(完整版)高中数学必考点典型例题合集
- 格式:doc
- 大小:1.19 MB
- 文档页数:14
集合知识宝典1.集合的含义与表示方法(1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合。
集合中元素的性质:确定性、无序性、互异性。
(2)元素与集合的关系:①属于,记为∈;②不属于,记为∉。
(3)集合的表示方法:列举法、描述法和图示法。
(4)常用数集的记号:自然数集N,正整数集N*或N+,整数集Z,有理数集Q,实数集R。
2.集合间的基本关系A B或B A3.集合的基本运算表示运算文字语言符号语言图形语言记法交集属于集合A且属于集合B的元素组成的集合{x|x∈A,且x∈B}A∩B并集属于集合A或属于集合B的元素组成的集合{x|x∈A,或x∈B}A∪B补集全集U中不属于集合A的元素组成的集合{x|x∈U,x∉A}∁U A特别提醒1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解集合问题的两个先决条件。
2.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身。
3.运用数轴图示法易忽视端点是实心还是空心。
4.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性\”而导致解题错误。
5.记住以下结论(1)若集合A中有n个元素,则其子集的个数为2n,真子集的个数为2n-1。
(2)A∪B=A⇔B⊆A;A∩B=A⇔A⊆B。
基础专练一、细品教材1.(必修1P12B组T4改编)满足{0,1}⊆A{0,1,2,3}的集合A的个数为()A.1 B.2 C.3 D.42.(必修1P12B组T1改编)已知集合A={0,1,2},集合B满足A∪B={0,1,2},则集合B有___个。
细品教材答案1.C;2.8;二、查漏补缺1.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}2.设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1] D.(0,1)3.设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5} D.{2,5}4.已知集合A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=________。
选修1-2数学知识点第一部分 统计案例 知识点:1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i ni i x y n x y b x n x a y b x ==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。
2.相关系数(判定两个变量线性相关性):∑∑∑===----=n i ni i i ni i iy y x x y y x xr 11221)()())((注:⑴r>0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r越接近于1,两个变量的线性相关性越强;②||r接近于0时,两个变量之间几乎不存在线性相关关系。
3.回归分析中回归效果的判定:⑴总偏差平方和:∑=-niiyy12)(⑵残差:∧∧-=iiiyye;⑶残差平方和:21)(∑=∧-niyiyi;⑷回归平方和:∑=-niiyy12)(-21)(∑=∧-niyiyi;⑸相关指数∑∑==∧---=niiiniiiyyyyR12122)()(1。
注:①2R得知越大,说明残差平方和越小,则模型拟合效果越好;②2R越接近于1,,则回归效果越好。
4.独立性检验(分类变量关系):随机变量2K越大,说明两个分类变量,关系越强,反之,越弱。
第二部分推理与证明知识点:一.推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
注:归纳推理是由部分到整体,由个别到一般的推理。
②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
厦门一中立体几何专题一、选择题(10 X 5' =50 ')1•如图,设0是正三棱锥 P-ABC 底面三角形 ABC 的中心, 过0的动平面与P-ABC 的三条侧棱或其延长线的交点分别记 为 Q 、R 、S ,则-11 1( )PQ PR PSA. 有最大值而无最小值B. 有最小值而无最大值C. 既有最大值又有最小值,且最大值与最小值不等D. 是一个与平面QRS 位置无关的常量2•在正n 棱锥中,相邻两侧面所成的二面角的取值范围是 (A., B., C. 0,D.nn2n的面积的取值范围是()若B €a ,C €3 ,则厶ABC 的周长的最小值是( )B.2 .75.如图,正四面体 A-BCD 中,E 在棱AB 上,F 在棱CD 上,使得詈 Cy =入(0<入<+m ),记f (入)=a x+ 3入,其中a 入表示EF 与AC 所成的角,3入表示EF 与BD 所成的角,贝U( )A. f (入)在(0,+ g )单调增加B. f (入)在(0,+ g )单调减少C. f (入)在(0,1)单调增加,在(1,+ g )单调减少D. f (入)在(0,+ g )为常数合是 ()A. 一条直线B. —个平面C.两条平行直线D.两个平面7.正四棱锥底面积为 Q ,侧面积为S ,则它的体积为 ()A. 1 Q (S2Q 2)B. 1 Q (S2Q 2)6 •3 'C. 1 -Q(S2Q 2)23•正三棱锥P-ABC 的底面边长为 2a,点E 、F 、G 、H 分别是 PA 、PB 、BC 、AC 的中点,则四边形 EFGHA.(0,+ g )B.C.D. ^a 2, 24.已知二面角a -a-3为60°,点A 在此二面角内,且点A 到平面a 、3的距离分别是AE=4, AF=2,6.直线a //平面3,直线a 到平面3的距离为 1,则到直线a 的距离与平面3的距离都等于7的点的集第5题图D.f QS第1题图8. 已知球O的半径为R, A、B是球面上任意两点,则弦长|AB|的取值范围为()B.(0,2R]C. ( 0,2R )D. : R,2R ]9•已知平面aQ 平面B =l,m 是平面a 内的一条直线,则在平面B 内A. .—定存在直线与直线 m 平行,也一定存在直线与直线B. —定存在直线与直线 m 平行,但不一定存在直线与直线C. 不一定存在直线与直线 m 平行,但一定存在直线与直 线m 垂直D. 不一定存在直线与直线 m 平行,也不一定存在直线与 直线m 垂直10. 如图为一个简单多面体的表面展开图(沿图中虚线折11. ______________________________________________________________________ 边长为a 的等边三角形内任一点到三边距离之和为定值,这个定值为 __________________________ ;推广到空间,棱长为a 的正四面体内任一点到各面距离之和为 ______________12. 在厶ABC 中,AB=9, AC=15,/ BAC=120°,其所在平面外一点 P 到A 、B 、C 三个顶点的距离都是14,贝U P 点到直线 BC 的距离为 _____________ . 13. 已知将给定的两个全等的正三棱锥的底面粘在一起, 恰得到一个所有二面角都相等的六面体, 并且该六面体的最短棱的长为 2,则最远的两顶点间的距离是 _______________ .14. ___________________________________________________________________ 有120个等球密布在正四面体 A-BCD 内,问此正四面体的底部放有 ___________________________ 个球. 三、解答题(4X 10' +14' =54')15. 定直线11丄平面a ,垂足为M ,动直线12在平面a 内过定点 N ,但不过定点 M.MN=a 为定值,在11、12上分别有动线段 AB=b,CD = c.b 、c 为定值.问在什么情况下四面体 ABCD 的体积最大?最大值是多少?AC 的中点,求:(1) PM 与FQ 所成的角; (2) P 点到平面 EFB 的距离; (3 )异面直线PM 与FQ 的距离.16.如图所示,已知四边形 ABCD 、EADM 和MDCF 都是边长为 a 的正方形,点 P 、Q 分别是ED 和A. : 0,2 R ] m 垂直A.6B.7C.8D.9、填空题 (4X 4 ' =16')叠即可还原),则这个多面体的顶点数为 (第16题图连结人丘‘将厶DAE 沿AE 折起到△ D 1AE 的位置,使得/(1)试用基向量 AB , AE , AD 1表示向量OD 117.如图,在梯形 ABCD 中,AB // CD ,/ ADC = 90° ,3AD=DC=3,AB=2,E 是 CD 上一点,满足 DE = 1 ,D 1AB = 60° ,设AC 与BE 的交点为O.(2) 求异面直线OD i与AE所成的角.(3) 判断平面D i AE与平面ABCE是否垂直,并说明理由第17题图18. 如图,在斜棱柱ABC —A i B i C i中,底面为正三角形,侧棱长等于底面边长,且侧棱与底面所成的角为60°顶点B i在底面ABC上的射影O恰好是AB的中点.(i)求证:B i C± C i A;(2 )求二面角C i-AB-C的大小.第i8题图i9.如图所示,在三棱锥P-ABC中,PA=PB=PC , BC=2a,AC=a,AB=、3 a,点P到平面ABC的距离为 | a.(i )求二面角P-AC-B的大小;(2)求点B到平面FAC的距离.第i9题图立体几何练习参考答案一、选择题 1.D 设正三棱锥P-ABC 中,各棱之间的夹角为a,棱与底面夹角为B ,h 为点S 到平面PQR 的距离,1 11则 V S -PQR = 3S ^PQR • h= — ( — PQ • PR • sin a ) • PS • sin B ,另一方面,记 O 到各平面的距离为 d,则有33 211 1 dV S -PQR =V O -PQR +V O -PRS +V O -PQS =S ^PQR °d+ S ^PRS ,d+S^PQS -d=3333a + d • - -PQ -PS-sin a •故有 PQ -PR -PS-sin B =d(PQ -PR+PR -PS+PQ -PS),即旦—-PQ -PR -sin a +— •丄 PS ・PR ・sin2321 1 _ sinPR PS d3 2 PQ 常量.2.B 设正n 棱锥的高为h,相邻两侧面所成二面角为B .当h f 0时,正n 棱锥的极限为正n 边形,这时 相邻两侧面所成二面角为平面角,即二面角Qfn.当h fg 时,正n 棱锥的极限为正n 棱柱,这时相邻两侧面所成二面角为正n 边形的内角,nEFGH 为矩形,当 P f 底面△ ABC 的中心O 时,矩形EFGH f 矩形E i F i GH.3a=_Aa 23 34. C 如图,I a 丄AE,a 丄AF,「. a 丄平面 AEF.设a 交平面 AEF 于点G ,则/ EGF 是二面角a -a-3的平面角,/ EGF=60° ,/ EAF=120。
高中数学题库1. 求下列函数的值域:解法2 令t =sin x ,则f (t )=-t 2+t +1,∵ |sin x |≤1, ∴ |t |≤1.问题转化为求关于t 的二次函数f (t )在闭区间[-1,1]上的最值.本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。
2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此慧星离地球相距m 万千米和m 34万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32ππ和,求该慧星与地球的最近距离。
解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为12222=+by a x (图见教材P132页例1)。
当过地球和彗星的直线与椭圆的长轴夹角为3π时,由椭圆的几何意义可知,彗星A 只能满足)3(3/ππ=∠=∠xFA xFA 或。
作m FA FB Ox AB 3221B ==⊥,则于故由椭圆第二定义可知得⎪⎪⎩⎪⎪⎨⎧+-=-=)32(34)(22m c c a a c m c ca a c m两式相减得,23)4(21.2,3231c c c m c a m a c m =-==∴⋅=代入第一式得 .32.32m c c a m c ==-∴=∴答:彗星与地球的最近距离为m 32万千米。
说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a +(2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。
高中数学经典例题100道(共44页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--例1 判定以下关系是否正确 (1){a}{a}⊆(2){1,2,3}={3,2,1}(3){0}∅⊂≠ (4)0∈{0}(5){0}(6){0}∅∅∈=分析 空集是任何集合的子集,是任何非空集合的真子集.解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2 列举集合{1,2,3}的所有子集.分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.解含有个元素的子集有:; 0∅含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.说明:对于集合,我们把和叫做它的平凡子集.A A ∅例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂________.分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.答 共3个.说明:必须考虑A 中元素受到的所有约束.例设为全集,集合、,且,则≠4 U M N U N M ⊂⊆ [ ]分析 作出4图形.答 选C .说明:考虑集合之间的关系,用图形解决比较方便.点击思维例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是[ ]A AB B A BC A BD A B .=...≠≠⊇⊂⊃分析 问题转化为求两个二次函数的值域问题,事实上x =5-4a +a 2=(2-a)2+1≥1,y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B .答 选A .说明:要注意集合中谁是元素.M 与P 的关系是[ ]A .M =U PB .M =PC M PD M P ..≠⊃⊆分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M =U N =U (U P)=P ;三是利用画图的方法.答 选B .说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是[ ]A .U (U A)={A}B A B B A BC A {1{2}}{2}A.若∩=,则.若=,,,则≠⊆⊂ϕD A {123}B {x|x A}A B .若=,,,=,则∈⊆分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B是由这所有子集组成的集合,集合A 是其中的一个元素.∴A ∈B . 答 选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意. 例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.答 C ={4}或{7}或{4,7}.说明:逆向思维能力在解题中起重要作用.例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,4},则p =________.分析 本题渗透了方程的根与系数关系理论,由于S M ={1,4},且,≠M S ⊂ ∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.说明:集合问题常常与方程问题相结合.例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a+3},求a 的值.S 这个集合是集合A 与集合S A 的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解 由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去. 在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.说明:分类要做到不重不漏.例年北京高考题集合==π+π,∈,=11 (1993)M {x|x k Z}N {k 24x|x k Z}=π+π,∈则k 42[ ]A .M =NB M NC M N..≠≠⊃⊂D .M 与N 没有相同元素分析 分别令k =…,-1,0,1,2,3,…得M {}N {}M N =…,-π,π,π,π,π,…,=…,π,π,π,π,π,…易见,.≠44345474423454⊂ 答 选C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性典型例题一例1下列图形中,满足唯一性的是( ). A .过直线外一点作与该直线垂直的直线 B .过直线外一点与该直线平行的平面 C .过平面外一点与平面平行的直线 D .过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A .过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B .过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C .过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D .过一点作已知平面的垂线是有且仅有一条.假设空间点A 、平面α,过点A 有两条直线AB 、AC 都垂直于α,由于AB 、AC 为相交直线,不妨设AB 、AC 所确定的平面为β,α与β的交线为l ,则必有l AB ⊥,l AC ⊥,又由于AB 、AC 、l 都在平面β内,这样在β内经过A 点就有两条直线和直线l 垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D .说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().A.(1)、(2) B.(2)、(3) C.(3)、(4) D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性.故选D .说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中, ∵O E 、分别是B B 1和DB 的中点, ∴D B EO 1//. ∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影. 又∵D A AD 11⊥,∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD , ∴⊥D B 1平面1ACD . ∵EO D B //1, ∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =. 又∵OC AO =, ∴AC OE ⊥.在正方体1DB 中易求出:a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=, a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=,()a a a E B B D E D 232222212111=⎪⎭⎫⎝⎛+=+=.∵21221E D OE O D =+, ∴OE O D ⊥1.∵O AC O D = 1,O D 1、⊂AC 平面1ACD , ∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中, 90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC ,∴BC SA ⊥.∵ 90=∠B ,即BC AB ⊥,A SA BA = ,∴⊥BC 平面SAB .∵⊂AN 平面SAB .∴AN BC ⊥.又∵SB AN ⊥,B BC SB = ,∴⊥AN 平面SBC .∵⊂SC 平面SBC ,∴SC AN ⊥,又∵SC AM ⊥,A AN AM = ,∴⊥SC 平面AMN .∵⊂MN 平面AMN .∴MN SC ⊥.另证:由上面可证⊥AN 平面SBC .∴MN 为AM 在平面SBC 内的射影.∵SC AM ⊥,∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=.分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD .∵α⊥AH ,∴AD 在平面α内射影为HD .∵HD BC ⊥,α⊂BC ,∴AD BC ⊥.在Rt △ABH 中有:BA BH =θcos ① 在Rt △BHD 中有:BHBD =αcos ② 在Rt △ABD 中有:BA BD =βcos ③ 由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,.典型例题六例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K .∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点.∵EF BD //,⊄BD 平面GFE ,∴//BD 平面GFE .∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离.∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥.∵C AC GC = ,∴⊥EF 平面GCH .∵⊂OK 平面GCH ,∴OK EF ⊥.又∵GH OK ⊥,H EF GH = ,∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离.∵正方形边长为4,2=CG , ∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CG HC HG .在Rt △GCH 中,11112=⋅=HG GC HO OK . 说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB交FE的延长线于M,连结GM,作MEBP⊥于P,作BH⊥于H,可得⊥BN//交MG于N,连结PN,再作PNCGBH平面GFE,BH长即为B点到平面EFG的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7如图所示,直角ABCSA==.SB∆所在平面外一点S,且SC(1)求证:点S与斜边AC中点D的连线SD⊥面ABC;(2)若直角边BCBA=,求证:BD⊥面SAC.分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直.证明:(1)在等腰SACSD⊥.∆中,D为AC中点,∴AC取AB中点E,连DE、SE.∵BCBC⊥,∴ABED//,ABDE⊥.又ABAB⊥.SE⊥,∴AB⊥面SED,∴SD∴SD⊥面ABC(AB、AC是面ABC内两相交直线).(2)∵BCBA=,∴ACBD⊥.又∵SD⊥面ABC,∴BDSD⊥.∵D AC SD = ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n .∵α⊥a ,∴m a ⊥,n a ⊥.又∵a b //,从而有m b ⊥,n b ⊥.由作图知m 、n 为α内两条相交直线.∴α⊥b .说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面α 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥.证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面.∵α⊥AB ,β⊥AC ,EF =βα ,∴EF AB ⊥,EF AC ⊥.又A AC AB = ,∴EF ⊥平面ABCD .∴BD EF ⊥.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM = ,∴BM ⊥平面SAM .∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM = ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥. 解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB . ∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形.∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形. ∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形. 综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥. 由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角. 作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =,可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上.设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM , ∴a AM AO 222==. 在POA ∆中,22cos ==∠PA AO PAO , ∴︒=∠45PAO ,即PA 与α所成角为︒45.说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心.典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形,∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==, ∴cm SO 5=.因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算. 典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥.又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB .∵⊂AE 平面ASB ,∴AE BC ⊥.又∵⊥SC 平面AEFG ,∴AE SC ⊥.∴⊥AE 平面SBC .又∵⊂SB 平面SBC ,∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥.同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =,∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒∠90ACB,S为平面ACB外一点,=∠60SCA,求SC与平面ACB所成角.SCB=︒=∠典型例题十五例15判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.()(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.()(3)垂直于三角形两边的直线必垂直于第三边.()(4)过点A垂直于直线a的所有直线都在过点A垂直于α的平面内.()(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.()解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b ,且b ,c 确定一平面,设为α,则α⊥a , 同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF ,∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥,又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥,又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a .已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证.证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβ .αααβαα////,,'''''a a a a a a b a a b a b a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交,则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβ .αααβααα////,,////'''''''''''a a a aa a ab a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵.典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥,∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥,∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线(1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βα ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2 证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a ,设直线b 与点P 确定的平面与平面α的交线为'b∵α//a ,α//b ,∴'//a a ,'//b b又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,∴α⊥AB .(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'.∴c 也垂直于由'BB 和b 确定的平面.故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得.典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用. 证明:连结11C A ,由于11//C A AC ,AC EF ⊥, ∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A = , ∴D C A EF 11平面⊥. ① ∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂, ∴111C A BB ⊥.∵四边形1111D C B A 为正方形, ∴1111D B C A ⊥,1111B BB D B = , ∴D D BB C A 1111平面⊥,而D D BB BD 111平面⊂,∴111BD C A ⊥. 同理11BD DC ⊥,1111C C A DC = , ∴D C A BD 111平面⊥. ② 由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长.解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO , ∴AO PO ⊥,BO PO ⊥,CO PO ⊥ ∵a PC PB PA ===, ∴PAO ∆≌PBO ∆≌PCO ∆, ∴OC OB OA ==, ∴O 为ABC ∆的外心. ∵PA 、PB 、PC 两两垂直,∴a CA BC AB 2===,ABC ∆为正三角形, ∴a AB AO 3633==,∴a AO PA PO 3322=-=. 因此点P 到平面ABC 的距离a 33. 说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距的有关方法求解.解:如图,∵BC C B //11,且1111BCD A C B 平面⊄,11BCD A BC 平面⊂, ∴1111//BCD A C B 平面.从而点1B 到平面11BCD A 的距离即为所求. 过点1B 作B A E B 11⊥于E ,∵11ABB A BC 平面⊥,且B B AA E B 111平面⊂, ∴E B BC 1⊥. 又B B A BC =1 , ∴111BCD A E B 平面⊥. 即线段E B 1的长即为所求,。
高中数学必考试题及答案1. 函数的单调性若函数f(x) = x^3 - 3x在区间(-∞, +∞)上单调递增,则下列哪个选项是正确的?A. 该函数在(-∞, +∞)上单调递减B. 该函数在(-∞, +∞)上单调递增C. 该函数在(-∞, +∞)上先递减后递增D. 该函数在(-∞, +∞)上先递增后递减答案:B2. 几何概率一个圆的半径为r,圆内随机取一点,求该点到圆心的距离小于半径的一半的概率是多少?A. 1/2B. 1/4C. 1/3D. 1/5答案:B3. 等比数列的求和等比数列{a_n}的首项为a_1=2,公比为q=2,求前5项的和S_5。
A. 62B. 30C. 32D. 63答案:C4. 直线与圆的位置关系已知直线l的方程为y=x-1,圆C的方程为(x-2)^2 + (y-2)^2 = 1,求直线l与圆C的位置关系。
A. 相离B. 相切C. 相交D. 内含答案:C5. 三角函数的化简求值已知sinθ = 3/5,且θ为锐角,求cos(π/2 - θ)的值。
A. 3/5B. 4/5C. -3/5D. -4/5答案:B6. 导数的几何意义函数f(x) = x^2 - 4x + 3的导数f'(x)在x=2处的值为多少?A. -4B. 0C. 4D. 2答案:B7. 复数的运算已知复数z = 1 + 2i,求z的共轭复数的值。
A. 1 - 2iB. -1 + 2iC. -1 - 2iD. 1 + 2i答案:A8. 排列组合从5个不同的元素中取出3个元素进行排列,有多少种不同的排列方式?A. 60B. 120C. 10D. 20答案:A9. 立体几何一个正四面体的棱长为a,求其外接球的半径。
A. a/√2B. a/√3C. a/2D. a/√6答案:B10. 统计与概率在一次射击比赛中,甲、乙、丙三人射击的命中率分别为0.7、0.6、0.5。
如果三人独立射击,至少有两人命中的概率是多少?A. 0.71B. 0.69C. 0.65D. 0.59 答案:C。
专题01 方程有解类问题【方法点拨】1. 求参数的取值范围问题是高中数学常见的基本问题,一般来说遇含参问题应“能分则分”,目的是避免参数参与运算,从而避免分类讨论.而分离参数,又可以进行“全分”、“半分”,即将参数完全分离和不完全分离,两种方法的选择应视具体题目而定,不好说那种方法更优.2. 方程有解类应熟知的方法(分离函数):函数()()()F x f x g x =−的零点就是函数()y f x =与函数()y g x =交点的横坐标,故常将方程有解、解的个数、根的分布问题,通过分离函数的方法,转化为两函数图象交点有交点、交点的个数、交点横坐标所在区间问题. 3. 方程有解类应熟知的基本知识、方法:(1)若f (x )的值域为A ,则方程f (x )=a 有解⇔a A ∈. (2)若f (x ),g (x )的值域分别为A ,B ,则有:①∀x 1∈D , ∃x 2∈E ,使得f (x 1)=g (x 2)成立,则; ② ∃x 1∈D ,∃x 2∈E ,使得f (x 1)=g (x 2)成立,则.【典型例题】【例1】关于x 的一元二次方程21+(+1)0()2x m x m Z +=∈有两个根12x x 、,且满足12013x x <<<<,则实数m 的值是( ).A .-2;B .-3;C .-5;D .-6.【例2】关于x 的方程2213xm ⎛⎫=− ⎪⎝⎭有负根,则实数m 的取值范围是______________.A B ⊆AB ≠∅【例3】已知f (x )是定义在[-2,2]上的奇函数,且当x ∈(0,2]时,f (x )=2x -1,函数g (x )=x 2-2x +m ,且如果对于任意的x 1∈[-2,2],都存在x 2∈[-2,2],使得g (x 2)=f (x 1),则实数m 的取值范围是______________.【巩固训练】1. 若关于x 的方程220x mx −+=在区间()1,4内有两个解,则实数m 的取值范围是_________.2.已知函数f (x )=2x ,x ∈⎣⎡⎦⎤0,12,函数g (x )=kx -2k +2(k >0),x ∈⎣⎡⎦⎤0,12,若存在x 1∈⎣⎡⎦⎤0,12及x 2∈⎣⎡⎦⎤0,12,使得f (x 1)=g (x 2)成立,求实数k 的取值范围.3.已知函数f (x )=12x 2+x ,g (x )=ln(x +1)-a ,若存在x 1,x 2∈[0,2],使得f (x 1)=g (x 2) ,求实数a 的取值范围.4.已知函数f (x )=x 2-x +1x -1(x ≥2),g (x )=a x (a >1,x ≥2).(1)若∃x 0∈[2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为__________;(2)若∀x 1∈[2,+∞),∃x 2∈[2,+∞),使得f (x 1)=g (x 2),则实数a 的取值范围为__________.5.已知函数()372x f x x −−=+,()22g x x x =−,若存在实数(),2a ∈−∞−,使得()()0f a g b += 成立,则实数b 的取值范围是 。
高中数学经典例题集1.已知两个不同的平面α,β和两条不重合的直线m,n,有下列四个命题:(1)若m//α,n//α,则m//n;(2)若m//α,n//α,m,n⊂β,则α//β;(3)若m//n,n⊂α,则m//α;(4)若α//β,m⊂α,则m//β.其中恰当命题的个数为2.已知m,n是不重合的两条直线,α,β是不重合的两个平面.下列命题:①若α⊥β,m⊥α,则m∥β;②若m⊥α,m⊥β,则α∥β;③若m∥α,m⊥则n⊥α;④若m∥α,m⊂β,则α∥β.其中所有真命题的序号是n,3.若m,n,l是互不重合的直线,α,β,γ是互不重合的平面,给出下列命题:①若α⊥β,α⋂β=m,m⊥n,则n⊥α或n⊥β;②若α//β,α⋂γ=m,β⋂γ=n,则m//n;③若m不垂直于α,则m不可能垂直于α内的无数条直线;④若α⋂β=m,m//n,且n⊄α,n⊄β,则n//α且n//β;⑤若α⋂βm,=β⋂n,γ=αl⋂α⊥γβ=,α⊥γ,β⊥γ,且则m⊥n,m⊥l,n⊥l.其中恰当命题的序号就是.4.设、m、n表示不同的直线,α,β,γ表示不同的平面,则下列四个命题正确的是.①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若αβ=l,βγ=m,γα=n,则m∥l∥n;④若αβ=m,βγ=l,γα=n,且n∥β,则m∥l.5.已知a、b是不同的直线,α、β、γ是不同的平面,给出下列命题:①若α∥β,a⊂α,则a∥β;②若a、b与α所成角相等,则a∥b;③若α⊥β、β⊥γ,则α∥γ;④若a⊥α,a⊥β,则α∥β其中恰当的命题的序号就是.6.如图,空间中两个有一条公共边ad的正方形abcd和adef.设m、n分别是bd和ae的中点,那么①ad⊥mn;②mn∥平面cde;③mn∥ce;④mn、ce异面以上4个命题中正确的是7.得出以下四个命题①平行于同一平面的两条直线平行;②旋转轴同一平面的两条直线平行;③如果一条直线和一个平面平行,那么它和这个平面内的任何直线都平行;④如果一条直线和一个平面垂直,那么它和这个平面内的任何直线都垂直.其中正确命题的序号是(写出所有正确命题的序号).8.关于直线m,n与平面α,β,存有以下四个命题:①若m//α,n//β且α//β,则m//n;②若m⊥α,n⊥β且α⊥β,则m⊥n;③若m⊥α,n//β且α//β,则m⊥n;④若m//α,n⊥β且α⊥β,则m//n;(把你认为正确命题的序号都填上)9.将边长为2abcd沿较短对角线bd卷成四面体abcd,点e,f分别为ac,bd的中点,则下列命题中正确的是。