自动控制原理第5章 根轨迹法
- 格式:ppt
- 大小:4.27 MB
- 文档页数:72
自动控制原理根轨迹法总结
【根轨迹法概述】
-根轨迹法是分析线性时不变系统稳定性和动态性能的一个重要工具。
它通过在复平面上绘制闭环极点随系统参数变化的轨迹来实现。
【根轨迹法的基本原理】
1. 定义与目的:
-根轨迹是系统开环增益变化时,闭环极点在s平面上的轨迹。
-主要用于分析系统稳定性和设计控制器参数。
2. 绘制原则:
-根据系统开环传递函数,确定轨迹的起点和终点,分支点,穿越虚轴的点等。
-利用角度判据和幅值判据确定根轨迹。
【根轨迹法的应用】
1. 系统稳定性分析:
-根据闭环极点的位置判断系统的稳定性。
-极点在左半平面表示系统稳定,右半平面表示不稳定。
2. 控制器设计:
-调整控制器参数(如比例增益、积分时间常数、微分时间常数等),使根轨迹满足性能指标要求。
-确定合适的开环增益,使闭环系统具有期望的动态性能和稳定裕度。
【根轨迹法的优势与局限性】
-优势:直观、便于分析系统特性,特别是在控制器设计中。
-局限性:仅适用于线性时不变系统,对于非线性或时变系统不适用。
【实践中的注意事项】
-在绘制根轨迹时,应仔细考虑系统所有极点和零点的影响。
-必须结合其他方法(如奈奎斯特法、波特法等)进行综合分析。
【结语】
-根轨迹法是自动控制领域中一种非常有效的工具,对于理解和设计复杂控制系统具有重要意义。
-掌握根轨迹法,能够有效地指导实际的控制系统设计和分析。
编制人:_____________________
日期:_____________________。
自动控制原理根轨迹法知识点总结自动控制原理中的根轨迹法是一种常用的分析和设计控制系统的方法。
它通过在复平面上绘制系统的根轨迹,并结合数学分析的方法,可以帮助我们了解系统的稳定性及动态特性,并设计出合适的控制器来实现所需的性能要求。
本文将对根轨迹法的原理和关键知识点进行总结。
一、根轨迹法的基本原理根轨迹法是通过分析系统的开环传递函数来确定系统的极点和零点在复平面上的分布情况。
根轨迹是由系统的特征方程的解所决定的,即特征方程的根随参数的变化而移动,形成了一条曲线,这条曲线即为根轨迹。
根轨迹的形状和分布反映了系统的稳定性、动态响应及频率特性。
根轨迹法的基本步骤如下:1. 给定系统的开环传递函数:G(s)H(s),其中G(s)为系统的传递函数,H(s)为控制器的传递函数。
2. 将开环传递函数表示为极点-零点的形式:G(s)H(s) = K·(s-z1)(s-z2)...(s-zn) / (s-p1)(s-p2)...(s-pm),其中K为传递函数的增益,zi和pi为传递函数的零点和极点。
3. 根据传递函数的特征方程:1+G(s)H(s)=0,得到特征方程:1+K·(s-z1)(s-z2)...(s-zn) / (s-p1)(s-p2)...(s-pm) = 0。
4. 以复平面为基准,根据特征方程的根(极点和零点),画出根轨迹。
5. 根据根轨迹的形状和分布,分析系统的稳定性和动态响应,设计合适的控制器参数。
二、根轨迹法的关键知识点1. 极点和零点:极点和零点是传递函数的根,它们对系统的稳定性和动态响应有着重要影响。
极点是使得特征方程为零的点,零点是使得传递函数的分子为零的点。
2. 稳定性判据:系统的稳定性和根轨迹的位置有直接关系。
当系统的极点全部位于左半平面时,系统是稳定的;若存在极点位于右半平面,则系统是不稳定的。
3. 根轨迹与动态响应:根轨迹的形状和分布反映了系统的动态响应。
根轨迹与阻尼比、自然频率等参数有关,可以通过观察根轨迹的形状来判断系统的超调量、振荡频率等动态性能指标。
自动控制原理第五章1. 频率特性:在正弦信号作用下,系统输出稳态分量与输入复数的比值;其中,比(W)的振幅输出的稳态分量的振幅输入称为振幅频率特性,和φ的差异之间的相位角(W)输出稳态组件和输入相角称为相位频率特性,即(公式)。
2. 频率特性的几何表示幅相频率特性曲线(简称幅相曲线或奈奎斯特曲线或极坐标图):w从0到∞变化时,G (JW)在复平面上的轨迹。
绘制方法:方法1:计算每个W值的幅值A (W)和相位角(W),然后跟踪点并将其连接成光滑曲线;方法二:对每个W值计算U (W)和V (W),然后跟踪点线。
对数频率特性曲线:(简称对数坐标图或伯德图)①对数幅频特性:[公式]②对数相频特性:[公式]③横坐标是频率w,采用对数分度,单位是rad/s;对数幅频特性曲线的纵坐标为对数幅频特性的函数值,采用均匀分度,单位是dB;对数相频特性曲线的纵坐标为相频特性的函数值,采用均匀分度,单位是(°)。
注:采用对数显著优点是将频率特性的幅值乘除变为相加减,简化作图。
3、典型环节的频率特性①比例环节G(s)=K幅相频率特性:G(jw)=K,幅频特性A(w)=K;相频特性φ(w)=0°;曲线为实轴上一点。
对数频率特性:L(w)=20lgK;φ(w)=0°改变K:幅频曲线升高或降低;相频曲线不变②积分环节G(S)= [公式]幅相频率特性:G(jw)= [公式];幅频特性:A(w)= [公式] ;相频特性:-90°对数频率特性:L(w)=20lg [公式] =-20lgw;φ(w)=-90°③微分环节G(S)=S(纯微分)幅相频率特性:G(jw)=jw;幅频特性:A(w)=w;相频特性:φ(w)=90°对数频率特性:L(w)=20lgw;φ(w)=90°④惯性环节G(S)= [公式]幅相频率特性:G(jw)= [公式];A(w)= [公式] ;φ(w)=-arctanTw 【当w=0时,A(0)=1,φ(0)=0°;当w=1/T时,A(1/T)= [公式] ,φ(1/T)=-45°;当w=∞时,A(∞)=0,φ(∞)=-90°】对数频率特性:L(w)=20lg[公式],φ(w)=-arctanTw【[公式]时,L(w)≈20lg1=0,[公式]时,L(w)≈20lg [公式]】⑤振荡环节G(s)=[公式](式中T= [公式] , 0<ζ<1);G(jw)= [公式] 幅相频率特性:A(jw)= [公式];φ(w)=-arctan [公式]【当w=0时,A(0)=1,φ(0)=0°;当w=1/T=wn时,A(1/T)= 1/2ζ,φ(1/T)=-90°;当w=∞时,A(∞)=0,φ(∞)=-180°】【令[公式] =0,有谐振频率[公式] = [公式] ,谐振峰值:[公式]=A( [公式] )= [公式]当[公式]固定,[公式] 越小,[公式]越接近[公式],[公式]越大;当ζ大于[公式] 时,将不发生谐振,即A(w)随着w增大而单调减小】⑥延时环节G(S)= [公式]幅相频率特性:G(jw)=[公式];幅频特性:A(w)=1;相频特性:φ(w)=-57.3τw对数频率特性:L(w)=0;φ(w)=-57.3w4、绘图奈氏曲线制图方法:[公式]①起点:令w→0,则[公式]= [公式]0型系统:始于实轴(K,j0)的点Ⅰ型系统:始于相角为-90°的无穷远处;当w趋于0+时,曲线与虚轴平行Ⅱ型系统:始于相角为-180°的无穷远处;当w趋于0+时,曲线渐进与负实轴平行②终点: [公式] ,n>m。
第五章§5-1 引言§5-2频率特性§5-3 开环系统的典型环节分解和开环频率特性曲线的绘制§5-4开环和闭环系统Bode图的绘制方法§5-5 系统稳定性分析§5-6控制系统的相对稳定性分析第五章 控制系统的频率响应分析[教学目的]:掌握利用频域法进行系统分析的一般方法 ,为后面的校正及信号与系统分析打下基础。
掌握系统频率特性分析与系统幅角之间的关系,掌握Nyquist 图和Bode 图的绘制方法,根据系统的Nyquist 图和Bode 图分析系统的性质。
本章的难点是Nyquist 稳定性分析。
[主要容]:一、引言 二、 频率特性 三、 开环系统的典型环节分解和开环频率特性曲线的绘制 四、 频率域稳定判据 五、 稳定裕度 六、 闭环系统的频域性能指标[重点]: 频率特性的基本概念,各种频域特性曲线的绘制,Nyquist 稳定判据的应用,及相对稳定裕度的分析,理解三频段的概念与作用。
[难点]:时域性能指标与频域性能指标之间的相互转换。
闭环频域性能指标的理解与应用[讲授方法及技巧]:联系传递函数,微分方程等数学模型,将频率法和时域分析法、根轨迹法相比较,理解和掌握古典控制系统的完整体系。
准确理解概念,把握各种图形表示法的相互联系。
与时域法进行对比,以加深理解。
§5-1 引言1.时域分析法(特点)1)以传递函数和单位阶跃响应为分析基础构成的一整套解析法为主响应曲线图形分析法为辅的分析方法。
它具有直观、明确的物理意义,但就是运算工作量较大,参数的全局特征不明显。
2) 原始依据--数学模型,得来不易,也同实际系统得真实情况有差异,存在较多的近似、假设和忽略,有时对于未知对象,还可能要用经验法估计。
3) 对工程中普遍存在的高频噪声干扰的研究无能为力。
4) 在定性分析上存在明显的不足。
5) 属于以“点”为工作方式的分析方法。
2.根轨迹法(特点)1)根轨迹法弥补了时域分析法中参数全局变化时特征不明显的不足,在研究单一指定参数对整个系统的影响时很有用;2)增加零极点(增加补偿器)时,是一种很好的辅助设计工具; 3)以“线”和“面”为工作方式;4)为定性分析提供了一种非常好的想象空间和辅助思维界面。
自动控制原理总结之判断系统稳定性方法判断系统稳定性是控制理论研究中的重要内容,正确判断系统的稳定性对于设计和实施控制策略非常关键。
在自动控制原理中,常见的判断系统稳定性的方法主要包括根轨迹法、频率响应法和状态空间法等。
根轨迹法是一种基于系统传递函数的方式来判断系统稳定性的方法。
通过分析系统传递函数的极点和零点的分布,在复平面上绘制出根轨迹图来描述系统特性。
根轨迹图上的点表示系统传递函数的闭环极点位置随控制参数变化的轨迹,通过观察根轨迹图,可以判断系统的稳定性。
一般来说,当根轨迹图上所有的闭环极点都位于左半平面时,系统是稳定的;而如果存在闭环极点位于右半平面,系统就是不稳定的。
此外,根轨迹法还可以通过分析根轨迹图的形状、离散角和角度条件等来进一步评估系统的稳定性。
频率响应法是一种基于系统的频率特性来判断稳定性的方法。
通过分析系统的频率响应曲线,可以得到系统的增益和相位信息,进而判断系统的稳定性。
在频率响应法中,常见的评估指标有增益裕度和相位裕度。
增益裕度表示系统增益与临界增益之间的差距,而相位裕度则表示系统相位与临界相位之间的差距。
一般来说,增益裕度和相位裕度越大,系统的稳定性就越好。
根据增益裕度和相位裕度的要求,可以设计合适的控制器来保证系统的稳定性。
状态空间法是一种基于系统状态方程来判断稳定性的方法。
在状态空间表示中,系统的动态特性由一组一阶微分方程组表示。
通过求解状态方程的特征值,可以得到系统的特征根。
一般来说,当系统的特征根都位于左半平面时,系统是稳定的;而如果存在特征根位于右半平面,系统就是不稳定的。
此外,状态空间法可以通过观察系统的可控和可观测性来进一步判断系统稳定性。
当系统可控和可观测时,系统往往是稳定的。
除了以上几种常见的判断系统稳定性的方法外,还有一些其他的方法,如Nyquist稳定性判据、Bode稳定性判据、李雅普诺夫稳定性判据等。
这些方法各有特点,常常根据具体的系统和问题选择合适的方法来判断稳定性。
自动控制原理稳定性知识点总结自动控制原理是控制工程学科中的重要基础理论,涉及到系统的稳定性是其中的核心概念。
稳定性是指系统在一定条件下具有趋向于平衡或稳定状态的特性。
本文将对自动控制原理中的稳定性知识点进行总结。
一、稳定性的概念与分类稳定性是评判系统质量的重要指标,可以分为三类:稳定、渐进稳定和不稳定。
1. 稳定:当系统受到外界扰动时,系统的输出能够趋于有限值,并且不会产生持续的振荡。
2. 渐进稳定:当系统受到外界扰动时,系统的输出能够趋于有限值,但可能会产生一定的振荡,最终趋于稳定。
3. 不稳定:当系统受到外界扰动时,系统的输出会无限增长或无限振荡,无法趋于稳定状态。
二、线性系统的稳定性判断线性系统的稳定性判断可以通过系统传递函数的极点位置来进行分析。
系统的稳定性与极点的位置有关。
1. 极点位置与稳定性- 极点位于左半平面(实部小于零)时,系统是稳定的。
- 极点位于右半平面(实部大于零)时,系统是不稳定的。
- 极点位于虚轴上时,系统可能是渐进稳定的。
2. 稳定性判据通常情况下,可以通过判断系统传递函数的极点来判断系统的稳定性。
对于一阶系统(一般形式为G(s) = K/(Ts+1)),如果零极点的实部都小于零,则系统是稳定的;对于高阶系统,需要通过判断极点位置是否在左半平面中来进行稳定性分析。
三、稳定性分析的常见方法1. Bode图法Bode图是一种用来表示系统频率响应的图表。
通过绘制系统传递函数的幅频特性和相频特性图,可以直观地分析系统的稳定性。
在Bode 图上,对于稳定系统,幅频特性曲线在低频和高频均趋于0dB,相频特性曲线在各频率下都为负值。
2. Nyquist判据Nyquist判据是通过分析系统的频率响应和复平面上的极点分布来进行稳定性判定的方法。
通过绘制Nyquist曲线,可以判断系统的稳定性。
如果曲线不经过-1点且围绕该点的圈数为0,则系统是稳定的。
3. 根轨迹法根轨迹法是通过分析传递函数的极点随控制参数变化的轨迹来判断系统的稳定性。
自动控制原理根轨迹规划知识点总结自动控制原理是研究将系统的输入、输出和功能关系用数学模型表示,并利用控制理论方法分析和设计自动控制系统的学科。
而根轨迹规划是自动控制原理中的重要内容,用于描述系统的稳定性和动态性能。
本文将对自动控制原理中的根轨迹规划知识进行总结,包括根轨迹的概念、绘制方法、性质以及应用等方面。
一、根轨迹的概念根轨迹是指在特定范围内改变系统的参数,并以参数为变量绘制出的所有系统传递函数零点或极点的轨迹。
通过观察根轨迹可以直观地了解系统的稳定性和动态性能。
根轨迹通常绘制在复平面内,横坐标表示实部,纵坐标表示虚部。
二、根轨迹的绘制方法1. 绘制根轨迹的步骤a) 通过给定系统的传递函数,确定系统的极点和零点。
b) 根据系统的极点和零点的数量和位置,确定根轨迹的起点和终点。
c) 确定根轨迹在实轴和虚轴上的对称性。
d) 确定根轨迹的趋近线和远离线。
e) 根据根轨迹的特性进行绘制。
2. 根轨迹的特性a) 以实负轴和虚轴上的极点、零点为轴心的圆形称为拐点圆。
b) 根轨迹在实轴上的起点和终点分别由零点和极点所决定。
c) 根轨迹不可交叉,且对称于实轴。
d) 根轨迹的趋近线和远离线的夹角决定了系统的快速响应性能。
三、根轨迹的性质1. 根轨迹的边界a) 根轨迹上的极点和零点均在左半平面时,根轨迹边界为实轴。
b) 根轨迹上存在部分极点或零点位于虚轴上时,根轨迹边界沿离心线和连接极点的径线绘制。
2. 根轨迹与系统稳定性和动态性能的关系a) 系统稳定性:若根轨迹上的极点都在左半平面,则系统是稳定的。
b) 系统动态性能:可通过根轨迹的形状和位置来评估系统的超调量、上升时间、稳态误差等指标。
四、根轨迹的应用根轨迹广泛应用于自动控制系统的分析与设计中。
在系统分析方面,可以通过根轨迹来判断系统的稳定性和动态响应特性。
在系统设计方面,可以根据根轨迹的要求和设计指标进行参数调整和优化,以满足系统的性能需求。
结语:本文对自动控制原理中的根轨迹规划知识进行了总结。