高一数学经典习题集(内附带三角函数公式)
- 格式:pdf
- 大小:692.47 KB
- 文档页数:7
高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
专题强化练8 同角三角函数关系与诱导公式的综合运用一、选择题1.(2019广东中山一中高一下段考,)已知sin α·cos α=18,π4<α<π2,则cosα-sin α的值为( )A.√32B.-√32C.34D.-342.(2019福建福州长乐高中高一期末,)在△ABC 中,下列结论错误的是( ) A.sin(A+B)=sin C B.sinB+C 2=cos A2C.tan(A+B)=-tan C (C ≠π2)D.cos(A+B)=cos C3.(2019甘肃武威一中高一下段考,)化简2sin4√1-cos 24+√1-sin 23cos3的结果为( )A.-3B.-1C.1 D .34.(2019福建八县(市)一中高一上期末联考,)已知tan θ=3,则sin (3π2+θ)+2cos(π+θ)sin (π2-θ)-sin(π-θ)等于( )A.-32B.32C.0 D .235.(2019河北唐山高三二模,)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有一点A(2sin α,3),则cos α=( ) A.12B.-12C.√32D.-√326.(2019河南安阳高三一模,)9sin 2α+1cos 2α的最小值为()A.18B.16C.8 D .6 二、填空题7.(2020吉林长春第二中学高一期末,)若角A 是三角形ABC 的内角,且tan A=-13,则sin A+cos A= . 8.(2019江西临川第一中学等九校高三联考,)已知α∈(0,π),且cosα=-1517,则sin (π2+α)·tan(π+α)=.三、解答题9.(2020河南安阳第一中学高一月考,)已知f(α)=sin 2(π-α)·cos(2π-α)·tan(-π+α)sin(-π+α)·tan(-α+3π).(1)化简f(α);(2)若f(α)=18,且π4<α<π2,求cos α-sin α的值; (3)若α=-31π3,求f(α)的值.易错10.(2020山东日照高一上期末,)已知角α的始边与x 轴的非负半轴重合,终边经过点P(m,-m-1),且cos α=m 5. (1)求实数m 的值;(2)若m>0,求sin(3π+α)cos (3π2-α)cos(α-π)sin (π2+α)的值.答案全解全析一、选择题1.B 由题意得(cos α-sin α)2=1-2sin αcos α=1-2×18=34. ∵π4<α<π2,∴cos α-sin α<0,∴cos α-sin α=-√32.2.D 在△ABC 中,有A+B+C=π,则sin(A+B)=sin(π-C)=sin C,A 结论正确; sinB+C 2=sin (π2-A 2)= cos A2,B 结论正确;tan(A+B)=tan(π-C)=-tan C (C ≠π2),C 结论正确;cos(A+B)=cos(π-C)=-cos C,D 结论错误.故选D. 3.A √2+√1-sin 23cos3=√2+√cos 23cos3,因为sin 4<0,cos 3<0,所以原式=2sin4-sin4+-cos3cos3=-2-1=-3.4.B ∵tan θ=3, ∴sin (3π2+θ)+2cos(π+θ)sin (π2-θ)-sin(π-θ)=-3cosθcosθ-sinθ=-31-tanθ=32.故选B.5.A 易知sin α≠0,由三角函数定义得tan α=32sinα,即sinαcosα=32sinα,得3cosα=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去). 6.B 由题意得,9sin 2α+1cos 2α=(sin 2α+cos 2α)·(9sin 2α+1cos 2α)≥9+1+2√9cos 2αsin 2α·sin 2αcos 2α=16,当且仅当sin 2α=34,cos 2α=14时,等号成立. 二、填空题 7.答案 -√105解析 由题得{sin 2A +cos 2A =1,sinA cosA =-13,π2<A <π,∴sin A=√1010,cos A=-3√1010, ∴sin A+cos A=-√105.8.答案817解析 sin (π2+α)·tan(π+α)=cos α·tan α=sin α,因为α∈(0,π),且cos α=-1517,所以sin α=√1-cos 2α=√1-(-1517)2=817.三、解答题 9.解析 (1)f(α)=sin 2α·cosα·tanα(-sinα)(-tanα)=sin αcos α.(2)由f(α)=sin αcos α=18可知(cos α-sin α)2=cos 2α-2sin αcosα+sin 2α=1-2sin αcos α=1-2×18=34. 又∵π4<α<π2,∴cos α<sin α,即cos α-sin α<0, ∴cos α-sin α=-√32.(3)∵α=-31π3=-6×2π+5π3,∴f (-31π3)=cos (-31π3)·sin (-31π3)=cos (-6×2π+5π3)·sin (-6×2π+5π3)=cos 5π3·sin 5π3=cos (2π-π3)·sin (2π-π3)=cos π3·(-sin π3) =12×(-√32) =-√34. 易错警示 诱导公式在解题中的运用要注意两点:一是逐步诱导,如将sin(-π+α)化为-sin α分两步,先用公式sin[-(π-α)]=-sin(π-α),再用公式sin(π-α)=sin α,才能达到目的;二要层次清楚,先变角、再用公式.解题时要防止因逻辑混乱导致的错误.10.解析 (1)根据三角函数的定义可得cos α=√22=m5,解得m=0或m=3或m=-4.(2)由(1)知m=0或m=3或m=-4,因为m>0,所以m=3,所以cos α=35,sinα=-45,由诱导公式,可得sin(3π+α)cos (3π2-α)cos(α-π)sin (π2+α)=-sinα·(-sinα)-cosαcosα=-sin 2αcos 2α=-169.。
高一数学经典习题集(内附带三角函数公式)集合1.设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和__________ 2.集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则AB = .3.已知集合 =A {2,3,2a +4a +2}, B ={0,7, 2a +4a -2,2-a },且A B={3,7},求a 值______4.已知:A={1,2,3},B={1,2,3},那么可以作 个A 到B 上的映射,那么可以作 个A 到B 上的一一映射. 5.已知A ={x|121m x m +≤≤-},B ={x|25x -≤≤},若A ⊆B ,求实数m 的取值范围_______6.已知设数集3{|}4M x m x m =≤≤+,1{|}3N x n x n =-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做集合{}|x a x b ≤≤的“长度”,那么集合M N 的长度的最小值是______________.7.已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数为( )(A ) 1 (B )0 (C )1或0 (D ) 1或28.已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于( )A.(0,2),(1,1)B.{(0,2),(1,1)}C. {1,2}D.{}2≤y y9.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为 ( ).A .9 B. 14 C.18 D.21 10.如图所示,,,是的三个子集,则阴影部分所表示的集合是 ( )A .B .C .D .11.定义集合A 与集合B 的“差集”为:}|{B x A x x B A ∉∈=-且,则 )(B A A --总等于( )(A )A ; (B )B ;(C )B A ⋂;(D )B A ⋃12.已知集合,,若,求实数的取值范围.函数1.、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;2..函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是3..已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
高一三角函数大题1.已知函数f(x)=2sinx+cos^2(x/2)-1,求函数f(x)的最小正周期和单调递增区间。
2.已知sin(α+π/4)=√2/10,α∈(0,3π/2),求sinα的值。
3.已知函数f(x)=2sinx(sinx+cosx),求函数f(x)的最大值和最小值。
4.已知α、β∈(0,π/2),且α+β=π/3,求sinα+sinβ的值。
5.已知函数f(x)=2sin^2(x-π/4)+2cos^2(x+π/4)-3,求函数f(x)的最小正周期和单调递减区间。
6.已知α、β∈(0,π),且α+β=π/2,求证:sinα=cosβ。
7.已知函数f(x)=sinx+tanx,求函数f(x)的定义域和值域。
8.已知α、β∈(0,π/2),且sinα=√5/5,sinβ=√10/10,求α+β的值。
9.已知函数f(x)=sinx+1/sinx,求函数f(x)的单调递增区间。
10.已知sin(α-π/6)=7√3/10,α∈(π/3,5π/6),求sinα的值。
11.已知函数f(x)=sinx-cos^2(x/2),求函数f(x)的最大值和最小值。
12.已知α、β∈(0,π),且sinα=cosβ,求证:α-β=π/2。
13.已知函数f(x)=tanx-sinx,求函数f(x)的定义域和值域。
14.已知α、β∈(0,π),且tanα=√3,tanβ=3,求证:α+β=π/3。
15.已知函数f(x)=sin^2(x-π/6)-√3cos^2(x+π/6),求函数f(x)的最小正周期和单调递减区间。
16.已知α、β∈(0,π/2),且sinα=sinβ,求证:α=β或α+β=π/2。
17.已知函数f(x)=tanx+cosx,求函数f(x)的单调递增区间。
18.已知sinα+sinβ=1/3,cosα+cosβ=1/5,求(sinα-cosα)^2的值。
19.已知函数f(x)=(sinx-cosx)^2-1,求函数f(x)的最小正周期和单调递增区间。
高一数学经典习题集(内附带三角函数公式)集合1.设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和__________ 2.集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则A B = .3.已知集合 =A {2,3,2a +4a +2}, B ={0,7, 2a +4a -2,2-a },且A B={3,7},求a 值______4.已知:A={1,2,3},B={1,2,3},那么可以作 个A 到B 上的映射,那么可以作 个A 到B 上的一一映射.5.已知A ={x|121m x m +≤≤-},B ={x|25x -≤≤},若A ⊆B ,求实数m 的取值范围_______6.已知设数集3{|}4M x m x m =≤≤+,1{|}3N x n x n =-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做集合{}|x a x b ≤≤的“长度”,那么集合M N 的长度的最小值是______________.7.已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数为( )(A ) 1 (B )0 (C )1或0 (D ) 1或28.已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于( )A.(0,2),(1,1)B.{(0,2),(1,1)}C. {1,2}D.{}2≤y y9.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为 ( ).A .9 B. 14 C.18 D.21 10.如图所示,,,是的三个子集,则阴影部分所表示的集合是 ( )A .B .C .D .11.定义集合A 与集合B 的“差集”为:}|{B x A x x B A ∉∈=-且,则 )(B A A --总等于( )(A )A ; (B )B ;(C )B A ⋂;(D )B A ⋃12.已知集合,,若,求实数的取值范围.函数1.、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;2..函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是3..已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
高一数学三角函数及恒等公式经典题常考题50道一、单选题1.函数y=cosx|tanx|(0≤x<且x≠)的图象是下图中的()A. B.C. D.【答案】C【考点】同角三角函数基本关系的运用,正弦函数的图象【解析】【解答】解:当0 时,y=cosxtanx≥0,排除B,D.当时,y=﹣cosxtanx<0,排除A.故选:C.【分析】根据x的范围判断函数的值域,使用排除法得出答案.==========================================================================2.若α,β都是锐角,且,则cosβ=()A. B. C. 或 D. 或【答案】A【考点】两角和与差的余弦函数【解析】【解答】解:∵α,β都是锐角,且,∴cosα==,cos(α﹣β)= = ,则cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)= += ,故选:A.【分析】由条件利用同角三角函数的基本关系,两角差的三角公式,求得cosβ=cos[α﹣(α﹣β)]的值.==========================================================================3.设为锐角,若cos = ,则sin 的值为()A. B. C. D.【答案】B【考点】二倍角的正弦【解析】【解答】∵为锐角,cos = ,∴∈,∴= = .则sin =2 . 故答案为:B【分析】根据题意利用同角三角函数的关系式求出正弦的值,再由二倍角的正弦公式代入数值求出结果即可。
==========================================================================4.sin15°sin105°的值是()A. B. C. D.【答案】A【考点】运用诱导公式化简求值【解析】【解答】sin15°sin105°=sin15°cos15°= sin30°= ,故答案为:A.【分析】利用诱导公式转化已知的三角函数关系式求出结果即可。
1.全国Ⅱ)若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角2.(07·湖北)tan690°的值为( )A .-33 B.33C. 3 D .- 3 3.f (sin x )=cos19x ,则f (cos x )=( )A .sin19xB .cos19xC .-sin19xD .-cos19x4.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,且ab ≠0,α≠k π(k ∈Z).若f (2009)=5,则f (2010)等于( )A .4B .3C .-5D .55.(09·全国Ⅰ文)sin585°的值为( )A .-22 B.22 C .-32 D.326.函数y =5sin ⎝ ⎛⎭⎪⎫25x +π6的最小正周期是( ) A.25π B.52π C.π3 D .5π7.(2010·重庆文,6)下列函数中,周期为π,且在[π4,π2]上为减函数的是( ) A .y =sin(2x +π2) B .y =cos (2x +π2) C .y =sin(x +π2) D .y =cos(x +π2) 8.函数y =-2tan ⎝ ⎛⎭⎪⎫3x +π4的单调递减区间是________.三角函数诱导公式(答案)1.[答案] C2.[答案] A[解析] tan690°=tan(-30°+2×360°)=tan(-30°)=-tan30°=-33,选A. 3.[答案] C[解析] f (cos x )=f (sin(90°-x ))=cos19(90°-x )=cos(270°-19x )=-sin19x .4.[答案] C[解析] ∵f (2009)=a sin(2009π+α)+b cos(2009π+β)=-a sin α-b cos β=5, ∴a sin α+b cos β=-5.∴f (2010)=a sin α+b cos β=-5.5.[答案] A[解析] sin585°=sin(360°+225°)=sin225°=sin(180°+45°)=-sin45°=-22. 6.[答案] D[解析] T =2π25=5π. 7.[答案] A[解析] 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]上为减函数; 选项B :y =cos(2x +π2)=-sin2x ,周期为π,在[π4,π2]上为增函数; 选项C :y =sin(x +π2)=cos x ,周期为2π; 选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A. 8. [答案] ⎝ ⎛⎭⎪⎫k π3-π4,k π3+π12(k ∈Z) [解析] 求此函数的递减区间,也就是求y =2tan ⎝ ⎛⎭⎪⎫3x +π4的递增区间,由k π-π2<3x +π4<k π+π2,k ∈Z 得:k π3-π4<x <k π3+π12, ∴减区间是⎝ ⎛⎭⎪⎫k π3-π4,k π3+π12,k ∈Z.。
高一三角函数练习题(一)一.选择题1.sin480︒等于( )A .12-B .12C .- D2.已知2πθπ<<,3sin()25πθ+=-,则tan(π-θ)的值为( ) A .34 B .43 C .34- D .43-3.函数y = sin(2x+25π)的图象的一条对称轴方程是 ( ) A .x = -2π B .x =-4π C .x =8πD .x =45π4.下列四个函数中,同时具有性质( ) ①最小正周期为π; ②图象关于直线3x π=对称的是A .sin()26x y π=+B .sin(2)6y x π=+ C .|sin |y x = D .sin(2)6y x π=-5.设f(x)=asin(x πα+)+bcos(x πβ+),其中a 、b 、α、β都是非零实数,若f(2008)=-1,则f(2009)等于 ( )A .-1B .1C .0D .26.要得到函数y =sin(2x -3π)的图象,只须将函数y =sin2x 的图象 ( )A.向左平移3πB.向右平移3π C.向左平移6π D.向右平移6π7.设x ∈z ,则f(x)=cos 3x π的值域是A .{-1,12} B .{-1, 12-,12,1} C .{-1, 12-,0,12,1} D .{12,1}8、.若将某函数的图象向右平移2π以后所得到的图象的函数式是y =sin(x +4π),则原来的函数表达式为( )A.y =sin(x +43π)B.y =sin(x +2π) C.y =sin(x -4π) D.y =sin(x +4π)-4π9.图中的曲线对应的函数解析式是 ( )A .|sin |x y = B .||sin x y = C .||sin x y -= D .|sin |x y -=10.函数)32cos(π--=x y 的单调递增区间是( ) A .)(322,342Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ B. )(324,344Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππC .)(382,322Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D. )(384,324Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ二.填空题11.函数)32sin(3)(π-=x x f 的图象为C ,如下结论中正确的是(写出所有正确结论的编号). 1图象C 关于直线π1211=x 对称; 2图象C 关于点)0,32(π对称; 3函数125,12()(ππ-在区间x f )内是增函数;12函数sin3xy =的单调增区间为 . 13.函数sin(2)4y x π=+的最小值为 ,相应的x 的值是 .14、函数)32sin(π+-=x y 的单调减区间是______________。