椭圆的简单几何性质练习题精练
- 格式:doc
- 大小:38.50 KB
- 文档页数:2
椭圆的几何性质练习题椭圆的几何性质练习题椭圆是数学中一种重要的几何形状,具有许多特殊的性质和应用。
在本文中,我们将通过一些练习题来探索椭圆的一些几何性质。
练习题一:椭圆的定义1. 如何定义一个椭圆?2. 椭圆的焦点和直径分别是什么?练习题二:椭圆的离心率1. 什么是椭圆的离心率?2. 离心率为1的椭圆是什么特殊的形状?练习题三:椭圆的焦点性质1. 椭圆的焦点位于什么位置?2. 如何通过椭圆的焦点和直径来确定椭圆的方程?练习题四:椭圆的长轴和短轴1. 如何确定椭圆的长轴和短轴?2. 长轴和短轴之间的关系是什么?练习题五:椭圆的周长和面积1. 如何计算椭圆的周长和面积?2. 椭圆的周长和面积与长轴和短轴之间有什么关系?练习题六:椭圆的焦点到点的距离1. 如何计算椭圆上任意一点到焦点的距离?2. 椭圆上任意一点到焦点的距离与椭圆的离心率之间有什么关系?练习题七:椭圆的应用1. 椭圆在日常生活中有哪些应用?2. 椭圆在科学和工程领域中有哪些应用?通过以上练习题,我们可以更好地理解和掌握椭圆的几何性质。
椭圆作为一种特殊的几何形状,具有许多独特的特点和应用,对于数学和实际问题的解决都具有重要意义。
在解答这些练习题的过程中,我们需要熟练掌握椭圆的定义、离心率、焦点性质、长轴和短轴的确定方法,以及椭圆的周长、面积和焦点到点的距离的计算方法。
同时,我们还需要了解椭圆在不同领域中的应用,以便更好地理解和应用椭圆的几何性质。
通过不断的练习和思考,我们可以逐渐提高对椭圆的理解和应用能力。
椭圆作为数学中的一种重要几何形状,不仅具有美丽的形态,还具有广泛的应用价值。
在学习和应用中,我们应该保持好奇心和求知欲,不断探索和发现椭圆的更多奥秘。
总之,椭圆的几何性质是数学中的重要内容之一,通过练习题的探索和解答,我们可以更好地理解和应用椭圆的特点和应用。
希望通过这些练习题,读者们能够对椭圆有更深入的了解,并能够在实际问题中灵活运用椭圆的几何性质。
椭圆的几何性质练习题1. 给定一个椭圆,其长轴长度为12cm,短轴长度为8cm。
求椭圆的离心率。
2. 已知一个椭圆的长轴AB长度为20cm,短轴CD长度为16cm。
求椭圆的焦点坐标。
3. 若一个椭圆的两个焦点之间的距离为10cm,离心率为0.6。
求椭圆的短轴长度。
4. 给定一个椭圆,其长轴AB长度为24cm,焦距为10cm。
求椭圆的离心率。
5. 椭圆的焦距为8cm,离心率为0.8。
求椭圆的长轴和短轴长度。
解答:1. 椭圆的离心率定义为焦距与长轴的比值。
已知长轴为12cm,短轴为8cm,根据椭圆的性质可知,焦距长度为c,满足c^2 = a^2 - b^2,其中a为长轴长度,b为短轴长度。
代入已知数据可得c^2 = 12^2 - 8^2 = 144 - 64 = 80,所以焦距长度为√80 = 8√5 cm。
离心率为e = c/a =(8√5)/12 = (2√5)/3 ≈ 1.13。
2. 已知长轴长度为20cm,短轴长度为16cm。
根据椭圆的性质可知,焦距长度为c,满足c^2 = a^2 - b^2,其中a为长轴长度,b为短轴长度。
代入已知数据可得c^2 = 20^2 - 16^2 = 400 - 256 = 144,所以焦距长度为√144 = 12 cm。
由于椭圆的焦点在长轴上方和下方对称,所以焦点坐标为(0, ±6)。
3. 已知焦点之间的距离为10cm,离心率为0.6。
设焦距长度为c,长轴长度为2a,短轴长度为2b。
由于离心率e = c/a,可得c = ea。
又因为c^2 = a^2 - b^2,代入已知数据可得(ea)^2 = a^2 - b^2,即e^2a^2 = a^2 - b^2。
由离心率的定义可知e < 1,所以e^2 < 1,即a^2 - b^2 > 0。
将e^2a^2 = a^2 - b^2移项整理可得a^2 - e^2a^2 = b^2,即a^2(1 - e^2) = b^2。
2.2.1 椭圆及其标准方程1.下列方程表示椭圆的是 ( )A 、22199x y += B 、 2228x y --=- C 、 221259x y -= D 、 22(2)1x y -+= 2.已知ABC ∆的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是 ( ) (A)1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(1251622≠=+y y x 3.若椭圆的焦距长等于它的短轴长,则椭圆的离心率等于( )A.12B.22C. 2 D .2 4.已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为13,则椭圆的方程是( )A.x 2144+y 2128=1 B.x 236+y 220=1 C.x 232+y 236=1D.x 236+y 232=1 5.方程10)2()2(2222=++++-y x y x ,化简的结果是 ( )A .1162522=+y xB . 1212522=+y xC . 142522=+y xD . 1252122=+y x 6.下列各组两个椭圆中,其焦点相同的是 ( ))0(124124 D (12)4124 C.148124 B..........124124 A.222222222222222222>=+++=+=+=+=+=+=+=+m m y m x y x y x y x y x y x x y y x 与与与与 7.已知方程1422=+my x 表示焦点在x 轴上的椭圆,则m 的取值范围是 . 8. 已知方程1312=-+-my m x ,表示焦点在y 轴上的椭圆,则m 的取值范围是 9.已知椭圆06322=-+m y mx 的一个焦点为(0,2),m 的值为 10.已知椭圆15422=+y x ,则焦点坐标为___________,焦距为______________,曲线上一点P 到左焦点1F 的距离为3,则P 到右焦点2F 的距离为______________,三角形21PF F 的周长为_________________11.(2009年高考广东卷)已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为________.12.求适合下列条件的椭圆的标准方程:(1)长轴长是短轴长的3倍,且过点(3,-1);(2)椭圆过点(3,0),离心率e=6 3.(3)两个焦点的坐标分别为(),),并且椭圆经过点2 ) 3。
1 / 17 1.Read the short passage The ancient Olympic Games started in 776BC and stopped in 393AD.The ancient Olympic Games were held every four years in summer in Greece . Only Greece free citizens could take part .Slaves were not allowed to compete .And men could compete in the ancient Olympic Games. Women could take part in chariot races (敞篷马车比赛) with horses. The was the only event they could join in. Married women were not allowed to watch the games. If they tried to watch the games,they could be put to death. The winners got wreaths made of olive leaves. They did not receive money but could present from their hometown. There was no winter Olympic Games in the ancient Olympic Games. There were many events, such as boxing, running, horse riding,wrestling(摔跤).And the motto of the ancient Olympic Games was also Swifter, Higher,Stronger”. 2.Try to make an interview according to the above passage.Li Yan is now interviewing Pausanias about the ancient Olympic Games.
椭圆几何性质练习题1. 简介椭圆是一种常见的几何图形,具有许多独特的性质。
为了更好地理解和应用椭圆的性质,我们来进行一些练习题,通过具体的例子来探索椭圆的特点和应用。
2. 题目一已知椭圆的长轴长为8,短轴长为6,求椭圆的离心率。
解答:离心率是椭圆的一个重要参数,表示焦点与准线之间的距离与长轴长度的比值。
离心率可以通过以下公式计算:eccentricity = √(1 - (短轴长度^2 / 长轴长度^2))代入已知条件,我们可以计算得到:eccentricity = √(1 - (6^2 / 8^2)) = √(1 - 36/64) = √(1 - 0.5625) =√(0.4375) ≈ 0.66因此,该椭圆的离心率约为0.66。
3. 题目二已知椭圆的焦半径为3和4,求椭圆的长轴和短轴长度。
解答:椭圆的焦半径是指焦点到椭圆上的任意一点的距离,根据焦半径的定义和椭圆的性质,我们可以得到以下关系式:c^2 = a^2 - b^2其中,c表示焦半径,a表示长轴长度,b表示短轴长度。
根据已知条件,我们可以得到:3^2 = a^2 - b^24^2 = a^2 - b^2通过求解这两个方程组,我们可以得到长轴和短轴的长度:a^2 - b^2 = 9a^2 - b^2 = 16将第一个方程两边同时乘以16,第二个方程两边同时乘以9,可以得到:16a^2 - 16b^2 = 1449a^2 - 9b^2 = 144将两个方程左右相减,消去b^2,可以得到:16a^2 - 9a^2 = 144 - 1447a^2 = 0a = 0将a = 0代入任意一个方程,我们可以得到:0 - b^2 = 9b^2 = -9所以,根据已知条件,无法确定椭圆的长轴和短轴长度。
4. 题目三已知椭圆的一焦点为(-3,0),离心率为2,求椭圆的方程。
解答:椭圆的方程一般可以表示为:((x - h)^2 / a^2) + ((y - k)^2 / b^2) = 1其中,(h,k)表示椭圆中心的坐标,a表示长轴长度的一半,b表示短轴长度的一半。
一、单选题1. 若椭圆的离心率,则实数的值为A.B.C.或D.或2. 已知分别是椭圆的左,右焦点,点M是椭圆C上的一点,且的面积为1,则椭圆C的短轴长为()A.1 B.2 C.D.43. 在直角坐标系中,一个长方形的四个顶点都在椭圆:上,当该长方形的面积最大时,将其绕轴旋转,得到一个圆柱体,则该圆柱体的体积为()A.B.C.D.4. 从椭圆上一点向轴作垂线,垂足恰为椭圆的左焦点,点,分别为椭圆的右顶点和上顶点.若(为坐标原点),则该椭圆的离心率为()A.B.C.D.5. 椭圆的焦点坐标为()A.B.C.D.6. 已知椭圆经过点,则的取值范围是()A.B.C.D.二、多选题7. 椭圆C的方程为,焦点为,,则下列说法正确的是()A.椭圆C的焦距为B.椭圆C的长轴长为6C.椭圆C的离心率为D.椭圆C上存在点P,使得为直角8. 已知Р是椭圆:上的一动点,离心率为e,椭圆与x轴的交点分别为A、B,左、右焦点分别为、.下列关于椭圆的四个结论中正确的是()A.若PA、PB的斜率存在且分别为、,则为一定值B.根据光学现象知道:从发出的光线经过椭圆反射后一定会经过.若一束光线从出发经椭圆反射,当光线第n次到达时,光线通过的总路程为4naC.若的面积最大时,,则D.若椭圆C上存在点M使,则三、填空题9. 已知椭圆+=1(a>b>0)的左顶点为A,左焦点为F,若该椭圆的上顶点到焦点的距离为2,离心率e=,则椭圆的标准方程是________.10. 如图,椭圆,顶点分别为A1,A2,B1,B2,左右焦点分别为F1,F2,延长B1F2与A2B2交于P点,若∠B1PA2为钝角,则此椭圆的离心率的取值范围为____.11. 已知椭圆的离心率是,若以为圆心且与椭圆有公共点的圆的最大半径为,此时椭圆的方程是___________.12. 椭圆的左、右焦点分别为,上顶点为A,直线与椭圆C交于另一点B,若,则椭圆C的离心率为___________.四、解答题13. 已知椭圆经过,两点.(1)求椭圆上的动点T到的最短距离;(2)直线AB与x轴交于点,过点M作不垂直于坐标轴且与AB不重合的直线l与椭圆交于C,D两点,直线AC,BD分别交直线于P,Q两点.求证:为定值.14. 已知椭圆的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)在圆上取一动点P作椭圆C的两条切线,切点分别记为M,N,PM与PN的斜率均存在,分别记为,.(i)求证:;(ii)求面积的取值范围.15. 已知椭圆的长轴长为4,A,B是其左、右顶点,M是椭圆上异于A,B的动点,且.(1)求椭圆C的方程;(2)若P为直线上一点,PA,PB分别与椭圆交于C,D两点.①证明:直线CD过椭圆右焦点;②椭圆的左焦点为,求的内切圆的最大面积.16. 已知椭圆的左、右顶点分别为,右焦点为F(1,0),且椭圆C的离心率为,M,N为椭圆C上任意两点,点P的坐标为(4,t)(t≠0),且满足.(1)求椭圆C的方程;(2)证明:M,F,N三点共线.。
高二数学椭圆的几何性质同步练习测试(含答案)椭圆的几何性质是圆锥曲线的重点知识点,以下是椭圆的几何性质同步练习测试,请大家仔细练习。
一、选择题:本大题共12小题,每小题5 分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设定点,,动点满足条件,则动点的轨迹是( )A. 椭圆B. 线段C. 椭圆或线段或不存在D. 不存在2. 已知椭圆的对称轴是坐标轴,离心率为,长轴长为12,则椭圆方程为A. 或B. ( )C. 或D. 或2.过椭圆的一个焦点的直线与椭圆交于、两点,则、与椭圆的另一焦点构成,那么的周长是A. B. 2 C. D. 1 ( )3.若椭圆的短轴为,它的一个焦点为,则满足为等边三角形的椭圆的离心率是 A. B. C. D. ( )4.若椭圆上有一点,它到左准线的距离为,那么点到右焦点的距离与到左焦点的距离之比是( )A. 4∶1B. 9∶1C. 12∶1D. 5 ∶16. ,方程表示焦点在轴上的椭圆,则的取值范围是A. B.C. D. ( )7. 参数方程( 为参数)表示的曲线是( )A. 以为焦点的椭圆B. 以为焦点的椭圆C. 离心率为的椭圆D. 离心率为的椭圆8. 已知4,则曲线和有( )A. 相同的准线B. 相同的焦点C. 相同的离心率D. 相同的长轴9. 点在椭圆的内部,则的取值范围是( )A. B. 或C. D.10. 若点在椭圆上,、分别是椭圆的两焦点,且,则的面积是 A. 2 B. 1 C. D. ( )11. 椭圆的一个焦点为,点在椭圆上。
如果线段的中点在轴上,那么点的纵坐标是( )A. B. C. D.12. 椭圆内有两点,,为椭圆上一点,若使最小,则最小值为 A. B. C. 4 D. ( )二、填空题:本大题共4小题,每小题4分,共16分。
13. 已知椭圆的离心率为,则此椭圆的长轴长为。
14. 是椭圆上的点,则到直线:的距离的最小值为。
15. 若点是椭圆上的点,则它到左焦点的距离为。
椭圆的简单几何性质同步练习一、选择题1.已知有相同两焦点F1、F2的椭圆x2m +y2=1(m>1)和双曲线x2n−y2=1(n>0),P是它们的一个交点,则△F1PF2的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 随m,n变化而变化2.已知椭圆:x24+y22=1,过点M(1,1)的直线与椭圆相交于A,B两点,且弦AB被点M平分,则直线AB的方程为()A. x+2y−3=0B. 2x+y−3=0C. x+y−2=0D. 2x−y+1=03.若过椭圆x216+y24=1内一点P(3,1)的弦被该点平分,则该弦所在的直线方程为()A. 3x+4y−13=0B. 3x−4y−5=0C. 4x+3y−15=0D. 4x−3y−9=04.已知椭圆x2a2+y2b2=1(a>b>0)的一个焦点是圆x2+y2−6x+8=0的圆心,且短轴长为8,则椭圆的左顶点为()A. (−3,0)B. (−4,0)C. (−10,0)D. (−5,0)5.我们把由半椭圆x2a2+y2b2=1(x≥0)与半椭圆y2b2+x2c2=1(x<0)合成的曲线称作“果圆”(其中a2=b2+c2,a>b>c>0).如图,设点F0,F1,F2是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,若△F0F1F2是边长为1的等边三角形,则a,b的值分别为()A. 5,4B. √3,1C. 5,3D. √72,16. 如图,F 1F 2分别为椭圆x 2a 2+y 2b 2=1的左右焦点,点P 在椭圆上,△POF 2的面积为√3的正三角形,则b 2的值为( )A. √3B. 2√3C. 3√3D. 4√37. 已知F 1,F 2分别是椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上一点,且PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅(OF 1⃗⃗⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ )=0(O为坐标原点),若|PF 1⃗⃗⃗⃗⃗⃗⃗ |=√2|PF 2⃗⃗⃗⃗⃗⃗⃗ |,则椭圆的离心率为( )A. √6−√3B. √6−√32C. √6−√5D. √6−√528. 已知F 1,F 2是椭圆的两个焦点,满足MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A. (0,1)B. (0,12]C. (0,√22) D. [√22,1)9. 已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=π3,记椭圆和双曲线的离心率分别为e 1,e 2,则1e1e 2的最大值为( )A. 3B. 2C. 4√33D. 2√3310. 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为√32,短轴长为2,过右焦点F 且斜率为k(k >0)的直线与椭圆C 相交于A 、B 两点.若AF ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则k=( )A. 1B. √2C. √3D. 211. 已知F 1(−1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB|=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=112. 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F(3,0),过点F 的直线交椭圆E 于A ,B 两点,若AB 的中点坐标为(1,−1),则弦长|AB|=( )A. 5√2B. 2√5C. 5√22D. √1013. 若椭圆C :x 28+y 24=1的右焦点为F ,且与直线l :x −√3y +2=0交于P ,Q 两点,则△PQF 的周长为( )A. 6√2B. 8√2C. 6D. 814. 椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,椭圆上的点M满足:∠F 1MF 2=60°,且MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =2,则b =( )A. 1B. √2C. √3D. 2二、填空题15. 已知抛物线C :x 2=−2py(p >0)的焦点F 与y 28+x 24=1的一个焦点重合,过焦点F 的直线与C 交于A ,B 两不同点,抛物线C 在A ,B 两点处的切线相交于点M ,且M 的横坐标为2,则弦长|AB|=________. 16. 设M 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点,以M 为圆心的圆与x 轴相切,切点为椭圆的焦点F ,圆M 与y 轴相交于不同的两点P ,Q ,若△PMQ 为等边三角形,则椭圆C 的离心率为________. 17. 若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ⃗⃗⃗⃗⃗ ⋅FP⃗⃗⃗⃗⃗ 的最大值为_________. 18. 设F 1,F 2分别为椭圆x 23+y 2=1的左、右焦点,点A ,B 在椭圆上,若F 1A ⃗⃗⃗⃗⃗⃗⃗ =5F 2B ⃗⃗⃗⃗⃗⃗⃗ ,则点A 的坐标是_________.三、解答题(本大题共4小题,共48.0分)19. 已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)四个顶点中的三个是边长为2√3的等边三角形的顶点.(Ⅰ)求椭圆E 的方程;(Ⅱ)设直线y =kx +m 与圆O:x 2+y 2=2b 23相切且交椭圆E 于两点M,N ,求线段|MN|的最大值.20.已知椭圆C:x 2a2+y2b2=1(a>b>0)的两个顶点分别为A(−a,0),B(a,0),点P为椭圆上异于A,B的点,设直线PA的斜率为k1,直线PB的斜率为k2,且.(1)求椭圆C的离心率;(2)若b=1,设直线l与x轴交于点D(−1,0),与椭圆交于M,N两点,求△OMN面积的最大值.21.已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F(1,0),且椭圆上的点到点F的最大距离为3,O为坐标原点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过右焦点F倾斜角为60°的直线与椭圆C交于M、N两点,求△OMN的面积.22.已知椭圆C:x2a2+y23=1(a>√3)的焦距为2,A,B分别为椭圆C的左、右顶点,M,N为椭圆C上的两点(异于A,B),连结AM,BN,MN,且BN斜率是AM斜率的3倍.(1)求椭圆C的方程;(2)证明:直线MN恒过定点.答案和解析1.【答案】B【解答】解:由题意,不妨设P 是双曲线右支上的一点,|PF 1|=x ,|PF 2|=y ,则x +y =2√m ,x −y =2√n , ∴x 2+y 2=2(m +n), ∵两曲线有相同的焦点, ∴m −1=n +1, ∴m =n +2, ∴x 2+y 2=4(n +1), 即|PF 1|2+|PF 2|2=|F 1F 2|2, ∴△F 1PF 2是直角三角形, 故选B .2.【答案】A【解答】解:设A(x 1,y 1)、B(x 2,y 2), 则x 124+y 122=1,①,x 224+y 222=1,②①−②,得(x 1−x 2)(x 1+x 2)4+(y 1−y 2)(y 1+y 2)2=0.∴y 1−y2x 1−x 2=−12⋅x 1+x2y 1+y 2.又∵M 为AB 中点,∴x 1+x 2=2,y 1+y 2=2. ∴直线AB 的斜率为y 1−y 2x1−x 2=−12.∴直线AB 的方程为y −1=−12(x −1),即2y +x −3=0. 故选:A .3.【答案】A【解答】解:设弦的两端点为A(x 1,y 1), B(x 2,y 2), P 为AB 中点得{x 1+x 2=6y 1+y 2=2,由A , B 在椭圆上有{x 1216+y 124=1x 2216+y 224=1,两式相减得x12−x2216+y12−y224=0,即(x1+x2)(x1−x2)16+(y1+y2)(y1−y2)4=0,即3(x1−x2)8+y1−y22=0,即y1−y2x1−x2=−34,则斜率k=−34,且过点P(3,1),有y−1=−34(x−3),整理得3x+4y−13=0.故选A.4.【答案】D【解答】解:∵圆的标准方程为(x−3)2+y2=1,∴圆心坐标是(3,0),∴c=3.又b=4,∴a=√b2+c2=5.∵椭圆的焦点在x轴上,椭圆的左顶点为(−5,0).故选D.5.【答案】D【解析】解:由题意可得|OF2|=√b2−c2=12,|OF0|=c=√3|OF2|=√32,解得b=1,又a2=b2+c2=1+34=74,得a=√72,即a=√72,b=1.6.【答案】B 【解答】解:∵△POF2的面积为√3的正三角形,S=12×c×√32c=√34c2∴√34c2=√3,解得c=2.∴P(1,√3)代入椭圆方程可得:1a2+3b2=1,与a2=b2+4联立解得:b2=2√3.故选B.7.【答案】A【解答】解:设焦点坐标F 1(−c,0),F 2(c,0),|F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ |=2c , |PF 1⃗⃗⃗⃗⃗⃗⃗ |=√2|PF 2⃗⃗⃗⃗⃗⃗⃗ |,|PF 1⃗⃗⃗⃗⃗⃗⃗ |+|PF 2⃗⃗⃗⃗⃗⃗⃗ |=2a , 所以|PF 1⃗⃗⃗⃗⃗⃗⃗ |=2√2a(√2−1),|PF 2⃗⃗⃗⃗⃗⃗⃗ |=2a(√2−1),由PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅(OF 1⃗⃗⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ )=0,设线段PF 1的中点为M ,则OM ⊥PF 1, 则|PO ⃗⃗⃗⃗⃗ |=|OF 1⃗⃗⃗⃗⃗⃗⃗ |=|OF 2⃗⃗⃗⃗⃗⃗⃗ |, ∴PF 1⊥PF 2,则|PF 1⃗⃗⃗⃗⃗⃗⃗ |2+|PF 2⃗⃗⃗⃗⃗⃗⃗ |2=|F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ |2,∴(2√2a(√2−1))2+(2a(√2−1))2=4c 2, 可得c 2=(9−6√2)a 2,解得e 2=9−6√2, 则椭圆的离心率为√6−√3. 故选A .8.【答案】C【解答】 解:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,椭圆上任一点P(x,y),由MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0的点M 总在椭圆内,则PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ >0,得x 2+y 2>c 2恒成立,代入椭圆方程化简得y 2<b 4a 2−b 2,又−b <y <b ,所以b 2<b 4a 2−b 2,化简得a 2<2b 2=2a 2−2c 2,得a 2>2c 2,可得e =ca<√22, 又0<e <1,∴0<e <√22, 故选C .9.【答案】D【解答】解:不妨设F 1,F 2分别为左、右焦点,P 为第一象限的点,如图: 设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义知|PF 1|+|PF 2|=2a 1,|PF 1|−|PF 2|=2a 2, ∴|PF 1|=a 1+a 2,|PF 2|=a 1−a 2. 设|F 1F 2|=2c ,在△PF 1F 2中,∠F 1PF 2=π3,由余弦定理得,4c 2=(a 1+a 2)2+(a 1−a 2)2−2(a 1+a 2)(a 1−a 2)cos π3,化简得a 12+3a 22=4c 2,即1e 12+3e 22=4,∴1e 12+3e 22=4≥2√3e 12e 22,∴1e1e 2≤2√33, 当且仅当e 1=√22,e 2=√62时,等号成立,则1e1e 2的最大值为2√33, 故选D .10.【答案】B【解答】 解:椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,短轴长为2, 可得:b =1,ca =√32,解得:a =2,c =√3,b =1, 椭圆方程为x 24+y 2=1,过右焦点F 且斜率为k(k >0)的直线与椭圆C 相交于A ,B 两点, 设A(x 1,y 1),B(x 2,y 2), ∵AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,∴y 1=−3y 2, 设直线AB 方程为y =k(x −√3), 代入x 24+y 2=1,消去x ,可得(14k 2+1)y 2+√32k y −14=0, ∴y 1+y 2=−√32k 1+14k2=−2√3k1+4k 2,y 1y 2=−141+14k2=−k 24k 2+1,−2y 2=−2√3k 1+4k2,−3y 22=−k 24k 2+1,解得:k =√2. 故选:B .11.【答案】C【解答】解:F 1(−1,0),F 2(1,0)是椭圆C 的两个焦点,可得c =1, 过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB|=3, 令椭圆方程x 2a 2+y 2b 2=1中x =1,得y =±√b 2−b 2a 2,可得2√b 2−b 2a2=3, 化简得4a 4−17a 2+4=0, 解得a =2,则b =√3, 所求的椭圆方程为:x 24+y 23=1.故选:C .12.【答案】A【解答】解:设A(x 1,y 1),B(x 2,y 2), 代入椭圆方程得x 12a 2+y 12b 2=1①,x 22a 2+y 22b 2=1②,相减得x 12−x 22a 2+y 12−y 22b 2=0, ∴x 1+x 2a 2+y 1−y2x 1−x 2⋅y 1+y 2b 2=0.∵x 1+x 2=2,y 1+y 2=−2,k AB =−1−01−3=12.∴2a 2+12×−2b 2=0,化为a 2=2b 2,又c =3=√a 2−b 2,解得a 2=18,b 2=9. ∴椭圆E 的方程为x 218+y 29=1.AB 的斜率为12,且过(1,−1),∴直线AB 的方程为y +1=12(x −1),即y =12x −32,代入椭圆方程,得3x 2−6x −27=0. ∴x 1+x 2=2.x 1x 2=−9.∴|AB|=√1+14⋅√(x 1+x 2)2−4x 1x 2=5√2. 故选:A .13.【答案】B【解析】解:∵直线l 过椭圆C 的左焦点F′(−2,0), 直线l :x −√3y +2=0经过左焦点F′, ∴△PQF 的周长|PQ|+|PF|+|QF|=|PF′|+|PF|+|QF′|+|QF|=4a =8√2,14.【答案】C【解析】解:设|MF 1⃗⃗⃗⃗⃗⃗⃗⃗ |=m ,|MF 2⃗⃗⃗⃗⃗⃗⃗⃗ |=n ,因为MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =2,则mncos60°=2,⇒mn =4, 又m +n =2a ,(1),在△MF 1F 2中,由余弦定理可得:|F 1F 2|2=m 2+n 2−2mncos60°=4(a 2−b 2)(2), (1)式平方减去(2)式得:b 2=3,得:b =√3. 故选:C .设|MF 1|=m ,|MF 2|=n ,由数量积及∠F 1MF 2的大小可得mn =4,再由椭圆的定义可得m +n =2a ,在△MF 1F 2中,由余弦定理可得b 的值.本题考查椭圆的性质及数量积的运算性质,属于中档题.15.【答案】10【解答】解:由题意可得F(0,−2),则p =4,抛物线方程为x 2=−8y . 设直线AB 方程为y =kx −2,A(x 1,y 1),B(x 2,y 2),其中y 1=−x 128,y 2=−x 228.由y =−x28得y′=−x4,所以在点A处的切线方程为y−y1=−x14(x−x1),化简得y=−x14x+x128,①同理可得在点B处的切线方程为y=−x24x+x228.②联立①②得x M=x1+x22,又∵M的横坐标为2,∴x1+x2=4.将AB方程代入抛物线得x2+8kx−16=0,∴x1+x2=−8k=4,∴k=−12,∴y1+y2=k(x1+x2)−4=−12×4−4=−6,∴|AB|=p−y1−y2=10.故答案为10.16.【答案】√33【解答】解:如图,过M作MN⊥y轴于N,由△PMQ为等边三角形,可得|PQ|=2√33c,再由题意可得M(c,b2a ),则圆M为(x−c)2+(y−b2a)2=b4a2,取x=0,可得y1=b2a −√b4−a2c2a,y2=b2a+√b4−a2c2a,∴2√b4−a2c2a =2√33c,即3(e2)2−10e2+3=0,解得:e=√33.故答案为:√33.17.【答案】6【解答】解:由题意,F(−1,0),设点P(x0,y0),则有x024+y023=1,解得y02=3(1−x024),因为FP ⃗⃗⃗⃗⃗ =(x 0+1,y 0),OP ⃗⃗⃗⃗⃗ =(x 0,y 0),所以OP ⃗⃗⃗⃗⃗ ⋅FP ⃗⃗⃗⃗⃗ =x 0(x 0+1)+3(1−x 024)=x 024+x 0+3=14(x 0+2)2+2, 此二次函数对应的抛物线的对称轴为x 0=−2,因为−2≤x 0≤2,所以当x 0=2时,OP ⃗⃗⃗⃗⃗ ⋅FP ⃗⃗⃗⃗⃗ 取得最大值224+2+3=6, 故答案为6. 18.【答案】(0,1)或(0,−1)【解答】解:设A(m,n).由F 1A ⃗⃗⃗⃗⃗⃗⃗ =5F 2B ⃗⃗⃗⃗⃗⃗⃗ ,得B (m+6√25,n 5). 又A ,B 均在椭圆上,所以有{m 23+n 2=1,(m+6√25)23+(n 5)2=1,解得{m =0,n =1或{m =0,n =−1, 所以点A 的坐标为(0,1)或(0,−1).19.【答案】解:(Ⅰ)由题意,椭圆上下顶点与左右顶点其中的一个构成等边三角形, 所以a =√3b,b =√3,即a =3,所以椭圆E 的方程为x 29+y 23=1,(Ⅱ)圆O:x 2+y 2=2,因为直线y =kx +m 与圆O:x 2+y 2=2相切, 所以√1+k 2=√2,即m 2=2(1+k 2); 联立{x 29+y 23=1y =kx +m得(1+3k 2)x 2+6kmx +3(m 2−3)=0,Δ>0, 设M (x 1,y 1),N (x 2,y 2),所以x 1+x 2=−6km 1+3k 2,x 1·x 2=3(m 2−3)1+3k 2,由弦长公式得|MN|=√1+k 2·|x 1−x 2|=√1+k 2·√(x 1+x 2)2−4x 1x 2=√1+k 2·√12(9k 2+3−m 2)1+3k 2, 将m 2=2(1+k 2)代入:|MN|=√6·√(2+2k 2)(7k 2+1)1+3k 2≤√6·(2+2k 2)+(7k 2+1)21+3k 2=3√62, 当且仅当2+2k 2=7k 2+1,即k 2=15时等号成立,故弦长|MN|最大值为3√62. 20.【答案】解:(1)设P(x 0,y 0)为椭圆上的点,则x 02a 2+y 02b 2=1,整理得:y 02=−b 2a 2(x 02−a 2), 又k 1=y 0x 0+a ,k 2=y 0x 0−a ,∴k 1k 2=y 02x 02−a 2=−12, 联立两个方程则k 1k 2=−b 2a 2=−12, 解得e =c a =√1−b2a 2=√22. (2)由(1)知a 2=2b 2,又b =1,∴椭圆C 的方程为x 22+y 2=1.由题意,设直线l 的方程为:x =my −1,代入椭圆的方程有:(m 2+2)y 2−2my −1=0,则Δ=(−2m )2+4(m 2+2)=8(m 2+1)>0,设M(x 1,y 1),N(x 2,y 2),则y 1+y 2=2m m 2+2,y 1y 2=−1m 2+2,则△OMN 的面积S =12|OD |·|y 1−y 2| =12√(y 1+y 2)2−4y 1y 2 =12×√8m 2+8m 2+2=√2·√m 2+1m 2+2, 令√m 2+1=t ,(t ≥1),则有m 2=t 2−1,代入上式有S =√2·√m 2+1m 2+2=√2t t 2+1=√2t+1t ≤√22, 当且仅当t =1,即m =0时等号成立,所以△OMN 面积的最大值为√22. 21.【答案】解:(Ⅰ)椭圆焦点坐标为(1,0),则c =1,由椭圆C 上的点到F 的最大距离为a +c =3,则a =2, b 2=a 2−c 2=3,∴椭圆的标准方程为x 24+y 23=1.(Ⅱ)设M(x 1,y 1),N(x 2,y 2),由已知可设直线MN 的方程为:y =√3(x −1),联立方程组{y =√3(x −1)3x 2+4y 2=12消去x 得:5y 2+2√3y −9=0. y 1+y 2=−2√35,y 1⋅y 2=−95,⇒(y 1−y 2)2=(−2√35)2−4×(−95)=19225. ∴△OMN 的面积S =12×OF ×|y 1−y 2|=12×1×8√35=4√35 22.【答案】解:(1)∵{2c =2a 2=c 2+3, ∴{a =2c =1, 所以b 2=a 2−c 2=3∴椭圆C 的方程为x 24+y 23=1;(2)连结BM ,设M(x 1,y 1),N(x 2,y 2),则k AM ⋅k BM =y 1x 1+2⋅y 1x 1−2=y 12x 12−4,∵点M(x 1,y 1)在椭圆上,∴k AM ⋅k BM =y 12x 12−4=3−34x 12x 12−4=−34,∵k BN =3k AM ,∴k BN ⋅k BM =−94,①当MN 斜率不存在时,设MN:x =m ,不妨设M 在x 轴上方, ∴M(m,√12−3m 24),N(m,−√12−3m 24), ∵k BN ⋅k BM =−94, ∴m =1;②当MN 斜率存在时,设MN:y =kx +t ,由{y =kx +t 3x 2+4y 2−12=0,整理,得(3+4k 2)x 2+8ktx +4t 2−12=0, ∴x 1+x 2=−8kt 3+4k 2,x 1⋅x 2=4t 2−123+4k 2, ∵k BN ⋅k BM =y 1x 1−2⋅y 2x 2−2=(kx 1+t)⋅(kx 1+t)x 1x 2−2(x 1+x 2)+4=−94,∴化简可得2k2+3kt+t2=0,即t=−k或t=−2k,当t=−k时,y=kx−k,恒过定点(1,0),当斜率不存在亦符合;当t=−2k,y=kx−2k,过点(2,0)与点B重合,舍去,∴直线恒过定点(1,0).。
课时作业(八)[学业水平层次]一、选择题1.(2015·人大附中月考)焦点在x 轴上,短轴长为8,离心率为35的椭圆的标准方程是( )A.x 2100+y 236=1 B.x 2100+y 264=1 C.x 225+y 216=1D.x 225+y 29=1【解析】 本题考查椭圆的标准方程.由题意知2b =8,得b =4,所以b 2=a 2-c 2=16,又e =c a =35,解得c =3,a =5,又焦点在x 轴上,故椭圆的标准方程为x 225+y 216=1,故选C.【答案】 C2.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为( )A.12B.13C.14D.22【解析】 由题意知a =2c ,∴e =c a =c 2c =12. 【答案】 A3曲线x 225+y 29=1与x 29-k +y 225-k =1(0<k <9)的关系是( )A .有相等的焦距,相同的焦点B .有相等的焦距,不同的焦点C .有不等的焦距,不同的焦点D .以上都不对【解析】 曲线x 225+y 29=1的焦距为2c =8,而曲线x 29-k +y 225-k =1(0<k<9)表示的椭圆的焦距也是8,但由于焦点所在的坐标轴不同,故选B.【答案】 B4.已知O 是坐标原点,F 是椭圆x 24+y 23=1的一个焦点,过F 且与x 轴垂直的直线与椭圆交于M ,N 两点,则cos ∠MON 的值为( )A.513 B .-513 C.21313D .-21313【解析】 由题意,a 2=4,b 2=3, 故c =a 2-b 2=4-3=1.不妨设M (1,y 0),N (1,-y 0),所以124+y 23=1,解得y 0=±32,所以|MN |=3,|OM |=|ON |=12+⎝ ⎛⎭⎪⎫322=132.由余弦定理知cos ∠MON =|OM |2+|ON |2-|MN |22|OM ||ON |=⎝ ⎛⎭⎪⎫1322+⎝ ⎛⎭⎪⎫1322-322×132×132=-513.【答案】 B 二、填空题5.已知长方形ABCD ,AB =4,BC =3,则以A ,B 为焦点,且过C 、D 的椭圆的离心率为________.【解析】 如图,AB =2c =4,∵点C 在椭圆上,∴CB +CA =2a =3+5=8,∴e =2c 2a =48=12.【答案】 126.设AB 是椭圆x 2a 2+y 2b 2=1的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点,则k AB ·k OM =________.【解析】 设A (x 1,y 1),B (x 2,y 2),则中点M ⎝ ⎛⎭⎪⎪⎫x 1+x 22,y 1+y 22,得k AB =y 2-y 1x 2-x 1, k OM =y 2+y 1x 2+x 1,k AB ·k OM =y 22-y 21x 22-x 21,b 2x 21+a 2y 21=a 2b 2,b 2x 22+a 2y 22=a 2b 2, 得b 2(x 22-x 21)+a 2(y 22-y 21)=0,即y 22-y 21x 22-x 21=-b 2a 2. 【答案】 -b 2a 27.(2014·天津高二检测)已知P (m ,n )是椭圆x 2+y 22=1上的一个动点,则m 2+n 2的取值范围是________.【解析】 因为P (m ,n )是椭圆x 2+y 22=1上的一个动点,所以m 2+n22=1,即n 2=2-2m 2,所以m 2+n 2=2-m 2,又-1≤m ≤1,所以1≤2-m 2≤2,所以1≤m 2+n 2≤2.【答案】 [1,2] 三、解答题8.(1)求与椭圆x 29+y 24=1有相同的焦点,且离心率为55的椭圆的标准方程;(2)已知椭圆的两个焦点间的距离为8,两个顶点坐标分别是(-6,0),(6,0),求焦点在x 轴上的椭圆的标准方程.【解】 (1)∵c =9-4=5,∴所求椭圆的焦点为(-5,0),(5,0). 设所求椭圆的方程为x 2a 2+y 2b 2=1(a >b >0). ∵e =c a =55,c =5,∴a =5,b 2=a 2-c 2=20, ∴所求椭圆的方程为x 225+y 220=1. (2)因椭圆的焦点在x 轴上,设它的标准方程为x 2a 2+y 2b 2=1(a >b >0), ∵2c =8,∴c =4, 又a =6,∴b 2=a 2-c 2=20. ∴椭圆的方程为x 236+y 220=1.9.(2014·菏泽高二检测)设椭圆x 2a 2+y 2b 2=1(a >b >0)与x 轴交于点A ,以OA 为边作等腰三角形OAP ,其顶点P 在椭圆上,且∠OP A =120°,求椭圆的离心率.【解】 不妨设A (a,0),点P 在第一象限,由题意,点P 的横坐标是a2,设P ⎝ ⎛⎭⎪⎫a 2,y ,由点P 在椭圆上,得⎝ ⎛⎭⎪⎫a 22a 2+y 2b 2=1,y 2=34b 2,即P ⎝ ⎛⎭⎪⎫a 2,32b ,又∠OP A =120°,所以∠POA =30°,故tan ∠POA =32b a 2=33,所以a =3b ,所以e=ca =a 2-b 2a=(3b )2-b 23b=223. [能力提升层次]1.(2015·福州高二期末)设椭圆的两个焦点分别为F 1,F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A.22 B.2-1 C .2- 2 D.2-12【解析】 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 由题得|PF 2|=b 2a =2c , 即a 2-c 2a =2c ,得离心率e =2-1,故选B. 【答案】 B2.(2014·清远高二期末)“m =3”是“椭圆x 24+y 2m =1的离心率为12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 椭圆x 24+y 2m =1离心率为12, 当0<m <4时,4-m 2=12,得m =3,当m >4时,m -4m=12,得m =163,即“m =3”是“椭圆x 24+y 2m =1的离心率为12”的充分不必要条件. 【答案】 A3.(2015·济南历城高二期末)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若AP →=2PB →,则椭圆的离心率是________.【解析】 由AP →=2PB →,得|AO |=2|FO |(O 为坐标原点),即a =2c , 则离心率e =12. 【答案】 124.(2014·青海省西宁)已知点A ,B 分别是椭圆x 236+y 220=1的左、右顶点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,P A ⊥PF .(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,且M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.【解】 (1)由已知可得A (-6,0),B (6,0),F (4,0), 设点P 的坐标是(x ,y ),则AP →=(x +6,y ),FP →=(x -4,y ).由已知得⎩⎪⎨⎪⎧x 236+y 220=1,(x +6)(x -4)+y 2=0,则2x 2+9x -18=0,解得x =32或x =-6. 由于y >0,只能取x =32,于是y =52 3.所以点P 的坐标是⎝⎛⎭⎪⎫32,523.(2)直线AP 的方程是x -3y +6=0. 设点M 的坐标是(m,0),则M 到直线AP 的距离是|m +6|2,又B (6,0), 于是|m +6|2=|m -6|, 又-6≤m ≤6,解得m =2,设椭圆上的点(x ,y )到点M 的距离为d ,有d 2=(x -2)2+y 2=x 2-4x +4+20-59x 2=49⎝ ⎛⎭⎪⎫x -922+15, 由于-6≤x ≤6,所以当x =92时,d 取最小值15.。
椭圆专题
一、选择题
1.(2015·人大附中月考)焦点在x轴上,短轴长为8,离心率为35的椭
圆的标准方程是( )
A.x2100+y236=1 B.x2100+y264=1C.x225+y216=1 D.x225+y29=1
2.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率
为( )A.12 B.13 C.14 D.22
3曲线x225+y29=1与x29-k+y225-k=1(0
C.有不等的焦距,不同的焦点D.以上都不对
4.已知O是坐标原点,F是椭圆x24+y23=1的一个焦点,过F且与x
轴垂直的直线与椭圆交于M,N两点,则cos∠MON的值为( )
A.513 B.-513 C.21313 D.-21313
5.已知长方形ABCD,AB=4,BC=3,则以A,B为焦点,且过C、
D的椭圆的离心率为________.
6.设AB是椭圆x2a2+y2b2=1的不垂直于对称轴的弦,M为AB的中点,
O为坐标原点,则kAB·kOM=________.
7.(2014·天津高二检测)已知P(m,n)是椭圆x2+y22=1上的一个动点,
则m2+n2的取值范围是________.
8.(1)求与椭圆x29+y24=1有相同的焦点,且离心率为55的椭圆的标准
方程;(2)已知椭圆的两个焦点间的距离为8,两个顶点坐标分别是(-
6,0),(6,0),求焦点在x轴上的椭圆的标准方程.
9.(2014·菏泽高二检测)设椭圆x2a2+y2b2=1(a>b>0)与x轴交于点A,
以OA为边作等腰三角形OAP,其顶点P在椭圆上,且∠OPA=120°,
求椭圆的离心率.
10.(2015·福州高二期末)设椭圆的两个焦点分别为F1,F2,过F2作
椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭
圆的离心率是( )A.22 B.2-1C.2-2 D.2-12
2.(2014·清远高二期末)“m=3”是“椭圆x24+y2m=1的离心率为12”
的( )A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
3.(2015·济南历城高二期末)已知椭圆x2a2+y2b2=1(a>b>0)的左焦点为
F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点
P.若AP→=2PB→,则椭圆的离心率是________.
4.(2014·青海省西宁)已知点A,B分别是椭圆x236+y220=1的左、右顶
点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥
PF.
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,且M到直线AP的距离等于
|MB|,求椭圆上的点到点M的距离d的最小值.