第7章冷压焊和热压焊
- 格式:ppt
- 大小:8.67 MB
- 文档页数:40
第七章焊接第一节焊接基础一、焊接的实质焊接是指两个或两个以上的零件(同种或异种材料),通过局部加热或加压达到原子间的结合,造成永久性连接的工艺过程。
具体措施:(1)加压——用以破坏结合面上的氧化模或其它吸附层,并是接触面发生塑性变形,以扩大接触面。
在变形足够时,也可直接形成原子间结合,得到牢固接头。
(2)加热——对连接处进行局部加热,使之达到塑性或熔化状态,激励并加强原子的能量,从而通过扩散、结晶和再结晶的形成与发展,以获得牢固接头。
二、焊接方法分类一般都根据热源的性质、形成接头的状态及是否采用加压来划分。
1、熔化焊熔化焊是将焊件接头加热至熔化状态,不加压力完成焊接的方法。
它包括气焊、电弧焊、电渣焊、激光焊、电子束焊、等离子弧焊、堆焊和铝热焊等。
2、压焊压焊是通过对焊件施加压力(加热或不加热)来完成焊接的方法。
它包括爆炸焊、冷压焊、摩擦焊、扩散焊、超声波焊、高频焊和电阻焊等。
3、钎焊钎焊是采用比母材熔点低的金属材料作钎料,在加热温度高于钎料低于母材熔点的情况下,利用液态钎料润湿母材,填充接头间隙,并与母材相互扩散实现连接焊件的方法。
它包括硬钎焊、软钎焊等。
三、焊接的特点1、节约金属材料,产品密封性好2、以小拼大,化复杂为简单3、便于制造双金属结构缺点是焊缝处的力学性能有所降低,个别焊接方法的焊接质量检验仍有困难。
四、焊接的应用1、制造金属结构2、制造金属零件或毛坯3、连接电器导线第二节熔化焊熔化焊是利用电弧产生的热量使连接处金属局部熔化而实现连接的焊接方法。
一、焊条电弧焊1、焊接电弧电弧是两带电导体之间持久而强烈的气体放电现象。
1)电弧的形成(1)焊条与工件接触短路短路时,电流密集的个别接触点被电阻热Q=I2Rt所加热,极小的气隙的电场强度很高。
结果:①少量电子逸出。
②个别接触点被加热、熔化,甚至蒸发、汽化。
③出现很多低电离电位的金属蒸汽。
(2)提起焊条保持恰当距离在热激发和强电场作用下,负极发射电子并作高速定向运动,撞击中性分子和原子使之激发或电离。
第一章:点焊1.电阻焊:是工件组合后通过电极施加压力,利用电流通过接头(de)接触面及邻近区域产生(de)电阻热进行(de)焊接(de)方法,属压焊2.点焊定义:是焊件装配成搭接接头,并压紧在电极之间,利用电阻热融化母材金属,形成焊点(de)电阻焊方法.3.点焊有哪些循环阶段:加压阶段 F>0 I=O ;焊接阶段 F=Fw I=Iw;维持 F>0 I=O ;休止 F=0 I=O ;加压作用:使接触表面附近产生塑性变形,扩大实际接触面积,破碎表面氧化膜,喂通电加热做好准备.4、软规范:I小t长.硬规范:I大t短.软规范特点:1,加热平稳质量好2,温度分布平稳,塑性区较宽3,适于淬硬钢(de)焊接4,所用设备装机容量小,控制精度不高,因而较便宜.硬规范特点:与软规范基本相反5.焊接性(de)主要标志:①材料(de)导电性和导热性(导电导热性好(de)焊接性差)②材料(de)高温塑性和高温塑性(de)温度范围(高温塑性差,高温塑性范围窄(de)焊接性差)③材料对热循环敏感有关(de)缺陷,焊接性差④熔点高线膨胀系数大,硬脆材料,焊接性差.6.低碳钢点焊技术要点:1、焊前冷轧板表面可不必清理,热轧板应去掉氧化皮、锈2、建议采用硬规范点焊,CE大者会产生一定(de)淬硬现象,但一般不会影响使用3、焊厚板时建议选用带锻压力(de)压力曲线,带预热电流脉冲或断续通电(de)多脉冲点焊方式,选用三相低频焊机焊接等.4、低碳钢属铁磁性材料,当焊接尺寸大时应考虑分段调整焊接参数,以弥补因焊件伸入焊接回路过多而引起(de)焊接电流薄弱.5、选择合适(de)焊接参数.7.熔核偏移(de)原因:是焊接区在加热过程中两焊件析热和散热均不相等所致.偏移方向向着析热多、散热缓慢(de)一方移动.不同板厚,厚板电阻大析热多且散热缓慢,向厚板偏移;不同材料,导电性差工件电阻大(de)析热多散热慢,向导电性差(de)工件偏移.克服措施:1,采用硬规范2,采用不同(de)电极3,在薄件上附加工艺垫片4,焊前在薄件或厚件上预先加工出凸点或凸缘8.帕尔贴效应:是热电势现象(de)逆向现象,即当直流电流按照某特定方向通过异种材料接触表面时,将产生附加(de)吸热式析热现象,这个效应仅仅在单向通电有效,用于铝与铜合金电极之间9.电焊(de)分流:电阻焊时从焊接区以外通过(de)电流.危害:①电焊强度(de)降低,②单面点焊,产生表面局部过热,甚至喷溅,熔核偏移.措施:①选择合理(de)焊间距②严格清理被焊工件表面③注意结构设计(de)合理性④对敞开性差(de)工件,用特殊电极⑤连续点焊,提高电流⑥单面点焊,采用调幅电流波形第二章:凸焊1.凸焊:定义.是在一工件(de)贴合面上预先加工出一个或多个凸起点,使其与另一个工件表面相接触并通电加热,然后压塌,使这些接触点形成焊点(de)电阻焊方法.2.凸焊接头形成特点:1在热-机械力联合作用下形成;2涂点(de)存在改变了电流场和温度场(de)形态;3凸点压溃过程中使焊接区产生很大(de)塑性变形;4凸焊过程比点焊过程复杂3.凸焊接头结合特点:1单点点焊,多点凸焊和线材交叉焊多为熔化连接;2环焊 ,T型焊,滚凸焊等多为固相连接;3滚凸焊是在滚动(de)过程中焊接压力作用不充分4.凸点形态一圆球形及圆锥形应用最广5、凸点位移产生原因:多凸点之间通过电流时同方向电流相吸 .克服措施:1在保证正常熔核(de)条件下,选用较大(de)电极压力,较小(de)焊接电流;2尽可能提高加压系统(de)随动性;3凸点间距不宜过小第三章:缝焊1.缝焊:焊件装配成搭接接头,或对接接头并置于两滚轮电极之间,滚轮电极加压焊件并转动,连续或断续送电,形成一条连续焊缝(de)电阻焊方法.缝焊类型:(1)、连续缝焊:滚轮电极连续旋转,焊件等速移动,焊接电流连续通过,每半周形成一个焊点,由于表面质量差,实际应用有限(2)、断续缝焊:焊件连续等速移动,焊接电流断续通过,每“通——断”一次形成一个焊点,应用广泛,主要生产黑色金属(de)气、水、油密封缝焊.(3)、步进缝焊:焊件断续移动,焊接电流在焊件静止时通过,每“通——断”一次形成一个焊点,接头形成与点焊极为相似.焊速较低.仅用于制造铝合金及镁合金等高密封焊缝.2.与点焊相比:焊接电流,焊接电压主要选择A、考虑缝焊时(de)分流,焊接电流应比点焊时增加20%-60%,具体数值视材料(de)导电性、厚度和重叠量而定.B、考虑到缝焊时压力作用不充分,电极压力Fw应比点焊是增加20%-50%,具体数值是材料(de)高温塑性而定、3.缝焊接头主要是其密封性和耐蚀性第四章:对焊1.对焊:把两工件端度相对放置,利用焊接电流加热,然后加压完成焊接(de)电阻焊方法2.闪光对焊(de)实质:闪光作用:①烧掉氧化物②加热焊件端口③通过闪光保证有足够(de)液态金属④闪光过程使空间充满金属蒸汽,获得优质接头.3、顶锻作用:1,迅速封住火口使端面烧化(de)金属挤到毛刺中去2,使对口及附近区域获得适当塑性变形,以促进再结晶(de)进行.预热作用:在焊前结合面上获得合理(de)温度分布4、闪光电流密度,对加热有重大影响,在实际生产中是通过调节U20来实现(de).5、判断金属材料闪光对焊焊接性(de)主要标志:1电导率小而热导率大(de)金属材料,其焊接性差;2高温屈服强度大(de)金属材料其焊接性差;3 对热循环较敏感(de)焊接性差;4液-固相线温度区间宽(de)材料焊接性差;5在对口端面可生成高熔点(de)氧化物(de)材料焊接性差.第五章:电阻焊设备1、电阻焊设备一般由:机械装置, 供电装置,控制装置组成机械装置:机身,加压机构,传动机构,夹紧和送进机构组成夹紧机构:静夹具,动夹具组成,并采用有顶座和无顶座两种系统2、通常由电阻焊变压器、功率调节机构、主电力开关、焊接回路等组成供电装置特点:1.可输入大电流,低电压2.功率大并可方便(de)进行调节3.主电源一般无空载运用及负载持续率较低4.提供多种焊接电流波形3、焊接回路:指电阻焊中焊接电流流经(de)回路,又称二次回路4.焊机功率因数:cosθ反映了电流与点位(de)相位关系,对选配控制设备,调整控制角,稳定焊接电流,避免冲击载荷以及使网路负担合理,充分利用电网能量等都有关系影响焊机动率因素(de)因素:1焊接回路所包含(de)面积;2变压器(de)漏抗;3构建接触处(de)接触电阻;4铁磁性材料(de)伸入5、对电极材料(de)要求:1、有足够(de)高温硬度和强度,在结晶温度高2、有高(de)抗氧化能力并与焊件材料形成合金(de)倾向小3、在常温和高温下都有合适(de)导电导热性4、具有良好(de)加工性能.6、电极功用:1、向焊接区传输电流2、向焊接区传递压力3、导散焊接便面及焊接区(de)部分热量4、调节和控制电阻焊加热过程中得热平衡5、讲工件定位、夹持与适当位置.第七章:1、对点焊、缝焊接头(de)质量要求:a.点焊接头应具有一定(de)强度(取决于熔核(de)尺寸、熔核和周围热影响区(de)显微组织及缺陷情况),b.焊接接头具有良好(de)密封性,c.对焊接接头具有一定(de)强度和塑性第八章:高频焊1、高频焊:高频焊:利用集肤效应使高频电流(de)能量集中在工件表面,而利用临近效应来控制高频电流流动路线(de)位置和范围根据高频电流刚导入方式,高频焊可分为高频接触焊和高频感应焊2.阻抗器是高频焊(de)一个重要辅助装置,其主要元件是磁心,作用是增加管壁背面(de)感抗,以减少无效电流,增加焊接有效电流,提高焊接速度第九章:扩散连接1、定义:将两被焊工件紧压在一起,置于真空或保护气氛中加热,使两焊接表面微观不平处产生塑性变形达到紧密接触,在经保温,原子相互扩散而形成牢固(de)冶金连接.2、扩散连接可分:物理接触接触表面(de)激活扩散及形成接头三个阶段第一阶段:为物理接触阶段;第二阶段:相互扩散和反应阶段;第三阶段:结合层(de)成长阶段;液相扩散连接:在弥散强化高温合金,纤维增强复合材料,异种金属材料以及新型材料中大量应用;3.超塑性:在一定温度下,对等轴细晶粒组织,当晶粒尺寸,材料(de)变形速率小于某一数值时,控件变形可超过100%,甚至达到数千倍4、扩散连接(de)工艺特点:优点:1.接合区域无凝固组织,不生成气孔,宏观裂纹等熔焊时(de)缺陷.2.同种材料接合时,可获得于木材性能相同(de)接头,几乎不存在残余应力.3.对于塑性差或熔点高(de)同种材料、互不相溶解或在熔焊时会产生脆性金属间化合物(de)异种材料,扩散连接是可靠(de)连接方式之一.4.精度高,变形小,精密结合.5.可以进行大面积板及圆柱(de)连接.6.采用中间层可减少残余应力.缺点:1.无法进行连续式批量生产.2.时间长,成本高.3.对接合表面要求严格4.设备一次性投资较大,且连接工件(de)尺寸受到设备限制.5.扩散连接时,除了能够无限互溶(de)材料外,异种材料,陶瓷,金属间化合物等多种材料采用中间层来进行扩散焊接.中间层(de)作用:1.改善表面接触,减小扩散连接时(de)压力.2.可以抑制夹杂物(de)形成,促进其破碎或分解.3.改善冶金反应,避免或减少形成脆性金属间化合物和有害(de)共晶组织.4.可以降低连接温度,减少扩散连接时间.5.控制接头应力,提高接头强度.中间层选择原则:1.容易塑性变形,熔点比母材低.2.物理化学性能与母材(de)差异比被连接材料之间(de)差异小.3.不与母材产生不良(de)冶金反应.4.不引起接头(de)电化学腐蚀第十章1,摩擦焊(de)定义:摩擦焊是利用相对摩擦运动产生(de)热量来实现材料可靠连接(de)一种压力焊方法.2.分类:安焊接绕轴旋转:连续驱动摩擦焊、惯性摩擦焊、混合型旋转摩擦焊、相位控制摩擦焊按焊接与运动:径向摩擦焊、搅拌摩擦焊按其他运动:摩擦堆焊、线性摩擦焊、轨道摩擦焊3、摩擦加热过程:初始摩擦、不稳定摩擦、稳定摩擦、停车阶段顶锻焊接过程:纯顶锻、顶锻维持4、焊接参数对接头质量(de)影响:a.转速和摩擦压力 b.摩擦时间和摩擦变形量 c.停车时间 d、顶锻压力和变形量5、搅拌摩擦焊主要用于铝合金、镁合金、铜合金、钛合金和铝基复合材料搅拌摩擦焊焊接接头各区域:a.焊核区 b.热机影响区 c.热影响区6、搅拌摩擦焊参数选择:a,焊接速度 b,搅拌头转速 c,搅拌头仰角 d,轴肩压力7、搅拌头是由轴肩和搅拌针组成十一---十三章1、超声波焊定义:超声波焊是利用超声波(de)高频振动,在静压力(de)作用下将弹性振动能量转变为工件(de)摩擦功和形变能,对焊接进行局部清理和加热焊接(de)一种压焊方法.2、超声波焊(de)主要缺点是受现有设备功率(de)限制,因而与上声极接触(de)焊件厚度不能太厚,接头形式只能采用搭接接头.3、其分类:一类是振动能量由切向传递到焊件表面而使焊接界面产生相对摩擦用于金属材料(de)焊接;一类是振动能量由垂直于焊件表面(de)方向传入焊件,用于塑料(de)焊接.4.超声波焊主要参数:振动频率f、振幅A、静压力F、焊接时间t.5.超声波焊主要几种方法:熔接法、埋插法、铆接法、点焊法、成型法、6.爆炸焊定义:爆炸焊是以炸药为能源,利用爆炸时产生(de)冲击力,使焊件发生剧烈碰撞,塑性变形,熔化及原子间互相扩散,从而实现连接(de)一种压焊方法.7.基覆比:是基板与覆板厚度之比8.变形焊定义:变形焊是在外加压力(de)作用下,待焊金属产生塑性变形而实现固态连接(de)一种压焊方法.9.变形焊接头主要采用搭接和对接接头形式。
焊接名词解释2焊接名词解释2三.压焊术语1.压焊焊接过程中,必须对焊件施加压力(加热或不加热),以完成焊接的方法。
包括固态焊、热压焊、锻焊、扩散焊、气压焊及冷压焊等。
2.固态焊焊接温度低于母材金属和填充金属的熔化温度,加压以进行原子相互扩散的焊接工艺方法。
3.热压焊加热并加压到足以使工件产生宏观变形的一种固态焊。
4.锻焊将工件加热到焊接温度并予打击,使接合面足以造成永久变形的固态焊接方法。
5.扩散焊将工件在高温下加压,但不产生可见变形和相对移动的固态焊接方法。
使用这种方法时接合面间可预置填充金属。
6.气压焊用氧燃气加热接合区并加压使整个接合面焊接的方法。
7.冷压焊在室温下对接合处加压使产生显著变形而焊接的固态焊接方法。
8.摩擦焊利用焊件表面相互摩擦所产生的热,使端面达到热塑性状态,然后迅速顶锻,完成焊接的一种压焊方法。
9.爆炸焊利用炸药爆炸产生的冲击力造成焊件的迅速碰撞,实现连接焊件的一种压焊方法。
10.超声波焊利用超声波的高频振荡能对焊件接头进行局部加热和表面清理,然后施加压力实现焊接的一种压焊方法。
11.电阻焊工件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的方法。
12.电阻对焊将工件装配成对接接头,使其端面紧密接触,利用电阻热加热至塑性状态,然后迅速施加顶锻力完成焊接的方法。
13.闪光对焊工件装配成对接接头,接通电源,并使其端面逐渐移近达到局部接触,利用电阻热加热这些接触点(产生闪光),使端面金属熔化,直至端部在一定深度范围内达到预定温度时,迅速施加预锻力完成焊接的方法。
闪光对焊又可分为连续闪光焊和预热闪光焊。
14.高频电阻焊利用10~500kHz的高频电流,进行焊接的一种电阻焊方法。
15.电阻点焊焊件装配成搭接接头,并压紧在两电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。
16.多点焊用两对或两对以上电极,同时或按自控程序焊接两个或两个以上焊点的点焊。
专业:材料成型及控制工程学号:5901211179 姓名:熊涛得分:冷压焊压力焊是焊接科学技术的重要组成部分之一,广泛的用于汽车的制造、航空、航天、原子能、信息工程等重要部门。
压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。
常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。
各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。
多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。
同时由于加热温度比熔焊低、加热时间短,因而热影响区小。
许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。
冷压焊是在常温下只靠外加压力使金属产生强烈塑性变形而形成接头的焊接方法。
加压变形时,工件接触面的氧化膜被破坏并被挤出,能净化焊接接头。
所加压力一般要高于材料的屈服强度,以产生60~90%的变形量。
加压方式可以缓慢挤压、滚压或加冲击力,也可以分几次加压达到所需的变形[1]。
对于如何获得冷压焊接的解释有多种,如再结晶原理或能量永恒定理等来解释, 但更多的却被实验否定或从理论上排除, 但至今, 最能让人接受, 最具有说服力的是从“原子论”的角度来解释, 其主要观点如下:金属原子间的结合是靠“金属键”结合在一起, 我们可以把由带负电的自由电子的移动描绘成“云雾状”。
这种“云雾状”的自由离子包围在原子核周围做有规律的移动, 从而产生原子间的吸引力。
实践证明, 自由电子与原子核的距离在一定的范围内它们之间就存在相互吸引力。
因此, 如果两个金属表面碰在一起, 并且距离压到几个埃(• )的间隙, 这将消除潜在的阻力, 并产生“电子云雾”, 从而产生结合, 实现焊接。
早期的冷压焊接工艺是由单次顶镦来实现, 这技术有许多落后之处: 首先在焊接前要弄清焊接线的端头, 并保护好表面, 避免污染及其他化学物的腐蚀; 其次要设计模子的间隙防止线弯曲, 且又要保证有足够的金属流量。
《热压焊基础知识概述》一、引言在现代工业生产中,焊接技术作为一种重要的连接方法,广泛应用于各个领域。
热压焊作为焊接技术的一种特殊形式,具有独特的优势和广泛的应用前景。
本文将对热压焊的基础知识进行全面的阐述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势,为读者提供一个系统而深入的了解。
二、热压焊的基本概念热压焊是一种利用加热和加压的方法,使两个或多个金属工件在一定的温度和压力下实现连接的焊接技术。
它通常在特定的设备中进行,通过对工件施加高温和压力,使工件表面的原子相互扩散、融合,从而形成牢固的连接。
热压焊的主要特点包括:1. 连接强度高:由于热压焊是通过原子间的扩散和融合实现连接,因此连接强度通常较高,能够满足高强度连接的要求。
2. 密封性好:热压焊可以实现良好的密封性,适用于对密封性要求较高的场合,如电子封装、航空航天等领域。
3. 可实现精细连接:热压焊可以对微小尺寸的工件进行连接,适用于微电子、微机电系统等领域。
4. 对工件材料的适应性强:热压焊可以适用于多种金属材料的连接,包括铜、铝、金、银等。
三、热压焊的核心理论1. 扩散理论热压焊的连接过程主要是基于原子的扩散。
在高温和压力的作用下,工件表面的原子获得足够的能量,克服势垒,向对方工件扩散。
随着扩散的进行,原子间的结合力逐渐增强,最终实现连接。
扩散的速度和程度取决于温度、压力、时间以及工件材料的性质等因素。
2. 塑性变形理论在热压焊过程中,工件在压力的作用下会发生塑性变形。
塑性变形可以使工件表面更加紧密地接触,增加原子间的扩散面积,从而促进连接的形成。
同时,塑性变形还可以消除工件表面的不平整度和氧化层等缺陷,提高连接质量。
3. 界面反应理论在热压焊过程中,工件表面可能会发生一些界面反应,如氧化、还原、合金化等。
这些界面反应会影响连接的质量和性能。
因此,在热压焊过程中,需要控制界面反应的发生,以获得良好的连接质量。
四、热压焊的发展历程热压焊技术的发展可以追溯到古代的锻焊技术。
专业:材料成型及控制工程学号:5901211179 姓名:熊涛得分:冷压焊压力焊是焊接科学技术的重要组成部分之一,广泛的用于汽车的制造、航空、航天、原子能、信息工程等重要部门。
压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。
常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。
各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。
多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。
同时由于加热温度比熔焊低、加热时间短,因而热影响区小。
许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。
冷压焊是在常温下只靠外加压力使金属产生强烈塑性变形而形成接头的焊接方法。
加压变形时,工件接触面的氧化膜被破坏并被挤出,能净化焊接接头。
所加压力一般要高于材料的屈服强度,以产生60~90%的变形量。
加压方式可以缓慢挤压、滚压或加冲击力,也可以分几次加压达到所需的变形[1]。
对于如何获得冷压焊接的解释有多种,如再结晶原理或能量永恒定理等来解释, 但更多的却被实验否定或从理论上排除, 但至今, 最能让人接受, 最具有说服力的是从“原子论”的角度来解释, 其主要观点如下:金属原子间的结合是靠“金属键”结合在一起, 我们可以把由带负电的自由电子的移动描绘成“云雾状”。
这种“云雾状”的自由离子包围在原子核周围做有规律的移动, 从而产生原子间的吸引力。
实践证明, 自由电子与原子核的距离在一定的范围内它们之间就存在相互吸引力。
因此, 如果两个金属表面碰在一起, 并且距离压到几个埃(• )的间隙, 这将消除潜在的阻力, 并产生“电子云雾”, 从而产生结合, 实现焊接。
早期的冷压焊接工艺是由单次顶镦来实现, 这技术有许多落后之处: 首先在焊接前要弄清焊接线的端头, 并保护好表面, 避免污染及其他化学物的腐蚀; 其次要设计模子的间隙防止线弯曲, 且又要保证有足够的金属流量。
在常温下只靠外加压力使金属產生强烈塑性变形而形成接头的焊接方法。
加压变形时﹐工件接触面的氧化膜被破坏并被挤出﹐能净化焊接接头。
所加压力一般要高於材料的屈服强度﹐以產生60~90%的变形量。
加压方式可以缓慢挤压﹑滚压或加衝击力﹐也可以分几次加压达到所需的变形量。
冷压焊的工件一般是塑性金属﹐如铝﹑铜﹑鎘﹑镍和银等。
冷压焊有搭接点焊和对接焊两种。
搭接点焊前工件表面须经机械加工﹐或用钢丝刷(轮)或溶剂仔细清理﹐对接焊时表面清理要求不太严格。
冷压焊设备只需一台挤压机﹐包括压膜和夹持钳口﹐也可用手动夹具焊接小工件。
冷压焊时工件不必加热﹐因而适於焊接不允许有温昇的工件和加热时会引起软化的材料﹐也适用於易產生脆性化合物的异种金属连接。
冷压焊已应用於电容器外壳的封装﹑电气工业中铝铜过渡接头﹑导电母线﹑引出线﹑铝製日用品和包装带的焊接等。
铝与铝对接可焊截面达1500毫米2.铝与铜对接可焊截面达1000毫米2。
冷压焊所需设备简单﹐工艺简便﹐劳动条件好。
但冷压焊所需挤压力较大﹐在大截面工件的焊接时设备较庞大﹐搭接焊后工件表面有较深的压坑﹐因而在一定程度上限制了它的应用范围。
冷压焊过程中可行的变形速度不会引起接头的升温,也不存在界面原子的相对扩散。
因此,冷压焊不会产生热焊接头常见的软化区、热影响区和脆性金属中间相。
经过焊接时严重变形的冷压焊接头,其结合界面均呈现复杂的峰谷和犬牙交错的空间形貌,其结合面面积比简单的几何截面大。
因此,在正常情况下,同各金属的冷压焊接头强度不低于母材;异种金属的冷压焊接头强度不低于较金属的强度。
由于结合界面大,又无中间相,所以接头的导电性、抗腐蚀性能优良。
目前国内外关于冷压焊界面结合机理研究很多。
国内存在的主要观点是无扩散理论,认为冷压焊中不存在原子的扩散,两材料的结合属晶间结合。
国外关于冷压焊结合机理有不少假说,具有代表性的有以下几种:1)薄膜学说[12]:薄膜理论认为,焊接性并不取决于材料本身的性能,而是决定于零件被焊表面的状态。
压焊名词解释压焊是一种金属加工方式,它可以将不同或相同材料的片材组装在一起,以达到机械强度和坚固度要求。
它经常被用于汽车、家用电器和管道工程,以及船舶、航空航天、核能和航空航天工程等国防、航空、航天等领域。
压焊通常由电弧和气体组成,当两个表面被焊接时,电弧产生高温,能够分解气体,以融合和熔接两个表面。
由于电弧焊接释放出大量的热量,因此,压焊过程中的材料必须抗热程度较高。
压焊的工作原理很简单,当电流流过焊接部位时,发出的热量把てん金和表面融合在一起,焊接部位的温度可以达到摄氏2500度以上,形成一个熔融的新熔接头。
焊接的熔接头可以有效阻止氧化、气孔和腐蚀,但也会导致材料变软,影响加工精度。
压焊有几种方式,可以根据工作环境和需要选择合适的方式。
常见的压焊方式包括电弧焊接、氩弧焊接、激光焊接、电阻焊接、氦气焊和点焊。
电弧焊接是最常用的压焊方式,它利用电弧产生高温,使铁件熔融,再用焊丝熔化,将两个片材融合在一起,形成无毛刺的熔接头。
它的特点是焊接速度快,焊接质量好,焊接部位的热影响较小,但其维修和调整较为困难。
氩弧焊接是一种电弧焊接的改进,它利用弧焊的原理,但需要添加氩气作为保护气体,以防止焊接部位受到氧化腐蚀。
它的特点是焊接速度慢,焊接质量也好,但热效果较弱,可以进行精确的焊接。
激光焊接使用激光产生高温,将铁件熔融,再用焊丝熔化,融合两片材料,形成熔接头。
它的特点是焊接速度快,焊接质量好,焊接热影响小,焊接毛刺少,但是易受外界环境干扰,且不能用于厚料。
电阻焊接是一种电火花焊接,它利用电阻热加热金属,使其变得软,再用焊丝熔化,熔接两片材料,形成熔接头。
它的特点是焊接速度快,焊接质量好,热影响小,比电弧焊接更可靠,适用于精密仪器制造等行业。
氦气焊是一种改进版的电弧焊接,它利用电弧产生高温,两件金属融合,并用氦气作为保护气体,以防止焊接部位受到氧化腐蚀。
它的特点是焊接速度慢,焊接质量好,焊接热效果小,耐腐蚀,但添加氦气会增加成本,且易受外界环境干扰。