苏教版高中数学选修(2-1)-3.2典型例题:平行与垂直关系的向量证法
- 格式:doc
- 大小:394.50 KB
- 文档页数:8
3.2 例析利用空间向量解决形形色色的平行问题一.证明线线平行证明两直线平行可用112233//,,()a b a b a b a b R λλλλ⇔===∈或312123//a a a a b b b b ⇔==. 例1:已知正方体''''ABCD A B C D -,E 、F 分别为'AA 和'CC 的中点.求证://'BF ED .证明:不妨设正方体的边长为1,建立空间直角坐标系D xyz -,则相关各点坐标为(1,1,0)B ,1(0,1,)2F ,1(1,0,)2E ,'(0,0,1)D .11(0,1,)(1,1,0)(1,0,)22BF =-=-,11'(0,0,1)(1,0,)(1,0,)22ED =-=-.∵'1ED BF =⋅, ∴'//ED BF 即//'BF ED .例2:如果两条直线同垂直于一个平面,那么这两条直线平行.已知:直线OA ⊥平面α,直线BD ⊥平面α,O 、B 为垂足,求证://OA BD . 证明:以点O 为原点,以射线OA 为非负z 轴,建立空间直角坐标系O xyz -,i ,j ,k 为沿x 轴,y 轴,z 轴的坐标向量,且设(,,)BD x y z =.∵BD α⊥,∴BD i ⊥,BD j ⊥. ∴(,,)(1,0,0)0BD i x y z x ⋅=⋅==,(,,)(0,1,0)0BD j x y z y ⋅=⋅==,∴(0,0,)BD z zk == ∴//BD k . ∵O 、B 为不同两点, ∴//BD OA .二.证明线面平行例3:如图已知四边形ABCD 和ABEF 是两个正方形,MN 分别在其对角线FB 、AC 上,且FM AN =.求证://MN 平面EBC .DB O Aα证明:在正方形ABCD 和ABEF 中, ∵FM AN =,FB AC =,∴存在实数λ使FM FB λ=,AN AC λ=, ∴MN MF FA AN =++BF EB AC λλ=++()BE BA AB AD EB λ=++++()()(1)BE AD EB BE BC BE BE BC λλλλ=++=+-=-+,∴MN 、BE 、BC 共面 ∵M ∉平面EBC ,∴//MN 平面EBC .向量p 与两个不共线的向量a 、b 共面的充要条件是存在实数对x ,y 使p xa yb =+.利用共面向量定理可以证明线面平行问题.本题用的就是向量法.注意:直线l 的方向向量为a ,平面α的法向量为n ,且l α⊄,若a n ⊥即0a n ⋅=则//a α.例4:棱长都等于2的正三棱柱'''ABC A B C -,点D 是AC 的中点.求证:'//AB 平面'DBC .证明:如图所示,建立空间直角坐标系D xyz -,则相关各点坐标为(1,0,0)A -,2)B,B ,(0,0,0)D ,'(1,0,2)C .设平面'DBC 法向量为(,,)n x y z =,DB =,'(1,0,2)DC =,30''20n DB n DB y n DC n DC x z ⎧⎧⊥⋅==⎪⎪⇒⎨⎨⊥⋅=+=⎪⎪⎩⎩, 令1z =取平面的一个法向量为(2,0,1)n =-.∵'2)AB =,(2,0,1)n =-.∴'2020n AB ⋅=-++=, ∴'//AB 平面'DBC .三.证明面面平行平面α的法向量为1n ,平面β的法向量为2n ,若12//n n 即12n n λ=则//αβ.ABDCEFM Nxy例5:已知正方体''''ABCD A B C D -.求证:平面''//AB D 平面'BDC .证明:不妨设正方体的边长为1,建立空间直角坐标系D xyz -,则相关各点坐标为(1,0,0)A ,'(1,1,1)B ,'(0,0,1)D ,(1,1,0)B ,(0,0,0)D ,'(0,1,1)C .设平面''AB D 法向量为1111(,,)n x y z =,'(0,1,1)AB =,''(1,1,0)D B =,11111111''0''''0n AB n AB y z n D B n D B x y ⎧⎧⊥⋅=+=⎪⎪⇒⎨⎨⊥⋅=+=⎪⎪⎩⎩, 令11y =取平面''AB D 的一个法向量为1(1,1,1)n =--.平面'BDC 法向量为2222(,,)n x y z =,(1,1,0)DB =,'(0,1,1)DC =,222222220''0n DB n DB x y n DC n DC y z ⎧⎧⊥⋅=+=⎪⎪⇒⎨⎨⊥⋅=+=⎪⎪⎩⎩, 令21y =取平面'BDC 的一个法向量为2(1,1,1)n =--. ∵121n n =⋅, ∴平面''//AB D 平面'BDC .。
不可忽视的利用空间向量处理垂直与平行关系问题山东省利津县第一中学 胡彬 257400关于空间向量在几何体中的应用,同学们在学习中注重的往往是两用空间向量解决求角球距离的问题,却忽视了利用空间向量处理垂直与平行关系问题.这样的做法往往导致了一旦遇到几何体中的垂直与平行关系问题要处理,而几何方法又无法解决时,可能就会束手无策,坐以待毙了.而实际上,利用空间向量处理垂直与平行关系问题同样会带来直观、运算量小、减少空间想象的力度等优点.一. 利用空间向量处理垂直关系问题例1.ABC-C 11B A 是各棱长均相等的正三棱柱,D 是侧棱1CC 的中点.求证:平面AB 1D ⊥平面ABB 1A 1 .[分析]:线与线、线与面、面与面的垂直平行关系是历年高考命题的热点,请注意各种关系的相互转化并最终转化到平面问题或比较简单、具体的问题而加以解决。
若用空间向量法则证明垂直问题主要是用好平面的法向量。
[解法一]取AB 1的中点M ,AB 中点N ,连结DM ,MN ,CN MN ∥21BB 1∥CD 且MN =21BB 1=CD DMA1B1BNACC 1∴ DM ∥CN 且 DM=CN由已知可得 CN ⊥AA 1,且CN ⊥AB ∴CN ⊥面AB B 1A 1, DM ⊥面AB B 1A 1,且 DM ⊂面AB 1D, ∴面AB 1D ⊥面AB B 1A 1[回顾]面面垂直的判定定理“l ⊥α , l ⊂α ⇒ α ⊥β ”中,首先,L 应是β内垂直于交线的直线。
将一个向量表示成几个便于计算的向量相加(首尾相接)在证线与线垂直中常用。
于是有下面的证法二。
[证法二] ·1AA =(++211AB )·1AA =(++211AA +2111B A )·1AA =-21a 2+0+21a 2+0 (a 为棱长)同样 DM ·AB =DC ·AB +CA ·AB +211AA ·AB +2111B A ·AB =0-21a 2+0+21a 2=0∴DM ⊥相交直线AB. AA 1, ∴DM ⊥平面AB B 1A 1 且 DM ⊂平面AB 1D ∴平面AB 1D ⊥平面AB B 1A 1.本题也可以建立直角坐标系,利用向量坐标证明或证明面AB 1D 与面ABC 的法向量数量积为0.[证法三]以AB 的中点O 为原点,射线OB ,OC ,OM (M 是AB 1的中点)分别为x 轴,y 轴、z 轴正向建立空间直角坐标系.如图,设所有的棱长均为2,则A (-1,0,0),B (1,0,0)D (0,3 ,1), B(1,0,2) xyCDA1MAOB B1C 1设平面AB 1D 的法向量为n =(x,y,z )由n ·AD =(x,y,z )(1,3,1)=x+3y+z=0和n ·1AB =(x,y,z )(2,0,2)=2x+2z=0 ,取=(-1,0,1).而平面AB B 1A 1的法向量为=(0, 3,0)·=(-1,0,1)·(0, 3,0)=0+0+0=0 ∴⊥∴平面AB 1D ⊥平面AB B 1A 1.[回顾]:向量坐标法解题时注意;(1)点坐标,向量坐标,向量关系三大步的运算要准确,(2)将题意转化为相应的向量计算。
.空间线面关系的判定(二)垂直关系[学习目标].会利用平面法向量证明两个平面垂直.能利用直线的方向向量和平面的法向量判定并证明空间中的垂直(线线、线面、面面)关系.知识点空间垂直关系的向量表示空间中的垂直关系线线垂直线面垂直 面面垂直 设直线的方向向量为=(,,),直线的方向向量为=(,,),则⊥⇔⊥⇔·=设直线的方向向量为=(,,),平面α的法向量为=(,,),则⊥α⇔∥⇔=,∈ 设平面α的法向量为=(,,),平面β的法向量为=(,,),则α⊥β⇔⊥⇔·=思考.用向量法如何证明线面垂直?答案证直线的方向向量与平面的法向量平行..平面α上的向量与平面β上的向量垂直,能判断α⊥β吗?答案不能.题型一证明线线垂直问题例如图,△和△所在平面互相垂直,且===,∠=∠=°,,分别为,的中点.求证:⊥. 证明由题意,以点为坐标原点,在平面内过点作垂直于的直线为轴,所在直线为轴,在平面内过点作垂直的直线为轴,建立如图所示的空间直角坐标系,易得(),(,-,),(,-),(),因而(,,),(,,),所以=(,,-),=(),因此·=.从而⊥,所以⊥.反思与感悟证明两直线垂直的基本步骤:建立空间直角坐标系→写出点的坐标→求直线的方向向量→证明向量垂直→得到两直线垂直.跟踪训练如图所示,在四棱锥-中,⊥底面,垂足为,⊥于,⊥于,∠=°,==,是的中点.求证⊥.证明以为坐标原点建立空间直角坐标系,设===,则(),().∵∠=°,∴△为正三角形.∴(,,),(,,).设(,),由⊥得·=,即=,则(,,),∴=(-,,).又=(,,),∴·=-×+×=,∴⊥,即⊥.题型二证明线面垂直问题。
用向量的方法证明平行与垂直关系平行与垂直是向量的重要性质,可以用向量的方法进行证明。
接下来,我将介绍如何用向量的方法证明平行和垂直关系,以及一些相关的性质和定理。
1.平行性质的证明:两个向量a和b平行的定义是它们的方向相同或相反,并且它们的长度可以不相等。
下面是两个向量平行的证明方法:方法一:向量比例法如果向量a和b平行,那么可以找到一个非零实数k,使得a=k*b。
可以通过比较向量的坐标分量来找到这个常数k。
如果两个向量平行,它们的对应坐标分量之间的比值应该相等。
举例来说,如果有向量a=(1,2,3)和向量b=(2,4,6),我们可以通过将它们的相同位置的坐标分量相除来证明它们平行,如下所示:1/2=2/4=3/6=1/2这表明向量a和b的对应坐标分量比值相等,因此它们是平行的。
方法二:向量点乘法如果两个向量a和b平行,那么它们的点乘等于它们的长度之积。
即a·b=,a,*,b,其中,a,和,b,分别表示向量a和b的长度。
假设有向量a=(x1, y1, z1)和向量b=(x2, y2, z2),那么它们的点乘为a·b = x1*x2 + y1*y2 + z1*z2、另一方面,它们的长度之积为,a,*,b, = sqrt(x1^2 + y1^2 + z1^2) * sqrt(x2^2 + y2^2 + z2^2)。
如果将这两个等式相等,即a·b = ,a,*,b,那么可以得出向量a和b平行。
2.垂直性质的证明:两个向量a和b垂直的定义是它们的点乘为零,即a·b=0。
下面是两个向量垂直的证明方法:方法一:向量内积法两个向量a和b的点乘为a·b=x1*x2+y1*y2+z1*z2、如果a·b=0,那么可以证明向量a和b垂直。
举例来说,如果有向量a=(1,2,3)和向量b=(2,-1,-2),我们可以计算它们的点乘为:a·b=1*2+2*(-1)+3*(-2)=0因此,向量a和b垂直。
§3.2 空间向量的应用3.2.1 直线的方向向量与平面的法向量 3.2.2 空间线面关系的判定(一)——平行关系学习目标 1.掌握空间点、线、面的向量表示.2.理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.3.能用向量法证明直线与直线、直线与平面、平面与平面的平行问题.知识点一 直线的方向向量与平面的法向量思考 怎样用向量来表示点、直线、平面在空间中的位置?答案 (1)点:在空间中,我们取一定点O 作为基点,那么空间中任意一点P 的位置就可以用向量OP →来表示.我们把向量OP →称为点P 的位置向量.(2)直线:①直线的方向向量:和这条直线平行或共线的非零向量.②对于直线l 上的任一点P ,在直线上取AB →=a ,则存在实数t ,使得AP →=tAB →.(3)平面:①空间中平面α的位置可以由α内两条相交直线来确定.对于平面α上的任一点P ,a ,b 是平面α内两个不共线向量,则存在有序实数对(x ,y ),使得OP →=x a +y b . ②空间中平面α的位置还可以用垂直于平面的直线的方向向量表示. 梳理 (1)用向量表示直线的位置:(2)用向量表示平面的位置:①通过平面α上的一个定点O和两个向量a和b来确定:②通过平面α上的一个定点A和法向量来确定:(3)直线的方向向量和平面的法向量:知识点二利用空间向量处理平行问题思考(1)设v1=(a1,b1,c1),v2=(a2,b2,c2)分别是直线l1,l2的方向向量.若直线l1∥l2,则向量v1,v2应满足什么关系.(2)若已知平面外一直线的方向向量和平面的法向量,则这两向量满足哪些条件可说明直线与平面平行?(3)用向量法处理空间中两平面平行的关键是什么?答案(1)由直线方向向量的定义知若直线l1∥l2,则直线l1,l2的方向向量共线,即l1∥l2⇔v1∥v2⇔v1=λv2(λ∈R).(2)可探究直线的方向向量与平面的法向量是否垂直,进而确定线面是否平行.(3)关键是找到两个平面的法向量,利用法向量平行来说明两平面平行.梳理(1)空间中平行关系的向量表示:的法向量分别为μ,v,则设直线l,m的方向向量分别为a,b,平面α,β(2)利用空间向量解决平行问题时,第一,建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;第二,通过向量的运算,研究平行问题;第三,把向量问题再转化成相应的立体几何问题,从而得出结论.1.若两条直线平行,则它们的方向向量方向相同或相反.(√)2.平面α的法向量是唯一的,即一个平面不可能存在两个不同的法向量.(×) 3.两直线的方向向量平行,则两直线平行.(×)4.直线的方向向量与平面的法向量的方向相同或相反时,直线与平面垂直.(√)类型一 求直线的方向向量、平面的法向量例1 如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点.AB =AP =1,AD =3,试建立恰当的空间直角坐标系,求平面ACE 的一个法向量.解 因为P A ⊥平面ABCD ,底面ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →,AD →,AP →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系A -xyz ,则D (0,3,0),E ⎝⎛⎭⎫0,32,12,B (1,0,0),C (1,3,0),于是AE →=⎝⎛⎭⎫0,32,12,AC →=(1,3,0).设n =(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +3y =0,32y +12z =0,所以⎩⎨⎧x =-3y ,z =-3y ,令y =-1,则x =z = 3.所以平面ACE 的一个法向量为n =(3,-1,3). 引申探究若本例条件不变,试求直线PC 的一个方向向量和平面PCD 的一个法向量. 解 由例1解析图可知,P (0,0,1),C (1,3,0), 所以PC →=(1,3,-1), 即为直线PC 的一个方向向量. 设平面PCD 的法向量为 n =(x ,y ,z ).因为D (0,3,0),所以PD →=(0,3,-1). 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎨⎧x +3y -z =0,3y -z =0,所以⎩⎨⎧x =0,z =3y ,令y =1,则z = 3.所以平面PCD 的一个法向量为n =(0,1,3). 反思与感悟 利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z ). (2)选向量:在平面内选取两个不共线向量AB →,AC →. (3)列方程组:由⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,列出方程组.(4)解方程组:⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0.(5)赋非零值:取其中一个为非零值(常取±1).(6)得结论:得到平面的一个法向量.跟踪训练1 如图所示,在四棱锥S -ABCD 中,底面是直角梯形,∠ABC =90°,SA ⊥底面ABCD ,且SA =AB =BC =1,AD =12,建立适当的空间直角坐标系,求平面SCD 与平面SBA的一个法向量.解 如图,以A 为坐标原点,以AD →,AB →,AS →分别为x ,y ,z 轴的正方向建立空间直角坐标系A -xyz ,则A (0,0,0),D ⎝⎛⎭⎫12,0,0, C (1,1,0),S (0,0,1), 则DC →=⎝⎛⎭⎫12,1,0, DS →=⎝⎛⎭⎫-12,0,1. 易知向量AD →=⎝⎛⎭⎫12,0,0是平面SAB 的一个法向量. 设n =(x ,y ,z )为平面SDC 的法向量, 则⎩⎨⎧n ·DC →=12x +y =0,n ·DS →=-12x +z =0,即⎩⎨⎧y =-12x ,z =12x .取x =2,则y =-1,z =1,∴平面SDC 的一个法向量为(2,-1,1). 类型二 证明线线平行问题例2 已知直线l 1与l 2的方向向量分别是a =(2,3,-1),b =(-6,-9,3). 证明:l 1∥l 2.证明 ∵a =(2,3,-1),b =(-6,-9,3),∴a =-13b ,∴a ∥b ,即l 1∥l 2.反思与感悟 两直线的方向向量共线时,两直线平行;否则两直线相交或异面.跟踪训练2 已知在四面体ABCD 中,G ,H 分别是△ABC 和△ACD 的重心,则GH 与BD 的位置关系是________. 答案 平行解析 设E ,F 分别为BC 和CD 的中点,则GH →=GA →+AH →=23(EA →+AF →)=23EF →,所以GH ∥EF ,所以GH ∥BD .类型三 利用空间向量证明线面、面面平行问题例3 已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .证明 (1)以D 为坐标原点,以DA →,DC →,DD 1—→的方向为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC 1—→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1). 设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则n 1⊥DA →,n 1⊥AE →,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1—→·n 1=-2+2=0,所以FC 1—→⊥n 1. 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .(2)因为C 1B 1—→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量.由n 2⊥FC 1—→,n 2⊥C 1B 1—→,得⎩⎪⎨⎪⎧n 2·FC 1—→=2y 2+z 2=0,n 2·C 1B 1—→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .反思与感悟 利用向量证明平行问题,可以先建立空间直角坐标系,求出直线的方向向量和平面的法向量,然后根据向量之间的关系证明平行问题.跟踪训练3 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,P A =BC =12AD =1,问在棱PD 上是否存在一点E ,使CE ∥平面P AB ?若存在,求出E 点的位置;若不存在,请说明理由.解 以A 为坐标原点.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系A -xyz ,如图所示.∴P (0,0,1),C (1,1,0),D (0,2,0), 设存在满足题意的点E (0,y ,z ), 则PE →=(0,y ,z -1), PD →=(0,2,-1), ∵PE →∥PD →,∴y ×(-1)-2(z -1)=0,①∵AD →=(0,2,0)是平面P AB 的法向量, 又CE →=(-1,y -1,z ),CE ∥平面P AB , ∴CE →⊥AD →,∴(-1,y -1,z )·(0,2,0)=0.∴y =1,代入①得z =12,∴E 是PD 的中点,∴存在点E ,当点E 为PD 中点时,CE ∥平面P AB .1.若点A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量的坐标可以是________.(填序号)①(-1,0,1);②(1,4,7);③(2,4,6). 答案 ③解析 显然AB →=(2,4,6)可以作为直线l 的一个方向向量.2.已知a =(2,4,5),b =(3,x ,y )分别是直线l 1,l 2的方向向量.若l 1∥l 2,则x =________,y =________. 答案 6152解析 由l 1∥l 2得,23=4x =5y ,解得x =6,y =152.3.已知向量n =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是________.(填序号)①n 1=(0,-3,1);②n 2=(-2,0,4); ③n 3=(-2,-3,1);④n 4=(-2,3,-1). 答案 ④解析 由题可知只有④可以作为α的法向量.4.已知向量n =(-1,3,1)为平面α的法向量,点M (0,1,1)为平面内一定点.P (x ,y ,z )为平面内任一点,则x ,y ,z 满足的关系式是________. 答案 x -3y -z +4=0解析 由题可知MP →=(x ,y -1,z -1). 又因为n ·MP →=0,故-x +3(y -1)+(z -1)=0,化简, 得x -3y -z +4=0.5.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝⎛⎭⎫1,12,2,则m 为________. 答案 -8解析 ∵l ∥α,平面α的法向量为⎝⎛⎭⎫1,12,2, ∴(2,m,1)·⎝⎛⎭⎫1,12,2=0, ∴2+12m +2=0,∴m =-8.1.应用向量法证明线面平行问题的方法: (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任意两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法:设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).一、填空题1.已知l 1的方向向量为v 1=(1,2,3),l 2的方向向量为v 2=(λ,4,6),若l 1∥l 2,则λ=________. 答案 2解析 ∵l 1∥l 2,∴v 1∥v 2,则1λ=24,∴λ=2.2.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则μ的值为________. 答案 12解析 因为a ∥b ,故2μ-1=0,即μ=12.3.直线l 的方向向量s =(-1,1,1),平面α的一个法向量为n =(2,x 2+x ,-x ),若直线l ∥α,则x 的值为________. 答案 ±2解析 易知-1×2+1×(x 2+x )+1×(-x )=0, 解得x =±2.4.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 的值为________. 答案 4解析 因为α∥β,所以平面α与平面β的法向量共线, 所以(-2,-4,k )=λ(1,2,-2), 所以⎩⎪⎨⎪⎧-2=λ,-4=2λ,k =-2λ,解得⎩⎪⎨⎪⎧λ=-2,k =4.所以k 的值是4.5.已知平面α内两向量a =(1,1,1),b =(0,2,-1)且c =m a +n b +(4,-4,1).若c 为平面α的法向量,则m ,n 的值分别为________. 答案 -1,2解析 c =m a +n b +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1)=(m +4,m +2n -4,m -n +1),由c 为平面α的法向量,得⎩⎪⎨⎪⎧ c ·a =0,c ·b =0,得⎩⎪⎨⎪⎧m =-1,n =2.6.已知A (4,1,3),B (2,3,1),C (3,7,-5),点P (x ,-1,3)在平面ABC 内,则x 的值为________. 答案 11解析 ∵点P 在平面ABC 内, ∴存在实数k 1,k 2, 使AP →=k 1AB →+k 2AC →,即(x -4,-2,0)=k 1(-2,2,-2)+k 2(-1,6,-8),∴⎩⎪⎨⎪⎧ 2k 1+6k 2=-2,k 1+4k 2=0,解得⎩⎪⎨⎪⎧k 1=-4,k 2=1.∴x -4=-2k 1-k 2=8-1=7, 即x =11.7.已知l ∥α,且l 的方向向量为m =(2,-8,1),平面α的法向量为n =(1,y,2),则y =________.答案 12解析 ∵l ∥α,∴l 的方向向量m =(2,-8,1)与平面α的法向量n =(1,y,2)垂直,∴2×1-8×y +2=0,∴y =12. 8.若平面α的一个法向量为u 1=(-3,y,2),平面β的一个法向量为u 2=(6,-2,z ),且α∥β,则y +z =________.答案 -3解析 ∵α∥β,∴u 1∥u 2,∴-36=y -2=2z. ∴y =1,z =-4.∴y +z =-3.9.已知平面α与平面β平行,若平面α与平面β的法向量分别为μ=(5,25,5),v =(t,5,1),则t 的值为________.答案 1解析 ∵平面α与平面β平行,∴平面α的法向量μ与平面β的法向量v 平行,∴5t =255=51,解得t =1. 10.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量为n =(-1,-1,-1),且β与α不重合,则β与α的位置关系是________.答案 α∥β解析 AB →=(0,1,-1),AC →=(1,0,-1),n ·AB →=(-1,-1,-1)·(0,1,-1)=-1×0+(-1)×1+(-1)×(-1)=0,n ·AC →=(-1,-1,-1)·(1,0,-1)=-1×1+0+(-1)·(-1)=0,∴n ⊥AB →,n ⊥AC →.∴n 也为α的一个法向量.又α与β不重合,∴α∥β.11.若平面α的一个法向量为u 1=(m,2,-4),平面β的一个法向量为u 2=(6,-4,n ),且α∥β,则m +n =________.答案 5解析 ∵α∥β,∴u 1∥u 2.∴m 6=2-4=-4n∴m =-3,n =8.∴m +n =5.二、解答题12.如图,在正方体ABCD -A 1B 1C 1D 1中,求证:AC 1—→是平面B 1D 1C 的法向量.证明 如图,以D 为坐标原点,DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D 1(0,0,1),A (1,0,0),C (0,1,0),B 1(1,1,1),C 1(0,1,1).所以AC 1—→=(-1,1,1),D 1B 1—→=(1,1,0),CB 1—→=(1,0,1),所以AC 1—→·D 1B 1—→=(-1,1,1)·(1,1,0)=0,AC 1—→·CB 1—→=(-1,1,1)·(1,0,1)=0,所以AC 1—→⊥D 1B 1—→,AC 1—→⊥CB 1→,又B 1D 1∩CB 1=B 1,且B 1D 1,CB 1⊂平面B 1D 1C ,所以AC 1⊥平面B 1D 1C ,AC 1—→是平面B 1D 1C 的法向量.13.已知A ⎝⎛⎭⎫0,2,198,B ⎝⎛⎭⎫1,-1,58,C ⎝⎛⎭⎫-2,1,58是平面α内的三点,设平面α的法向量a =(x ,y ,z ),求x ∶y ∶z 的值.解 AB →=⎝⎛⎭⎫1,-3,-74,AC →=⎝⎛⎭⎫-2,-1,-74, 由⎩⎪⎨⎪⎧ a ·AB →=0,a ·AC →=0,得⎩⎨⎧ x -3y -74z =0,-2x -y -74z =0, 解得⎩⎨⎧x =23y ,z =-43y , 则x ∶y ∶z =23y ∶y ∶⎝⎛⎭⎫-43y =2∶3∶(-4). 三、探究与拓展14.已知O ,A ,B ,C ,D ,E ,F ,G ,H 为空间的9个点(如图所示),并且OE →=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH →+mEF →.求证:(1)A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面;(2)AC →∥EG →.证明 (1)由AC →=AD →+mAB →,EG →=EH →+mEF →,知A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面.(2)∵EG →=EH →+mEF →=OH →-OE →+m (OF →-OE →)=k (OD →-OA →)+km (OB →-OA →)=kAD →+kmAB →=k (AD →+mAB →)=kAC →,∴AC →∥EG →.15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面P AO?解 如图所示,以点D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立空间直角坐标系,在CC 1上任取一点Q ,连结BQ ,D 1Q .设正方体的棱长为1,则O ⎝⎛⎭⎫12,12,0,P ⎝⎛⎭⎫0,0,12, A (1,0,0),B (1,1,0),D 1(0,0,1),则Q (0,1,z ),则OP →=⎝⎛⎭⎫-12,-12,12, BD 1→=(-1,-1,1),∴OP →∥BD 1—→,∴OP ∥BD 1.AP →=⎝⎛⎭⎫-1,0,12,BQ →=(-1,0,z ), 当z =12时,AP →=BQ →, 即当AP ∥BQ 时,有平面P AO ∥平面D 1BQ , ∴当Q 为CC 1的中点时,平面D 1BQ ∥平面P AO .。
空间向量在空间平行垂直中的应用题型一 利用空间向量证明平行问题例1 如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 、N分别是C 1C 、B 1C 1的中点。
求证:MN ∥平面A 1BD 。
思维启迪:证明线面平行,可以利用判定定理先证线线平行;也可以寻找平面的法向量。
证明 方法一 如图所示,以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,D (0,0,0),A 1(1,0,1),B (1,1,0), 于是MN →=⎝ ⎛⎭⎪⎫12,0,12, 设平面A 1BD 的法向量是n =(x ,y ,z )。
则n ·DA 1→=0,且n ·DB →=0,得⎩⎨⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1,∴n =(1,-1,-1)。
又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0, ∴MN →⊥n ,又MN ⊄平面A 1BD , ∴MN ∥平面A 1BD 。
方法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→, ∴MN →∥DA 1→,又∵MN 与DA 1不共线,∴MN ∥DA 1, 又∵MN ⊄平面A 1BD ,A 1D ⊂平面A 1BD ,∴MN ∥平面A 1BD 。
探究提高 用向量证明线面平行的方法有:(1)证明该直线的方向向量与平面的某一法向量垂直;(2)证明该直线的方向向量与平面内某直线的方向向量平行;(3)证明该直线的方向向量可以用平面内的两个不共线的向量线性表示。
本题易错点:只证明MN ∥A 1D ,而忽视MN ⊄平面A 1BD 。
练习: 如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E 、F 、G 分别是线段P A 、PD 、CD 的中点。
平行与垂直关系的向量证法知识点一 求平面的法向量已知平面α经过三点A1,2,3,B2,0,-1,C3,-2,0,试求平面α的一个法向量.解 ∵A1,2,3,B2,0,-1,C3,-2,0,AB =1,-2,-4,AB 1C AE 1F AE 1FAE 1D F AE 1D F AE AE 1F 1F AE 1F1C 1C 1B C 1AD 1A D ∉1C ⊂1C 1B C 11B C 1B B 1B O 1OC 1D O OD 1OC OD 1B C 1OC OD 1C ⊄1C1B C OD 1OC 10,0,n OD n OC ⎧⨯=⎪⎨⨯=⎪⎩1B C 1B C 1C 1B C 1B C 1B CCB BE CB CB BE1C 1M ),则EF =(-1,1,0),--1D M -2)∵1D M ⊥平面EFB 1,∴1D M ⊥EF,1D M ⊥B 1E ,∴1D M ·EF =0且1D M ·-2+2=0,-2-2(m-2)=0,⎧⎨⎩=1,故取B 1B的中点为M 就能满足D 1M⊥平面EFB 1【反思感悟】 证明直线与平面垂直有两种方法:1用直线与平面垂直的判定定理;2证明该直线所在向量与平面的法向量平行.在正三棱柱ABC —A 1B 1C 1中,B 1C⊥A 1B 求证:AC 1⊥A 1B证明 建立空间直角坐标系C 1—y ,设AB =a ,CC 1=b则A 1,B0,a ,b ,B 10,a,0,C0,0,b ,A , C 10,0,0. 于是1A B =1B C =(0,-a ,b ),1AC =∵B 1C⊥A 1B ,∴1B C ·1A B =-+b 2=0, 而1A C ·1A B =a 2-a 2-b 2=-b 2=0 ∴1A C ⊥1A B 即AC 1⊥A 1B 课堂小结:1.用待定系数法求平面法向量的步骤:1建立适当的坐标系.2设平面的法向量为n =,y ,.3求出平面内两个不共线向量的坐标a =a 1,b 1,c 1,b =a 2,b 2,c 2.4根据法向量定义建立方程组5解方程组,取其中一解,即得平面的法向量 2.平行关系的常用证法AB =λAB AB AB ----------2a AB AB||ABAB ,y ,是平面α内任意一点,则,y ,满足的关系式是________________.答案 +y +=0解析OM ·e=(,y ,)·(1,1,1)=y=08.若直线a 和b 是两条异面直线,它们的方向向量分别是1,1,1和2,-3,-2,则直线a 和b 的公垂线与两异面直线垂直相交的直线的一个方向向量是________.答案 1,4,-5答案不唯一解析 设直线a 和b 的公垂线的一个方向向量为n =,y ,,a 与b 的方向向量分别为n 1,n 2,由题意得即:解之得:y =4,=-5,令=1, 则有n =1,4,-5. 三、解答题9.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点,求证:1FC 1∥平面ADE ; 2平面ADE∥平面B 1C 1 F证明 如图所示建立空间直角坐标系Dy ,则有D0,0,0、A2,0,0, C0,2,0,C 10,2,2,E2,2,1, F0,0,1,B 12,2,2, 所以1FC =(0,2,1),DA =(2,0,0),AE =(0,2,1)(1)设n 1=(1,y 1,1)是平面ADE 的法向量,则n 1⊥DA,n 1⊥AE,即1,11·2·2,DA x AE y z ⎧=⎪⎨=+⎪⎩11n n 得1110,2,x z y =⎧⎨=-⎩ 令1=2,则y 1=-1, 所以n 1=0,-1,2.因为·n 1=-2+2=0,所以⊥n 1 又因为FC 1平面ADE ,所以FC 1∥平面ADE(2)∵11C B =(2,0,0),设n 2=2,y 2,2是平面B 1C 1F 的一个法向量由n 2⊥,n 2⊥11C B ,得21222112·20,·20,n FC y z n C B x ⎧=+=⎪⎨==⎪⎩得 得2220,2,x z y =⎧⎨=-⎩令2=2得y 2=-1,所以n 2=0,-1,2,因为n 1=n 2,所以平面ADE∥平面B 1C 1F10如图所示,在棱长为1的正方体ABCD —A′B′C′D′中,AP =BQ =b0<b<1,截面PQEF∥A′D,截面PQGH∥AD′1证明:平面PQEF 和平面PQGH 互相垂直;2证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值;3若b =,求D′E 与平面PQEF 所成角的正弦值.解 以D 为原点,射线DA 、DC 、DD′分别为、y 、轴的正半轴建立如图2所示的空间直角坐标系D —y ,由已知得DF =1-b ,故A1,0,0,A′1,0,1,D0,0,0,D′0,0,1,P1,0,b ,Q1,1,b ,E1-b,1,0,F1-b,0,0,Gb,1,1,Hb,0,1.1,证明在所建立的坐标系中,可得PQ=0,1,0,PF=-b,0,-b,PH=b-1,0,1-b,AD=-1,0,1,AD=-1,0,-1,'因为'AD·PF=0,AD·PQ=0,'所以'AD是平面PQEF的法向量因为'AD·PH=0,AD·PQ=0,'所以'AD是平面PQGH的法向量所以平面PQEF和平面PQGH互相垂直2证明,因为EF=0,-1,0,所以EF∥PQ,|EF|=|PQ|,又PF⊥PQ,所以四边形PQEF为矩形,同理四边形PQGH为矩形在所建立的坐标系中可求得|PH|=21-b,|PF|=2b,所以|PH||PF|=2,又|PQ|=1,所以截面PQEF和截面PQGH的面积之和为2,是定值3解由1知'AD=-1,0,1是平面PQEF的法向量.由P为AA′的中点可知,Q、E、F分别为BB′、BC、AD的中点.所以E(1,1,0,),'D E=,因此D′E与平面PQEF所成2角的正弦值等于|cos〈,'D E>=。
_3.2空间向量的应用3.2.1直线的方向向量与平面的法向量[对应学生用书P63]直线的方向向量a1,a2,a3…a n是一组非零共线向量,表示向量a1的有向线段所在直线与直线l平行.问题1:表示向量a2,a3,…a n的有向线段所在直线与直线l的关系怎样?提示:平行或重合.问题2:如何表示a1,a2…a n与直线l的关系呢?提示:利用一个向量来表示直线l的方向,a1,a2,…a n与该向量共线.直线l上的向量e(e≠0)以及与e共线的非零向量叫做直线l的方向向量.平面的法向量直线l与平面α垂直,l1,l2是平面α内的两条直线.问题1:表示直线l的方向向量的有向线段所在的直线与平面α是否垂直?提示:垂直.因为这些直线与l平行或重合.问题2:直线l的方向向量与直线l1,l2的方向向量是否垂直?提示:垂直.1.如果表示非零向量n的有向线段所在直线垂直于平面α,那么称向量n垂直于平面α,记作n⊥α.此时,我们把向量n叫做平面α的法向量.2.与平面垂直的直线叫做平面的法线.因此,平面的法向量就是平面法线的方向向量.1.一条直线有无数个方向向量,它们共线.一个平面有无数个法向量,它们也共线. 2.平面α的一个法向量垂直于与平面α共面的所有向量.3.给定一点A 和一个向量a ,那么过点A ,以向量a 为法向量的平面是惟一的.[对应学生用书P63]利用直线方向向量和平面的法向量判定线面位置关系[例1] 根据下列条件,分别判定相应直线与平面、平面与平面的位置关系: (1)平面α,β的法向量分别是u =(-1,1,-2),v =⎝⎛⎭⎫3,2,-12; (2)直线l 的方向向量a =(-6,8,4),平面α的法向量u =(2,2,-1). [思路点拨] 利用方向向量与法向量的平行或垂直来判断线、面位置关系. [精解详析] (1)∵u =(-1,1,-2),v =⎝⎛⎭⎫3,2,-12, ∴u·v =(-1,1,-2)·⎝⎛⎭⎫3,2,-12=-3+2+1=0, ∴u ⊥v ,故α⊥β.(2)∵u =(2,2,-1),a =(-6,8,4),∴u·a =(2,2,-1)·(-6,8,4)=-12+16-4=0, ∴u ⊥a ,故l ⊂α或l ∥α. [一点通]1.两直线的方向向量共线(垂直)时,两直线平行(垂直).2.直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行.3.两个平面的法向量共线时,两平面平行.1.若两条直线l 1、l 2的方向向量分别为a =(1,2,-2),b =(-2,-4,4),则l 1与l 2的位置关系为________.解析:∵b =-2a ,∴a ∥b ,即l 1∥l 2或e 1与e 2重合. 答案:平行或重合2.根据下列条件,判断相应的线、面位置关系:(1)直线l 1,l 2的方向向量分别是a =(1,-3,-1),b =(8,2,2); (2)平面α,β的法向量分别是u =(1,3,0),v =(-3,-9,0);(3)直线l 的方向向量,平面α的法向量分别是a =(1,-4,-3),u =(2,0,3); (4)直线l 的方向向量,平面α的法向量分别是a =(3,2,1),u =(-1,2,-1). 解:(1)∵a =(1,-3,-1),b =(8,2,2), ∴a ·b =8-6-2=0, ∴a ⊥b ,即l 1⊥l 2.(2)∵u =(1,3,0),v =(-3,-9,0), ∴v =-3u , ∴v ∥u ,即α∥β.(3)∵a =(1,-4,-3),u =(2,0,3), ∴a ·u ≠0且a ≠k u (k ∈R ),∴a 与u 既不共线也不垂直,即l 与α相交但不垂直. (4)∵a =(3,2,1),u =(-1,2,-1), ∴a ·u =-3+4-1=0, ∴a ⊥u ,即l ⊂α或l ∥α.平面的法向量的求解及应用[例2] 已知点A (3,0,0),B (0,4,0),C (0,0,5),求平面ABC 的一个单位法向量. [思路点拨] 可先求出一个法向量,再除以该向量的模,便可得到单位法向量. [精解详析] 由于A (3,0,0),B (0,4,0),C (0,0,5),所以AB u u u r=(-3,4,0),AC u u u r =(-3,0,5).设平面ABC 的法向量为n =(x ,y ,z ),则有n ·AB u u u r=0,且n ·AC u u u r =0,即⎩⎪⎨⎪⎧-3x +4y =0,-3x +5z =0.取z =1,得x =53,y =54,于是n =⎝⎛⎭⎫53,54,1.又|n |=76912,所以平面α的单位法向量是n 0=±⎝⎛⎭⎫20769,15769,12769. [一点通]求平面的法向量的方法与步骤:(1)求平面的法向量时,要选取两相交向量AC u u u r 、AB u u u r.(2)设平面法向量的坐标为n =(x ,y ,z ).(3)联立方程组⎩⎪⎨⎪⎧n ·AC u u u r =0,n ·AB u u u r=0.并解答. (4)求出的向量中三个坐标不是具体的值而是比例关系,设定某个坐标为常数而得到其他坐标.(常数不能为0)3.已知平面α经过三点A (1,2,3),B (2,0,-1),C (3,-2,0),试求平面α的一个法向量.解:∵A (1,2,3),B (2,0,-1),C (3,-2,0),∴AB u u u r=(1,-2,-4),AC u u u r =(2,-4,-3).设平面α的一个法向量是n =(x ,y ,z ).依题意应有n ·AB u u u r=0且n ·AC u u u r =0.即⎩⎪⎨⎪⎧x -2y -4z =0,2x -4y -3z =0.解得z =0,且x =2y . 令x =2,则y =1∴平面α的一个法向量是n =(2,1,0).4.如图所示,在四棱锥S -ABCD 中,底面是直角梯形,∠ABC =90°,SA ⊥底面ABCD ,且 SA =AB =BC =1,AD =12,求平面SCD 与平面SBA的一个法向量.解:因为AD 、AB 、AS 是两两垂直的线段,所以如图所示建立空间直角坐标系A -xyz ,则A (0,0,0),D (12,0,0),C (1,1,0),S (0,0,1),则DC u u u r =⎝⎛⎭⎫12,1,0,DS u u u r=⎝⎛⎭⎫-12,0,1. 由题意易知向量AD u u u r =(12,0,0)是平面SAB 的一个法向量.设n =(x ,y ,z )为平面SDC 的法向量,则⎩⎨⎧n ·DC u u u r =12x +y =0,n ·DS u u u r =-12x +z =0.即⎩⎨⎧y =-12x ,z =12x .取x =2,则y =-1,z =1,∴平面SDC 的一个法向量为(2,-1,1).5.如图所示,四棱锥V -ABCD ,底面ABCD 为正方形,VA ⊥平面ABCD ,以这五个顶点为起点和终点的向量中,求:(1)直线AB 的方向向量;(2)求证:BD ⊥平面VAC ,并确定平面VAC 的法向量.解:(1)由已知易得,在以这五个顶点为起点和终点的向量中,直线AB 的方向向量有:AB u u u r 、BA u u ur 、CD u u u r 、DC u u u r 四个.(2)∵底面ABCD 为正方形,∴BD ⊥AC . ∵VA ⊥平面ABCD ,BD ⊂平面ABCD , ∴BD ⊥VA ,又AC ∩VA =A ,∴BD ⊥平面VAC ,所以平面VAC 的法向量有BD u u u r 、DB u u u r两个.确定平面的法向量通常有两种方法:(1)几何体中已经给出有向线段,只需证明线面垂直.(2)几何体中没有具体的直线,此时可以采用待定系数法求解平面的法向量.[对应课时跟踪训练(二十三)]1.若直线l ⊥平面α,且l 的方向向量为(m,2,4),平面α的法向量为⎝⎛⎭⎫12,1,2,则m 为________.解析:∵l 的方向向量与平面α的法向量平行.∴m 12=21=42.∴m =1.答案:12.设A 是空间任意一点,n 为空间任一非零向量,则适合条件AM u u u u r·n =0的点M 的轨迹是________.解析:AM u u u u r ·n =0称为一个平面的向量表示式,这里考查的是基本概念.答案:过点A 且与向量n 垂直的平面3.设直线l 1的方向向量为a =(2,-1,2),直线l 2的方向向量为b =(1,1,m ),若l 1⊥l 2,则m =________.解析:∵l 1⊥l 2,∴2-1+2m =0.∴m =-12.答案:-124.在空间中,已知平面α过点A (3,0,0)和B (0,4,0)及z 轴上一点C (0,0,a )(a >0),如果平面α与平面xOy 的夹角为45°,则a =________.解析:平面xOy 的法向量为n =(0,0,1),AB u u u r=(-3,4,0),AC u u u r =(-3,0,a ),设平面α的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧-3x +4y =0,-3x +az =0,则3x =4y =az ,取z =1,则u =⎝⎛⎭⎫a 3,a 4,1, 故cos 〈n ,u 〉=1a 29+a 216+1=22. 又∵a >0,∴a =125.答案:1255.已知a =(1,4,3),b =(3,x ,y )分别是直线l 1、l 2的方向向量,若l 1∥l 2,则x =________,y =________.解析:由l 1∥l 2,得13=4x =3y ,解得x =12,y =9.答案:12 96.已知A (2,2,2),B (2,0,0),C (0,2,-2), (1)写出直线BC 的一个方向向量;(2)设平面α经过点A ,且BC u u u r是α的法向量,M (x ,y ,z )是平面α内任一点,试写出x 、y 、z 满足的关系式.解:(1)∵B (2,0,0),C (0,2,-2),∴BC u u u r=(-2,2,-2),即(-2,2,-2)为直线BC 的一个方向向量.(2)由题意AM u u u u r=(x -2,y -2,z -2), ∵BC u u u r ⊥平面α,AM ⊂α,∴BC u u u r ⊥AM u u u u r .∴(-2,2,-2)·(x -2,y -2,z -2)=0. ∴-2(x -2)+2(y -2)-2(z -2)=0. 化简得x -y +z -2=0.7.在正方体ABCD -A 1B 1C 1D 1中, (1)求平面ABCD 的一个法向量; (2)求平面A 1BC 1的一个法向量;(3)若M 为CD 的中点,求平面AMD 1的一个法向量.解:以A 为坐标原点,分别以AB u u u r ,AD u u ur ,1AA u u u u r 所在直线为x轴,y 轴,z 轴建立空间直角坐标系,设正方体的棱长为a .(1)∵平面ABCD 即为坐标平面xOy ,∴n 1=(0,0,1)为其一个法向量. (2)∵B 1D ⊥平面A 1BC 1,又∵1B D u u u u r=(0,a,0)-(a,0,a )=(-a ,a ,-a ), ∴n 2=1a1B D uu u u r =(-1,1,-1)为平面A 1BC 1的一个法向量.(3)设n =(x 0,y 0,z 0)为平面AMD 1的一个法向量,∵AM u u u u r =⎝⎛⎭⎫a 2,a ,0,1AD u u u u r=(0,a ,a ),∴⎩⎪⎨⎪⎧n ·AM u u u u r =(x 0,y 0,z 0)·⎝⎛⎭⎫a 2,a ,0=a 2x 0+ay 0=0,n ·1AD u u u u r =(x 0,y 0,z 0)·(0,a ,a )=ay 0+az 0=0.令x 0=2,则y 0=-1,z 0=1,∴n =(2,-1,1)为平面AMD 1的一个法向量.8.如图,已知ABCD -A 1B 1C 1D 1是长方体,建立的空间直角坐标系如图所示.AB =3,BC =4,AA 1=2.(1)求平面B 1CD 1的一个法向量;(2)设M (x ,y ,z )是平面B 1CD 1内的任意一点,求x ,y ,z 满足的关系式.解:(1)在如题图所示的空间直角坐标系A -xyz 中,各点坐标为B 1(3,0,2),C (3,4,0),D 1(0,4,2),由此得1B C u u u u r =(0,4,-2),1CD u u u r=(-3,0,2);设平面B 1CD 1的一个法向量为a =(x ,y ,z ),则a ⊥1B C u u u u r ,a ⊥1CD u u u r ,从而a ·1B C u u u u r =0,a ·1CD u u u r =0,所以0·x +4·y -2·z =0,-3·x +0·y +2·z =0,解方程组⎩⎪⎨⎪⎧2y -z =0,3x -2z =0,得到⎩⎨⎧y =z2,x =2z 3.不妨取z =6,则y =3,x =4.所以a =(4,3,6)就是平面B 1C 1D 的一个法向量.(2)由题意可得1B M u u u u r=(x -3,y ,z -2),因为a =(4,3,6)是平面B 1CD 1的一个法向量,所以a ⊥1B M u u u u r ,从而a ·1B M u u u u r=0,即4(x -3)+3y +6(z -2)=0,4x +3y +6z =24, 所以满足题意的关系式是4x +3y +6z =24.。
高三数学 立体几何中的垂直问题 知识精讲 苏教版【本讲教育信息】一. 教学内容:立体几何中的垂直问题二. 高考要求:1. 理解直线和平面垂直的概念掌握直线和平面垂直的判定定理;2. 掌握直线和平面垂直的判定定理和性质定理。
3. 通过例题的讲解给学生总结归纳证明线面垂直的常见方法:(1)证直线与平面内的两条相交直线都垂直;(2)证与该线平行的直线与已知平面垂直;(3)借用面面垂直的性质定理;(4)同一法;(5)向量法。
三. 知识点归纳:1. 线面垂直定义:如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直。
其中直线叫做平面的垂线,平面叫做直线的垂面足。
直线与平面垂直简称线面垂直,记作:a ⊥α。
2. 直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
3. 直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
4. 三垂线定理 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系;(2)推理模式:,,PO O PA A a PA a a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭。
5. 三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。
推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭注意:⑴三垂线指PA ,PO ,AO 都垂直α内的直线a 。
其实质是:斜线和平面内一条直线垂直的判定和性质定理。
⑵要考虑a 的位置,并注意两定理交替使用。
6. 两个平面垂直的定义:两个相交成直二面角的两个平面互相垂直;相交成直二面角的两个平面叫做互相垂直的平面。
7. 两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
第7讲 立体几何中的向量方法(一)——证明平行与垂直[最新考纲]1.理解直线的方向向量及平面的法向量.2.能用向量语言表述线线、线面、面面的平行和垂直关系. 3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知 识 梳 理1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0,n·b =0.2.空间位置关系的向量表示辨 析 感 悟1.平行关系(1)直线的方向向量是唯一确定的.(×)(2)两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是平行.(√) 2.垂直关系(3)已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量是n 0=±⎝ ⎛⎭⎪⎫13,-23,23.(√) (4)(2014·青岛质检改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线NO ,AM 的位置关系是异面垂直.(√)[感悟·提升]1.一是切莫混淆向量平行与向量垂直的坐标表示,二是理解直线平行与直线方向向量平行的差异,如(2).否则易造成解题不严谨.2.利用向量知识证明空间位置关系,要注意立体几何中相关定理的活用,如证明直线a ∥b ,可证向量a =λb ,若用直线方向向量与平面法向量垂直判定线面平行,必需强调直线在平面外等.学生用书第125页考点一 利用空间向量证明平行问题【例1】 如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .审题路线 若用向量证明线面平行,可转化为判定向量MN →∥DA 1→,或证明MN →与平面A 1BD 的法向量垂直.证明 法一 如图所示,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则可求得M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,D (0,0,0),A 1(1,0,1),B (1,1,0).于是MN →=⎝ ⎛⎭⎪⎫12,0,12,DA 1→=(1,0,1),DB →=(1,1,0).设平面A 1BD 的法向量是n =(x ,y ,z ). 则n ·DA 1→=0,且n ·DB →=0,得⎩⎨⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1. ∴n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n , 又MN ⊄平面A 1BD , ∴MN ∥平面A 1BD .法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→.∴MN →∥DA 1→, 又∵MN 与DA 1不共线, ∴MN ∥DA 1,又∵MN ⊄平面A 1BD ,A 1D ⊂平面A 1BD , ∴MN ∥平面A 1BD .规律方法 (1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【训练1】 (2013·浙江卷选编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD .证明 如图所示,取BD 的中点O ,以O 为原点,OD ,OP 所在射线为y ,z 轴的正半轴,建立空间直角坐标系O -xyz .由题意知A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0), 因为AQ →=3QC →,所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为点M 为AD 的中点,故M (0,2,1). 又点P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .考点二 利用空间向量证明垂直问题【例2】 (2014·济南质检)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .证明 (1)如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系O -xyz .则O (0,0,0),A (0,-3,0), B (4,2,0),C (-4,2,0),P (0,0,4). 于是AP →=(0,3,4), BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125, 又BC →=(-8,0,0),AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝ ⎛⎭⎪⎫-4,-165,125,则AP →·BM →=(0,3,4)·⎝ ⎛⎭⎪⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM , 又根据(1)的结论知AP ⊥BC ,∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.【训练2】 如图所示,在直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证: (1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .证明 如图,建立空间直角坐标系A -xyz , 令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). (1)取AB 中点为N ,则N (2,0,0), 又C (0,4,0),D (2,0,2),∴DE →=(-2,4,0),NC →=(-2,4,0), ∴DE →=NC →.∴DE ∥NC ,又NC 在平面ABC 内,故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0),B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, 则B 1F →⊥EF →,∴B 1F ⊥EF ,∵B 1F →·AF →=(-2)×2+2×2+(-4)×0=0, ∴B 1F →⊥AF →,即B 1F ⊥AF .又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .学生用书第126页 考点三 利用空间向量解决探索性问题【例3】 (2014·福州调研)如图,在长方体ABCD -A1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点. (1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.审题路线 由长方体特征,以A 为坐标原点建立空间坐标系,从而将几何位置关系转化为向量运算.第(1)问证明B 1E →·AD 1→=0,第(2)问是存在性问题,由DP →与平面B 1AE 的法向量垂直,通过计算作出判定.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a 2,1,0,B 1(a,0,1).故AD 1→=(0,1,1),B 1E →=⎝ ⎛⎭⎪⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝ ⎛⎭⎪⎫a 2,1,0.∵AD 1→·B 1E →=-a2×0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0). 使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a 2,-a要使DP ∥平面B 1AE ,只要n ⊥DP →,有a2-az 0=0, 解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12. 规律方法 立体几何开放性问题求解方法有以下两种:(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,然后再加以证明,得出结论;(2)假设所求的点或线存在,并设定参数表达已知条件,根据题目进行求解,若能求出参数的值且符合已知限定的范围,则存在这样的点或线,否则不存在.本题是设出点P 的坐标,借助向量运算,判定关于z 0的方程是否有解.【训练3】 如图所示,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点. (1)求证:AC ⊥SD .(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由. (1)证明 连接BD ,设AC 交BD 于O ,则AC ⊥BD . 由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,B ⎝ ⎛⎭⎪⎫22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,于是OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a ,则OC →·SD →=0.故OC ⊥SD .从而AC ⊥SD . (2)解 棱SC 上存在一点E 使BE ∥平面P AC . 理由如下:由已知条件知DS →是平面P AC 的一个法向量, 且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0.设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →= ⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at ,由BE →·DS →=0⇔t =13.∴当SE ∶EC =2∶1时,BE →⊥DS →.又BE 不在平面P AC 内,故BE ∥平面P AC .1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想. 2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.3.运用向量知识判定空间位置关系,仍然离不开几何定理.如用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.思想方法8——运用空间向量研究空间位置关系中的转化思想【典例】 (2013·陕西卷)如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2. (1)证明:A 1C ⊥平面BB 1D 1D ;(2)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.(1)证明 法一 由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立直角坐标系,如图.∵AB =AA 1=2,∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0),A 1(0,0,1).①由A 1B 1→=AB →,易得B 1(-1,1,1).∵A 1C →=(-1,0,-1),BD →=(0,-2,0),BB 1→=(-1,0,1),∴A 1C →·BD →=0,A 1C →·BB 1→=0,② ∴A 1C ⊥BD ,A 1C ⊥BB 1,且BB 1∩BD =B ,∴A 1C ⊥平面BB 1D 1D .③ 法二 ∵A 1O ⊥平面ABCD ,∴A 1O ⊥BD .又底面ABCD 是正方形,∴BD ⊥AC ,∴BD ⊥平面A 1OC ,∴BD ⊥A 1C .④又OA 1是AC 的中垂线,∴A 1A =A 1C =2,且AC =2,∴AC 2=AA 21+A 1C 2,∴△AA 1C 是直角三角形,∴AA 1⊥A 1C .又BB 1∥AA 1,∴A 1C ⊥BB 1,又BB 1∩BD =B ,∴A 1C ⊥平面BB 1D 1D . ⑤(2)解 设平面OCB 1的法向量n =(x ,y ,z ).∵OC →=(-1,0,0),OB 1→=(-1,1,1),∴⎩⎪⎨⎪⎧ n ·OC →=-x =0,n ·OB 1→=-x +y +z =0,∴⎩⎪⎨⎪⎧x =0,y =-z ,取n =(0,1,-1), 由(1)知,A 1C →=(-1,0,-1)是平面BB 1D 1D 的法向量,∴cos θ=|cos<n ,A 1C →>|=12×2=12. ⑥ 又0≤θ≤π2,∴θ=π3.[反思感悟] (1)转化化归是求解空间几何的基本思想方法:①中将空间位置、数量关系坐标化.②和③体现了线线垂直与线面垂直的转化,以及将线线垂直转化为向量的数量积为0.在④与⑤中主要实施线面、线线垂直的转化.⑥中把求“平面夹角的余弦值”转化为“两平面法向量夹角的余弦值”.(2)空间向量将“空间位置关系”转化为“向量的运算”.应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.【自主体验】如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,D 为AB 的中点,AC =BC =BB 1.求证:(1)BC 1⊥AB 1;(2)BC 1∥平面CA 1D .证明 如图,以C 1点为原点,C 1A 1,C 1B 1,C 1C 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设AC =BC =BB 1=2,则A (2,0,2),B (0,2,2),C (0,0,2),A 1(2,0,0),B 1(0,2,0),C 1(0,0,0),D (1,1,2).(1)由于BC 1→=(0,-2,-2),AB 1→=(-2,2,-2),所以BC 1→·AB 1→=0-4+4=0,因此BC 1→⊥AB 1→,故BC 1⊥AB 1.(2)连接A 1C ,取A 1C 的中点E ,连接DE ,由于E (1,0,1),所以ED →=(0,1,1),又BC 1→=(0,-2,-2),所以ED →=-12BC 1→,又ED 和BC 1不共线,所以ED ∥BC 1,又DE ⊂平面CA 1D ,BC 1⊄平面CA 1D ,故BC 1∥平面CA 1D .对应学生用书P321基础巩固题组(建议用时:40分钟)一、选择题1.已知平面α,β的法向量分别为μ=(-2,3,-5),v =(3,-1,4),则( ).A .α∥βB .α⊥βC .α、β相交但不垂直D .以上都不正确解析 ∵-23≠3-1≠-54,∴μ与v 不是共线向量,又∵μ·v =-2×3+3×(-1)+(-5)×4=-29≠0,∴μ与v 不垂直,∴平面α与平面β相交但不垂直.答案 C2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ).A .相交B .平行C .在平面内D .平行或在平面内解析 ∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面.则AB 与平面CDE 的位置关系是平行或在平面内.答案 D3.(2014·泰安质检)已知A (1,0,0),B (0,1,0),C (0,0,1)三点,向量n =(1,1,1),则以n 为方向向量的直线l 与平面ABC 的关系是( ).A .垂直B .不垂直C .平行D .以上都有可能解析 易知AB →=(-1,1,0),AC →=(-1,0,1),∴AB →·n =-1×1+1×1+0=0,∴AC →·n=0,则AB →⊥n ,AC →⊥n ,即AB ⊥l ,AC ⊥l ,又AB 与AC 是平面ABC 内两相交直线,∴l ⊥平面ABC .答案 A如图,在长方体ABCD -A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 的位置关系为( ).A .平行B .异面C .垂直D .以上都不对解析以D 点为原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz ,依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0),M (2,2,0). ∴PM →=(2,2,0)-(0,1,3)=(2,1,-3),AM →=(2,2,0)-(22,0,0)=(-2,2,0),∴PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .答案 C5.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( ).A .(1,1,1) B.⎝ ⎛⎭⎪⎫23,23,1 C.⎝ ⎛⎭⎪⎫22,22,1 D.⎝ ⎛⎭⎪⎫24,24,1 解析 连接OE ,由AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线交点,∴M 为线段EF 的中点.在空间坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标⎝ ⎛⎭⎪⎫22,22,1. 答案 C二、填空题6.已知平面α和平面β的法向量分别为a =(1,1,2),b =(x ,-2,3),且α⊥β,则x =________.解析 ∵α⊥β,∴a ·b =x -2+6=0,则x =-4.答案 -47.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1).则不重合的两个平面α与β的位置关系是________.解析 AB →=(0,1,-1),AC →=(1,0,-1),∴n ·AB →=0,n ·AC →=0,∴n ⊥AB →,n ⊥AC →,故n 也是α的一个法向量.又∵α与β不重合,∴α∥β.答案 平行8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.解析 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.由于BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.答案 ①②③三、解答题 9.如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD 且ABCD 为正方形,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1),设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎨⎧ t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .10.如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°的角.(1)求证:CM ∥平面P AD ;(2)求证:平面P AB ⊥平面P AD .证明以C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系C -xyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角,∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP →=(0,-1,2),DA →=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32, (1)设n =(x ,y ,z )为平面P AD 的一个法向量,则⎩⎪⎨⎪⎧ DP →·n =0,DA →·n =0,即⎩⎨⎧ -y +2z =0,23x +3y =0,∴⎩⎪⎨⎪⎧ z =12y ,x =-32y , 令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面P AD ,∴CM ∥平面P AD .(2)取AP 的中点E ,并连接BE ,则E (3,2,1),BE →=(-3,2,1),∵PB =AB ,∴BE ⊥P A . 又BE →·DA →=(-3,2,1)·(23,3,0)=0,∴BE →⊥DA →,则BE ⊥DA .∵P A ∩DA =A .∴BE ⊥平面P AD ,又∵BE ⊂平面P AB ,∴平面P AB ⊥平面P AD .能力提升题组(建议用时:25分钟)一、选择题1.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则x +y 的值为( ).A.257B.67C.187D.407解析 ∵AB →⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4,又BP ⊥平面ABC ,∴BP →⊥AB →,BP →⊥BC →,则⎩⎪⎨⎪⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得x =407,y =-157.于是x +y =407-157=257. 答案 A2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则( ).①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.以上正确说法的个数为( ).A .1B .2C .3D .4解析 A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥面DCC 1D 1,A 1M ∥面D 1PQB 1.①③④正确.答案 C二、填空题3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),由于B 1E ⊥平面ABF ,所以FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.答案 1三、解答题4.在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.(1)证明如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a,0,0),B (a ,a,0),C (0,a,0),E ⎝ ⎛⎭⎪⎫a ,a 2,0,P (0,0,a ), F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2. EF →=⎝ ⎛⎭⎪⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0. ∴G 点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,即G 点为AD 的中点. 学生用书第128页。
平行与垂直关系的向量证法
知识点一 求平面的法向量
已知平面α经过三点A(1,2,3),B(2,0,-1),C(3,-2,0),试求平面α的一个法向量。
解 ∵A(1,2,3),B(2,0,-1),C(3,-2,0), AB =(1,-2,-4),AC →=(1,-2,-4),
设平面α的法向量为n =(x ,y ,z)。
依题意,应有n·AB = 0, n·
AC → = 0。
即⎩⎨⎧ x -2y -4z =02x -4y -3z =0,解得⎩⎨⎧
x =2y z =0。
令y =1,则x =2。
∴平面α的一个法向量为n =(2,1,0)。
【反思感悟】 用待定系数法求平面的法向量,关键是在平面内找两个不共线向量,列出方程组,取其中一组解(非零向量)即可。
在正方体ABCD-A 1B 1C 1D 1中,E ,F 分别是BB 1,DC 的中点,求证:AE 是平面A 1D 1F 的法向量。
证明 设正方体的棱长为1,建立如图所示的空间直角坐标系,则
A(1,0,0),E ⎝ ⎛⎭⎪⎫1,1,12,AE =⎝ ⎛⎭
⎪⎫0,1,12. .D 1=(0,0,1), F ⎝ ⎛⎭
⎪⎫0,12,0,A 1(1,0,1)。
1D F =⎝ ⎛⎭
⎪⎫0,12,-1,A 1D 1→=(-1,0,0)。
∵AE ·1D F =⎝ ⎛⎭⎪⎫0,1,12·⎝ ⎛⎭⎪⎫0,12,-1=12-12
=0, AE ·
A 1D 1→=0,∴AE ⊥A 1D 1→。
又A 1D 1∩D 1F =D 1,
∴AE ⊥平面A 1D 1F ,∴ AE 是平面A 1D 1F 的法向量。
知识点二 利用向量方法证平行关系
在正方体ABCD —A 1B 1C 1D 1中,O 是B 1D 1的中点,求证:B 1C ∥平面ODC 1。
证明 方法一 ∵1B C =1A D ,
∴ B 1A D ∉,
∴B 1C ∥A 1D ,又A 1D ⊂面ODC 1,
∴B 1C ∥面ODC 1。
方法二 ∵1B C =11B C +1B B =1B O +1OC +1D O +OD =1OC OD ,
∴1B C ,1OC ,OD 共面。
又B 1C ⊄面ODC 1,∴B 1C ∥面ODC 1。
方法三 建系如图,设正方体的棱长为1,则可得
B 1(1,1,1),C(0,1,0),O ⎝ ⎛⎭
⎪⎫12,12,1,C 1(0,1,1), 1B C =(-1,0,-1), OD =⎝ ⎛⎭
⎪⎫-12,-12,-1, 1OC =⎝ ⎛⎭
⎪⎫-12,12,0。
设平面ODC 1的法向量为n =(x 0,y 0,z 0),
则10,0,n OD n OC ⎧⨯=⎪⎨⨯=⎪⎩
得⎩⎪⎨⎪⎧ -12x 0-12y 0-z 0=0 ①-12x 0+12y 0=0 ②
令x 0=1,得y 0=1,z 0=-1,∴n =(1,1,-1)。
又1B C ·n =-1×1+0×1+(-1)×(-1)=0,
∴1B C ⊥n ,∴B 1C ∥平面ODC 1。
【反思感悟】 证明线面平行问题,可以有三个途径,一是在平面ODC 1内找一向量与1B C 共线;二是说明1B C 能利用平面ODC 1内的两不共线向量线性表示;三是证明1B C 与平面的法向量垂直。
如图所示,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2。
求证:AE ∥平面DCF 。