斯基金字塔. 这是两座宏伟的集合大厦,里面有无数的通道,连接着无数的门窗. 这种“百孔千窗”、“有皮没有肉”的结构的表面积是无穷大,它们是由反复挖去一拨比一拨小的立体所生成,是化学反应中催化剂或阻化剂最理想的结构模型.海岸线有多长1967年,数学家曼德尔布罗在著名的《科学》杂志上发表了一篇奇怪的文章《英国的海岸线有多长》,使人们大吃一惊. 原来海岸线长度不是一个固定不变的数值. 海岸线的长短取决于人们所用的尺. 如果用1千米的尺子测量,小于1千米的弯弯曲曲的海岸线便会被忽略;如果用1米的尺子测量,便会增加许多弯曲的部分,海岸线必然大大增大;如果让蜗牛来测量,海岸线必然大得惊人.曼德尔布罗波兰裔法国数学家曼德尔布罗是分形几何的创始人. 他的科学兴趣极其广泛,具有极强的创造能力和形象思维能力,利用计算机开创了一门崭新的分形几何学.。
分形几何学和分形分析的基础原理分形几何学是对自然界和人类活动中普遍存在的复杂结构进行研究的一门学科。
分形几何学的基础原理是分形性质的存在和分形维度的概念。
分形性质指的是在尺度变化下具有自相似性,即物体的部分结构与整体结构相似。
而分形维度则是用来描述分形物体复杂度的度量。
分形几何学的基本概念是由波尔曼德布罗特于20世纪70年代提出的。
他通过研究自然界中的山脉、云彩等不规则结构发现,这些结构在不同尺度下都具有相似的形态,即它们是自相似的。
波尔曼德布罗特认为,真实世界中的许多物体与几何学假设中的理想物体并不相符,而是存在着分形结构。
这一发现引发了对于自然界中不规则结构的深入研究,并为分形几何学的发展提供了基础。
分形几何学的另一个重要概念是分形维度。
传统几何学中的维度概念只适用于整数维空间中的几何体,如一维线段、二维平面和三维立体等。
然而,分形物体的形态复杂,无法用传统几何学中的维度来描述。
因此,分形几何学引入了分形维度的概念。
分形维度可以用于衡量分形物体的复杂程度,即其填充空间的能力。
分形维度的计算方法有多种,其中最常用的是盒维度和信息维度。
除了分形几何学,分形分析也是对分形性质的研究和应用。
分形分析是对数据序列或图像进行分形测度和特征提取的一种方法。
分形分析可以应用于多个领域,如信号处理、图像压缩、金融市场预测等。
分形分析的基础原理是将数据序列或图像看作是分形物体,利用分形维度等数学工具来描述和分析数据的局部和整体特征。
分形分析的一个重要应用是在信号处理领域中。
信号通常是由连续或离散的数据点组成的。
传统的信号处理方法往往采用统计建模和频域分析等方法,但是这些方法在处理复杂非线性信号时效果不佳。
分形分析的引入提供了一种新的思路。
通过计算信号的分形维度,并结合自相似性和分形原理,可以对信号进行特征提取和分类。
分形分析在信号处理中的应用不仅提高了信号处理的效果,还提供了更多的信息用于信号分析和识别。
总之,分形几何学和分形分析是一种对复杂结构进行研究和分析的数学工具和方法。
数学的分形几何分形几何是一门独特而迷人的数学领域,它研究的是自相似的结构和形态。
分形几何的概念由波蒂亚·曼德博(Benoit Mandelbrot)在1975年首次提出,之后得到了广泛应用和发展。
本文将介绍分形几何的基本概念和应用领域,旨在帮助读者更好地了解这一令人着迷的学科。
一、分形几何的基本概念分形(fractal)是一种非几何形状,具有自相似的特点。
简单来说,分形就是在各个尺度上都具有相似性的图形。
与传统的几何图形相比,分形图形更加复杂、细致,其形状常常无法用传统的几何方法进行描述。
分形几何的基本概念包括分形维度、分形特征和分形生成等。
1. 分形维度分形维度是分形几何中的重要概念之一。
传统的几何图形维度一般为整数,如直线的维度为1,平面的维度为2,而分形图形的维度可以是非整数。
分形维度能够描述分形的复杂程度和空间占据情况,是衡量分形图形特性的重要指标。
2. 分形特征分形几何的分形特征是指分形图形所具有的一些独特性质。
其中最著名的就是自相似性,即分形图形在不同尺度上具有相似的形态和结构。
此外,分形图形还具有无限的细节,无论放大多少倍都能够找到相似的结构。
3. 分形生成分形图形的生成是分形几何中的关键问题之一。
分形图形可以通过递归、迭代等方式进行生成,比如著名的分形集合——曼德博集合就是通过迭代运算得到的。
分形生成的过程常常需要计算机的辅助,对于不同的分形形状,生成算法也有所不同。
二、分形几何的应用领域分形几何的独特性质使其在许多领域中得到广泛应用。
以下列举了几个典型的应用领域。
1. 自然科学分形几何在自然科学中有着广泛的应用。
例如,分形理论可以用来研究自然界中的地形、云雾形态等。
通过分形几何的方法,我们能够更好地理解和描述自然界的复杂性,揭示出隐藏在表面之下的规律。
2. 经济金融分形几何在经济金融领域也有着重要的应用。
金融市场的价格走势往往具有分形特征,通过分形几何的方法可以更好地预测未来的市场走势和波动。
一、分形理论分形理论的起源与发展1967年美籍数学家曼德布罗特在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。
海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。
我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体态的相似。
事实上,具有自相似性的形态广泛存在于自然界中,如:连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(fractal)。
1975年,他创立了分形几何学。
在此基础上,形成了研究分形性质及其应用的科学,称为分形理论。
分形理论的发展大致可分为三个阶段:第一阶段为1875 年至1925年,在此阶段人们已认识到几类典型的分形集,并且力图对这类集合与经典几何的差别进行描述、分类和刻画。
第二阶段大致为1926年到1975年,人们在分形集的性质研究和维数理论的研究都获得了丰富的成果。
第三阶段为1975年至今,是分形几何在各个领域的应用取得全面发展,并形成独立学科的阶段。
曼德尔布罗特于1977年以《分形:形、机遇和维数》为名发表了他的划时代的专著。
1.3.1 分形的定义目前对分形并没有严格的数学定义,只能给出描述性的定义。
粗略地说,分形是没有特征长度,但具有一定意义下的自相似图形和结构的总称。
英国数学家肯尼斯·法尔科内(Kenneth J.Falconer)在其所著《分形几何的数学基础及应用》一书中认为,对分形的定义即不寻求分形的确切简明的定义,而是寻求分形的特性,按这种观点,称集合F是分形,是指它具有下面典型的性质:a. F具有精细结构b. F是不规则的c. F通常具有自相似形式d. 一般情况下,F在某种方式下定义的分形维数大于它的拓扑维数。
另外,分形是自然形态的几何抽象,如同自然界找不到数学上所说的直线和圆周一样,自然界也不存在“真正的分形”。
分形理论与分形几何在自然科学中的应用自然界是一个充满着奇妙和神秘的地方。
在大自然中,我们可以发现许多美丽而又复杂的形状,如树枝、云朵、山脉等等。
这些看似无规律的形态背后,隐藏着一个重要的理论——分形理论与分形几何。
分形理论由波兰数学家曼德博特尔(Benoit Mandelbrot)于20世纪70年代提出。
他发现了自然界中的许多现象都具有自相似的特点。
自相似是指一个物体的一部分与整体的形状相似,这种相似性在不同的尺度上都能得到体现。
分形理论的核心思想就是研究这种自相似性,并通过数学模型来描述和解释这些现象。
分形几何是分形理论的一个重要分支,它通过数学方法来研究自然界中的分形结构。
分形几何的研究对象包括分形曲线、分形图形和分形维度等。
分形曲线是指具有无限细节和复杂性的曲线,如科赫曲线和希尔伯特曲线。
分形图形是指具有自相似性的图形,如分形树、分形花朵等。
分形维度是对分形结构复杂性的度量,它可以用来描述一个物体的空间尺度和形态特征。
分形理论与分形几何在自然科学中有着广泛的应用。
首先,它们在地质学中发挥着重要的作用。
地球上的山脉、河流、岩石等都具有分形结构。
通过分形理论和分形几何的研究,我们可以更好地理解地壳运动、地质构造和地球演化等自然现象。
例如,分形理论可以用来解释地震的发生和传播规律,通过分析地震波的分形特征,可以预测地震的强度和发生概率,为地震灾害的防治提供依据。
其次,分形理论和分形几何在生物学中也有着重要的应用。
生物界中存在着许多分形结构,如树枝、血管、叶片等。
通过分形理论的研究,我们可以更好地理解生物体的生长、发育和进化过程。
例如,分形几何可以用来解释植物根系的分形形态,通过分析根系的分形维度,可以揭示出根系的生物力学特性和水分吸收能力,为农业生产和植物育种提供指导。
此外,分形理论和分形几何还在气象学、物理学、经济学等领域中得到了广泛的应用。
在气象学中,分形理论可以用来研究天气系统的自相似性和混沌性质,从而提高天气预报的准确性。
几何里的艺术家——分形几何1. 引言1.1 什么是分形几何分形几何是一种数学理论,包括了自相似性、不规则性和复杂性等特点,它能够描述自然界和人造物体中所存在的复杂形态。
分形几何可以将复杂的形状分解为简单的结构单元,从而更好地解释和描述复杂系统的特征。
分形几何的研究对象可以是自然界中的云雾、山脉、植物等,也可以是人类创造的艺术作品、城市景观等。
通过分形几何的研究,人们能够更深入地理解形态的形成规律和演化过程,为科学研究和艺术创作提供了新的视角。
分形几何的特点在于其不规则性和自相似性。
不规则性指的是形状的复杂度和不规则程度,而自相似性则是指在不同尺度上体现相似性。
分形几何的特点使得人们可以用简单的数学模型来描述复杂的自然现象,从而更好地理解事物的本质及其演变规律。
分形几何是一种独特的数学理论,它不仅在科学领域有着广泛的应用,还在艺术领域中扮演着重要的角色。
通过分形几何的研究和应用,人们能够更好地理解世界的复杂性和多样性,从而为人类的进步和发展提供新的思路和方向。
1.2 分形几何的应用分形几何在应用领域有着广泛的用途,其独特的性质和特点使其在科学、工程、医学等领域发挥着重要作用。
分形几何在图像压缩和图像处理中有着重要的应用。
通过分形图像压缩技术,可以大大减少图像传输和存储时所需的数据量,从而提高图像的传输速度和保存效率。
分形图像处理技术还可以用于图像的放大和缩小,不会出现传统方法中所产生的模糊和失真现象。
在地理信息系统中,分形几何可以用来模拟地形特征,以实现更加逼真的地形图像。
分形几何在地震预测、金融市场分析、气象预测等领域也有着广泛的应用。
分形几何的应用领域十分广泛,不断地为各个领域带来新的发展和突破。
1.3 分形几何在艺术中的作用分形几何在艺术中的作用主要体现在其能够呈现出独特而美丽的几何形状和图案。
分形几何的特点使得它能够生成各种复杂、丰富并且具有自相似性的图像。
这种自相似性使得分形几何产生的图案看起来既具有整体性又具有细节性,给人以视觉上的愉悦和惊叹。
一.历史17世纪时,数学家兼哲学家莱布尼茨思考过递回的自相似,分形的数学从那时开始渐渐地成形(虽然他误认只有直线会自相似)。
直到1872年,卡尔·魏尔施特拉斯才给出一个具有的处处连续但处处不可微这种非直观性质的函数例子,其图像在现今被认为是分形。
1904年,海里格·冯·科赫不满意魏尔施特拉斯那抽象且解析的定义,用更加几何化的定义给出一个类似的函数,今日称之为科赫雪花。
1915年瓦茨瓦夫·谢尔宾斯基造出了谢尔宾斯基三角形;隔年,又造出了谢尔宾斯基地毯。
1938年,保罗·皮埃尔·莱维在他的论文《Plane or Space Curves and Surfaces Consisting of Parts Similar to the Whole》中将自相似曲线的概念更进一步地推进,他在文中描述了一个新的分形曲线-莱维C形曲线。
格奥尔格·康托尔也给出一个具有不寻常性质的实直线上的子集-康托尔集,今日也被认为是分形。
复平面的迭代函数在19世纪末20世纪初被儒勒·昂利·庞加莱、菲利克斯·克莱因、皮埃尔·法图和加斯东·茹利亚等人所研究,但直到现在有电脑绘图的帮忙,许多他们所发现的函数才显现出其美丽来。
1960年代,本华·曼德博开始研究自相似,且在路易斯·弗莱·理查德森之前工作的基础上,写下一篇论文《英国的海岸线有多长?统计自相似和分数维度》。
最终,曼德博在1975年提出了“分形”一词,来标记一个豪斯多夫-贝西科维奇维数大于拓扑维数的物件。
曼德博以显著的电脑绘制图像来描绘此一数学定义,这些图像征服了大众的想像;它们中许多都基于递归,导致了大众对术语“分形”的通俗理解。
分形学的推导过程分形学是一门研究自相似性和重复出现的数学学科。
它的推导过程可以追溯到20世纪60年代,由数学家贝诺瓦·曼德博士提出。
分形学的推导过程涉及到一些基本概念和原理,其中包括自相似性、分形维度和分形生成等。
我们来看自相似性这一概念。
自相似性是指一个物体的一部分与整体相似的特征。
例如,一棵树的分支和整棵树的形状相似,这就体现了自相似性。
分形学将自相似性应用于数学模型中,通过数学公式来描述自然界中的复杂结构。
接下来,我们来介绍分形维度的概念。
传统的几何学中,维度是用来描述物体的大小和形状的。
但在分形学中,分形维度是用来描述自相似结构的复杂程度的。
分形维度可以是非整数的,这意味着分形结构具有无限的细节和复杂性。
分形维度的计算可以通过分形生成函数来实现。
分形生成函数是分形学的重要工具之一。
它是一个递归的数学公式,通过重复应用这个公式,可以生成具有自相似性的分形结构。
例如,曼德博集合是一个经典的分形模型,它可以通过迭代计算来生成复杂的分形图案。
分形生成函数的关键在于迭代过程中的参数选择和边界条件的设定,这决定了生成分形的形状和细节。
分形学的推导过程还涉及到分形维度的计算方法。
其中,箱计数法是一种常用的计算分形维度的方法。
箱计数法将分形结构覆盖在一个网格上,然后统计网格中所包含的分形结构的数量。
通过不断改变网格的大小,可以得到分形维度的估计值。
另外,分形维度还可以通过分形维度的定义公式来计算,该公式利用了分形结构的自相似性特征。
分形学的推导过程还包括对分形结构的分类和研究。
分形结构可以分为确定性分形和随机分形两类。
确定性分形是指通过确定的数学公式生成的分形结构,如科赫曲线和谢尔宾斯基三角形。
而随机分形是指通过随机过程生成的分形结构,如布朗运动和分形噪声。
这些分形结构在自然界中广泛存在,如云朵的形状、海岸线的起伏和树枝的分叉等。
总结起来,分形学的推导过程涉及到自相似性、分形维度、分形生成函数和分形结构的分类和研究等内容。
分形几何理论与应用分形几何理论是一种独特的数学理论,它研究的不是传统意义上的整数、有理数或代数等,而是那些细致、复杂、无规则的自相似结构。
这个理论的发展和应用可以追溯到上世纪60年代,由波兰数学家曼德博特和法国数学家朱利亚·帕西亚斯开创并推动。
分形几何理论的应用范围广泛,涉及到自然科学、工程技术、艺术设计等领域。
本文将介绍分形几何理论的基本概念、应用案例以及未来的发展趋势。
一、基本概念分形几何理论的核心概念是“分形”。
分形是一种具有自相似性质的几何形状或图形,即整体的某一部分与整体本身具有相似的结构。
分形可以是自然界中的云朵、树叶、山脉等,也可以是数学模型中的图形、曲线等。
分形具有以下基本特征:1. 自相似性:分形的一部分与整体具有相似的结构,无论进行何种放大或缩小,都能保持这种相似性。
2. 细节复杂性:分形结构的细节非常复杂,无法用简单的几何形状或方程进行描述。
3. 尺度无关性:分形的特征在不同尺度上都存在,并且不会随着放大或缩小而改变。
二、应用案例1. 自然科学领域:分形几何理论在自然科学领域的应用广泛。
例如,地理学家可以利用分形理论来研究地貌形态的分布规律,了解山脉、河流等地貌形状的演化过程。
生物学家可以利用分形模型来研究植物、动物体内的血管网络结构。
天文学家可以用分形几何理论解释银河系的分布规律等。
2. 工程技术领域:分形几何理论在工程技术领域的应用也非常广泛。
例如,在传输网络设计中,可以采用分形模型来提高网络的稳定性和可靠性。
在材料科学中,可以利用分形几何理论来研究材料的表面粗糙度和纹理结构,从而优化材料的性能。
在城市规划中,分形理论可以帮助设计人员更好地解决交通流量、建筑物布局等问题。
3. 艺术设计领域:分形几何理论对艺术设计也有很大的启发。
艺术家可以运用分形的特性创作出具有美感和复杂性的艺术作品。
分形图形的迭代、放大和变换等操作可以产生各种独特的视觉效果,被广泛用于绘画、雕塑和数字艺术等领域。
分形几何的早期历史研究
分形几何学是20世纪70年代诞生的一门数学分支,它是继非欧几何创立之后几何学史上的又一次重大革命。
作为大自然的几何学,它在现实生活中有着非常广泛的应用。
因此,研究分形几何的早期历史具有非常重要的意义。
本文在研读原始文献及其相关研究文献的基础上,通过历史分析和文献考证的方法,以“为什么数学”为指导思想,全面系统地考察了分形几何早期历史的内容和思想,深入剖析了分形几何创立的原因。
取得的研究结果如下:1.全面考察了分析严格化的背景下,魏尔斯特拉斯函数、康托尔集和科赫曲线等早期经典分形集产生的背景、原因、过程和影响。
魏尔斯特拉斯为了搞清函数的连续性和可微性之间的关系,构造了一条连续但处处不可微的病态函数。
康托尔在单位区间上构造了一个完备但处处不稠密的病态点集。
科赫运用递归法的思想,构造了一条可以几何直观表示的连续但处处不可切的病态曲线。
这些病态的函数、曲线和集合的出现是推动分形几何创立的内因。
2.系统梳理了分数维数概念的产生过程。
为了准确测量出康托尔集的大小,康托尔、波莱尔和勒贝格等数学家相继提出了解决问题的办法和思路,但得到的结果不令人满意。
直到卡拉泰奥多里在q 维空间中定义了p维测度集,才使问题取得了一些进展。
豪斯多夫在卡拉泰奥多里工作的基础上,将维数的取值范围由整数推广到分数,解决了康托尔集的测量问题。
贝西科维奇完善了豪斯多夫关于分数维数的定义,给出了分数维数的确切概念。
3.详细论述了贝西科维奇、布利冈和柯尔莫戈洛夫等数学家对分数维数理论的贡献。
贝西科维奇研究了分数维数集的密度性质和微积分,在实数理论中探讨了分数维数集的具体应用。
盒维数是一种重要的分数维数,它的最初模型由布利冈建立,庞特里亚金和施尼勒尔曼定义了具有数学表达式的盒维数,但缺乏严格性;柯尔莫戈洛夫和契霍洛夫给出了严格的盒维数定义;法尔科内则定义了现代意义下的盒维数。
4.详尽阐述了莱维、莫兰和芒德勃罗等数学家对自相似理论的贡献。
自相似思想最早可追溯至古希腊时代,德谟克利特、亚里士多德以及我国古代的数学、哲学和医学著作中也有关于自相似思想的论述,但尚未形成严格的理论体系。
莱维引入了参数和阶数等一些基本数学概念,他是第一个对自相似性进行系统研究的数学家。
莫兰将集合论引入自相似理论的研究,定义了自相似集的概念,形成了自相似理论的雏形。
芒德波罗将统计性融入自相似理论,描绘了统计自相似性,解决了长期困扰大家的海岸线长度问题。
5.细致探究了分形几何的创立过程,深入剖析了分形几何的创立原因。
通过论文“英国的海岸线有多长”和著作《大自然的分形几何》,细致探究了分形几何的创立过程。
在原始文献和相关研究文献的基础上,指出病态函数、曲线和集合的激励,数学理论发展的推动,实际问题的鞭策,以及创立者自身的优势是分形几何创立的主要原因。