版高中数学第一章三角函数16三角函数模型的简单应用学业分层测评新人教A版必修4
- 格式:doc
- 大小:165.51 KB
- 文档页数:6
必修1欧阳光明(2021.03.07)第一章集合与函数概念1.1 集合1.2 函数及其表示 1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体 1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质 2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n 项和2.4等比数列2.5等比数列的前n 项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式 3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数 3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
人教A 版高中数学目录必修1第一章集合与函数概念1 1..1 1 集合集合 1 1..2 2 函数及其表示函数及其表示 1 1..3 3 函数的基本性质函数的基本性质第二章基本初等函数(Ⅰ)2.1 1 指数函数指数函数 2 2..2 2 对数函数对数函数 2 2..3 3 幂函数幂函数第三章函数的应用3.1 1 函数与方程函数与方程 3 3..2 2 函数模型及其应用函数模型及其应用必修2第一章空间几何体1 1..1 1 空间几何体的结构空间几何体的结构 1 1..2 2 空间几何体的三视图和空间几何体的三视图和直观图1 1..3 3 空间几何体的表面积与空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2 2..1 1 空间点、直线、平面之空间点、直线、平面之间的位置关系2 2..2 2 直线、平面平行的判定直线、平面平行的判定及其性质 2 2..3 3 直线、平面垂直的判定直线、平面垂直的判定及其性质第三章直线与方程3.1 1 直线的倾斜角与斜率直线的倾斜角与斜率 3 3..2 2 直线的方程直线的方程3 3..3 3 直线的交点坐标与距离直线的交点坐标与距离公式必修3第一章算法初步1 1..1 1 算法与程序框图算法与程序框图 1 1..2 2 基本算法语句基本算法语句 1 1..3 3 算法案例算法案例阅读与思考割圆术第二章统计2 2..1 1 随机抽样随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应 2 2..2 2 用样本估计总体用样本估计总体阅读与思考生产过程中的质量控制图2 2..3 3 变量间的相关关系变量间的相关关系阅读与思考相关关系的强与弱第三章概率3 3..1 1 随机事件的概率随机事件的概率阅读与思考天气变化的认识过程 3 3..2 2 古典概型古典概型 3 3..3 3 几何概型几何概型必修4第一章三角函数1 1..1 1 任意角和弧度制任意角和弧度制 1 1..2 2 任意角的三角函数任意角的三角函数1 1..3 3 三角函数的诱导公式三角函数的诱导公式 1 1..4 4 三角函数的图象与性质三角函数的图象与性质 1 1..5 5 函数函数y=Asin y=Asin((ωx+ψ) 1 1..6 6 三角函数模型的简单应三角函数模型的简单应用第二章平面向量 2 2..1 1 平面向量的实际背景及平面向量的实际背景及基本概念 2 2..2 2 平面向量的线性运算平面向量的线性运算 2 2..3 3 平面向量的基本定理及平面向量的基本定理及坐标表示 2 2..4 4 平面向量的数量积平面向量的数量积 2 2..5 5 平面向量应用举例平面向量应用举例第三章三角恒等变换3 3..1 1 两角和与差的正弦、余两角和与差的正弦、余弦和正切公式 3 3..2 2 简单的三角恒等变换简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n 项和2.4等比数列2.5等比数列的前n 项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用的应用3.4生活中的优化问题举例举例选修1-2第一章第一章 统计案例统计案例 1.1 回归分析的基本思想及其初步应用思想及其初步应用 1.2 独立性检验的基本思想及其初步应用本思想及其初步应用第二章第二章 推理与证明推理与证明 2.1 合情推理与演绎证明证明2.2 直接证明与间接证明证明第三章第三章 数系的扩充与复数的引入与复数的引入3.1数系的扩充和复数的概念的概念3.2复数代数形式的四则运算则运算第四章第四章 框图框图 4.1流程图流程图 4.2结构图结构图选修2-1第一章第一章 常用逻辑用语1.1 命题及其关系命题及其关系 1.2 充分条件与必要条件条件1.3 简单的逻辑联结词1.4 全称量词与存在量词量词第二章第二章 圆锥曲线与方程方程2.1 曲线与方程曲线与方程2.2 椭圆椭圆 2.3 双曲线双曲线 2.4 抛物线抛物线第三章第三章 空间向量与立体几何立体几何3.1 空间向量及其运算3.2 立体几何中的向量方法量方法选修2-2第一章第一章 导数及其应用1.1 变化率与导数变化率与导数1.2 导数的计算导数的计算1.3 导数在研究函数中的应用中的应用1.4 生活中的优化问题举例题举例1.5 定积分的概念定积分的概念 1.6 微积分基本定理微积分基本定理 1.7 定积分的简单应用第二章第二章 推理与证明推理与证明 2.1 合情推理与演绎推理推理2.2 直接证明与间接证明证明2.3 数学归纳法数学归纳法第三章 数系的扩充与复数的引入与复数的引入3.1 数系的扩充和复数的概念数的概念3.2 复数代数形式的四则运算四则运算选修2-3第一章第一章 计数原理计数原理1.1 分类加法计数原理与分步乘法计数原理理与分步乘法计数原理1.2 排列与组合排列与组合 1.3 二项式定理二项式定理第二章第二章 随机变量及其分布其分布2.1 离散型随机变量及其分布列及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差的均值与方差2.4 正态分布正态分布 第三章第三章 统计案例统计案例3.1 回归分析的基本思想及其初步应用思想及其初步应用 3.2 独立性检验的基本思想及其初步应用本思想及其初步应用选修3-1第一讲第一讲 早期的算术与几何与几何第二讲第二讲 古希腊数学古希腊数学 第三讲第三讲 中国古代数学瑰宝学瑰宝第四讲第四讲 平面解析几何的产生何的产生第五讲第五讲微积分的诞生 第六讲第六讲 近代数学两巨星巨星第七讲第七讲 千古谜题千古谜题第八讲第八讲 对无穷的深入思考入思考第九讲第九讲 中国现代数学的开拓与发展学的开拓与发展选修3-2选修3-3第一讲第一讲 从欧氏几何看球面看球面第二讲第二讲 球面上的距离和角离和角第三讲第三讲 球面上的基本图形本图形第四讲第四讲 球面三角形球面三角形 第五讲第五讲 球面三角形的全等的全等第六讲第六讲 球面多边形与欧拉公式与欧拉公式第七讲第七讲 球面三角形的边角关系边角关系第八讲第八讲 欧氏几何与非欧几何非欧几何选修3-4第一讲第一讲 平面图形的对称群对称群第二讲第二讲 代数学中的对称与抽象群的概念对称与抽象群的概念 第三讲第三讲 对称与群的故事故事选修4-1第一讲第一讲 相似三角形的判定及有关性质的判定及有关性质第二讲 直线与圆的位置关系位置关系第三讲 圆锥曲线性质的探讨质的探讨选修4-2第一讲 线性变换与二阶矩阵二阶矩阵第二讲 变换的复合与二阶矩阵的乘法与二阶矩阵的乘法 第三讲 逆变换与逆矩阵矩阵第四讲 变换的不变量与矩阵的特征向量量与矩阵的特征向量选修4-3 选修4-4第一讲第一讲 坐标系坐标系 第二讲第二讲 参数方程参数方程选修4-5第一讲 不等式和绝对值不等式对值不等式第二讲 证明不等式的基本方法的基本方法第三讲 柯西不等式与排序不等式与排序不等式第四讲 数学归纳法证明不等式证明不等式选修4-6第一讲第一讲 整数的整除整数的整除 第二讲第二讲 同余与同余方程方程第三讲第三讲 一次不定方程第四讲第四讲 数伦在密码中的应用中的应用选修4-7第一讲第一讲 优选法优选法 第二讲第二讲 试验设计初步选修4-8选修4-9第一讲第一讲 风险与决策的基本概念的基本概念第二讲第二讲 决策树方法决策树方法 第三讲第三讲 风险型决策的敏感性分析的敏感性分析第四讲第四讲 马尔可夫型决策简介决策简介高中人教版(高中人教版(B B )教材目录介绍必修一第一章第一章 集合集合1.1 1 集合与集合的表示方法集合与集合的表示方法集合与集合的表示方法 1 1..2 2 集合之间的关系与运算集合之间的关系与运算集合之间的关系与运算 第二章第二章 函数函数2 2..1 1 函数函数函数 2 2..2 2 一次函数和二次函数一次函数和二次函数一次函数和二次函数 2 2..3 3 函数的应用(Ⅰ)函数的应用(Ⅰ)函数的应用(Ⅰ) 2 2..4 4 函数与方程函数与方程函数与方程第三章第三章 基本初等函数(Ⅰ)3 3..1 1 指数与指数函数指数与指数函数指数与指数函数 3 3..2 2 对数与对数函数对数与对数函数对数与对数函数3 3..3 3 幂函数幂函数幂函数 3 3..4 4 函数的应用(Ⅱ)函数的应用(Ⅱ)函数的应用(Ⅱ)必修二第一章第一章 立体几何初步立体几何初步1.1 1 空间几何体空间几何体空间几何体 1 1..2 2 点、线、面之间的位置点、线、面之间的位置关系关系第二章第二章 平面解析几何初步平面解析几何初步 2 2..1 1 平面真角坐标系中的基平面真角坐标系中的基本公式本公式2 2..2 2 直线方程直线方程直线方程 2 2..3 3 圆的方程圆的方程圆的方程 2 2..4 4 空间直角坐标系空间直角坐标系空间直角坐标系必修三第一章第一章 算法初步算法初步1.1 1 算法与程序框图算法与程序框图算法与程序框图 1 1..2 2 基本算法语句基本算法语句基本算法语句 1 1..3 3 中国古代数学中的算法中国古代数学中的算法案例案例第二章第二章 统计统计2.1 1 随机抽样随机抽样随机抽样 2 2..2 2 用样本估计总体用样本估计总体用样本估计总体 2 2..3 3 变量的相关性变量的相关性变量的相关性第三章第三章 概率概率3.1 1 随机现象随机现象随机现象 3 3..2 2 古典概型古典概型古典概型 3 3..3 3 随机数的含义与应用随机数的含义与应用随机数的含义与应用 3 3..4 4 概率的应用概率的应用概率的应用必修四第一章第一章 基本初等函基本初等函((Ⅱ) 1 1..1 1 任意角的概念与弧度制任意角的概念与弧度制任意角的概念与弧度制 1 1..2 2 任意角的三角函数任意角的三角函数任意角的三角函数 1 1..3 3 三角函数的图象与性质三角函数的图象与性质三角函数的图象与性质第二章第二章 平面向量平面向量 2 2..1 1 向量的线性运算向量的线性运算向量的线性运算 2 2..2 2 向量的分解与向量的坐向量的分解与向量的坐标运算标运算 2 2..3 3 平面向量的数量积平面向量的数量积平面向量的数量积2 2..4 4 向量的应用向量的应用向量的应用第三章第三章 三角恒等变换三角恒等变换3.1 1 和角公式和角公式和角公式 3 3..2 2 倍角公式和半角公式倍角公式和半角公式倍角公式和半角公式 3 3..3 3 三角函数的积化和差与三角函数的积化和差与和差化积和差化积必修五第一章第一章 解直角三角形解直角三角形1.1 1 正弦定理和余弦定理正弦定理和余弦定理正弦定理和余弦定理 1 1..2 2 应用举例应用举例应用举例第二章第二章 数列数列2 2..1 1 数列数列数列 2 2..2 2 等差数列等差数列等差数列 2 2..3 3 等比数列等比数列等比数列第三章第三章 不等式不等式3 3..1 1 不等关系与不等式不等关系与不等式不等关系与不等式 3 3..2 2 均值不等式均值不等式均值不等式3 3..3 3 一元二次不等式及其解一元二次不等式及其解法 3 3..4 4 不等式的实际应用不等式的实际应用不等式的实际应用 3 3..5 5 二元一次不等式(组)二元一次不等式(组)与简单线性规划问题与简单线性规划问题选修1-1第一章第一章 常用逻辑用语常用逻辑用语1.1 1 命题与量词命题与量词命题与量词 1 1..2 2 基本逻辑联结词基本逻辑联结词基本逻辑联结词 1 1..3 3 充分条件、必要条件与充分条件、必要条件与命题的四种形式命题的四种形式第二章第二章 圆锥曲线与方程圆锥曲线与方程2.1 1 椭圆椭圆椭圆 2 2..2 2 双曲线双曲线双曲线 2 2..3 3 抛物线抛物线抛物线第三章第三章 导数及其应用导数及其应用3 3..1 1 导数导数导数 3 3..2 2 导数的运算导数的运算导数的运算 3 3..3 3 导数的应用导数的应用导数的应用选修1-2第一章第一章 统计案例统计案例 第二章第二章 推理与证明推理与证明 第三章第三章 数系的扩充与复数的引入的引入 第四章第四章 框图框图选修4-5第一章第一章 不等式的基本性质和证明的基本方法和证明的基本方法1 1..1 1 不等式的基本性质和一不等式的基本性质和一元二次不等式的解法元二次不等式的解法 1 1..2 2 基本不等式基本不等式基本不等式1 1..3 3 绝对值不等式的解法绝对值不等式的解法绝对值不等式的解法 1 1..4 4 绝对值的三角不等式绝对值的三角不等式绝对值的三角不等式 1 1..5 5 不等式证明的基本方法不等式证明的基本方法不等式证明的基本方法第二章第二章 柯西不等式与排序不等式及其应用不等式及其应用2.1 1 柯西不等式柯西不等式柯西不等式 2 2..2 2 排序不等式排序不等式排序不等式 2 2..3 3 平均值不等式平均值不等式平均值不等式((选学选学) ) 2 2..4 4 最大值与最小值问题,最大值与最小值问题,优化的数学模型优化的数学模型第三章第三章 数学归纳法与贝努利不等式利不等式3.1 1 数学归纳法原理数学归纳法原理数学归纳法原理 3 3..2 2 用数学归纳法证明不等用数学归纳法证明不等式,贝努利不等式式,贝努利不等式。
人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
人教版高中数学A版目录新课标A版必修1•第一章集合与函数概念•第二章基本初等函数(Ⅰ)•第三章函数的应用•单元测试•综合专栏第一章集合与函数概念• 1.1集合• 1.2函数及其表示• 1.3函数的基本性质•实习作业•同步练习•单元测试•本章综合1.1集合• 1.1.1集合的含义与表示• 1.1.2集合间的基本关系• 1.1.3集合的基本运算•本节综合1.2函数及其表示• 1.2.1函数的概念• 1.2.2函数的表示法•本节综合1.3函数的基本性质• 1.3.1单调性与最大(小)值• 1.3.2奇偶性•本节综合实习作业同步练习单元测试本章综合第二章基本初等函数(Ⅰ)• 2.1指数函数• 2.2对数函数• 2.3幂函数•同步练习•单元测试•本章综合2.1指数函数• 2.1.1指数与指数幂的运算• 2.1.2指数函数及其性质•本节综合2.2对数函数• 2.2.1对数与对数运算• 2.2.2对数函数及其性质•本节综合2.3幂函数同步练习单元测试本章综合第三章函数的应用• 3.1函数与方程• 3.2函数模型及其应用•实习作业•同步练习•单元测试•本章综合3.1函数与方程• 3.1.1方程的根与函数的零点• 3.1.2用二分法求方程的近似解•本节综合3.2函数模型及其应用• 3.2.1几类不同增长的函数模型• 3.2.2函数模型的应用实例•本节综合实习作业同步练习单元测试本章综合单元测试综合专栏新课标A版必修2•第一章空间几何体•第二章点、直线、平面之间的位置关系•第三章直线与方程•第四章圆与方程•单元测试综合专栏第一章空间几何体• 1.1空间几何体的结构• 1.2空间几何体的三视图和直观图• 1.3空间几何体的表面积与体积•复习参考题•实习作业•同步练习•单元测试•本章综合•第二章点、直线、平面之间的位置关系• 2.1空间点、直线、平面之间的位置关系• 2.2直线、平面平行的判定及其性质• 2.3直线、平面垂直的判定及其性质•同步练习•单元测试•本章综合第三章直线与方程• 3.1直线的倾斜角与斜率• 3.2直线的方程• 3.3直线的交点坐标与距离公式•同步练习•单元测试•本章综合第四章圆与方程• 4.1圆的方程• 4.2直线、圆的位置关系• 4.3空间直角坐标系•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修3•第一章算法初步•第二章统计•第三章概率•单元测试•综合专栏第一章算法初步• 1.1算法与程序框图• 1.2基本算法语句• 1.3算法与案例•同步练习•单元测试•本章综合1.1算法与程序框图• 1.1.1算法的概念• 1.1.2程序框图和算法的逻辑结构•本节综合1.2基本算法语句• 1.2.1输入、输出、赋值语句• 1.2.2条件语句• 1.2.3循环语句•本节综合1.3算法与案例同步练习单元测试本章综合第二章统计• 2.1随机抽样• 2.2用样本估计总体• 2.3变量间的相关关系•实习作业•同步练习•单元测试•本章综合2.1随机抽样• 2.1.1简单随机抽样• 2.1.2系统抽样• 2.1.3分层抽样•本节综合2.2用样本估计总体• 2.2.1用样本的频率分布估计总体• 2.2.2用样本的数字特征估计总体•本节综合2.3变量间的相关关系• 2.3.1变量之间的相关关系• 2.3.2两个变量的线性相关•本节综合实习作业同步练习单元测试本章综合第三章概率• 3.1随机事件的概率• 3.2古典概型• 3.3几何概型•同步练习•单元测试•本章综合3.1随机事件的概率• 3.1.1随机事件的概率• 3.1.2概率的意义• 3.1.3概率的基本性质•本节综合3.2古典概型• 3.2.1古典概型• 3.2.2随机数的产生•本节综合3.3几何概型• 3.3.1几何概型• 3.3.2均匀随机数的产生•本节综合同步练习单元测试本章综合单元测试综合专栏新课标A版必修4•第一章三角函数•第二章平面向量•第三章三角恒等变换•单元测试•综合专栏第一章三角函数• 1.1任意角和弧度制• 1.2任意的三角函数• 1.3三角函数的诱导公式• 1.4三角函数的图象与性质• 1.5函数y=Asin(ωx+ψ)• 1.6三角函数模型的简单应用•同步练习•单元测试•本章综合第二章平面向量• 2.1平面向量的实际背景及基本概念• 2.2平面向量的线性运算• 2.3平面向量的基本定理及坐标表示• 2.4平面向量的数量积• 2.5平面向量应用举例•同步练习•单元测试•本章综合第三章三角恒等变换• 3.1两角和与差的正弦、余弦和正切公式• 3.2简单的三角恒等变换•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修5•第一章解三角形•第二章数列•第三章不等式•单元测试•综合专栏第一章解三角形• 1.1正弦定理和余弦定理• 1.2应用举例• 1.3实习作业•探究与发现解三角形的进一步讨论•同步练习•单元测试•本章综合第二章数列• 2.1数列的概念与简单表示法• 2.1等差数列• 2.3等差数列的前n项和• 2.4等比数列• 2.5等比数列的前n项和•同步练习•单元测试•本章综合第三章不等式• 3.1不等关系与不等式• 3.2一元二次不等式及其解法• 3.3二元一次不等式(组)与简单的线性• 3.4基本不等式:•同步练习•单元测试•本章综合单元测试综合专栏新课标A版选修一•新课标A版选修1-1•新课标A版选修1-2新课标A版选修1-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章导数及其应用•月考专栏•期中专栏•期末专栏•单元测试•综合专栏第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•单元测试•本章综合第二章圆锥曲线与方程• 2.1椭圆• 2.2双曲线• 2.3抛物线•同步练习•单元测试•本章综合第三章导数及其应用• 3.1变化率与导数• 3.2导数的计算• 3.3导数在研究函数中的应用• 3.4生活中的优化问题举例•同步练习•单元测试•本章综合月考专栏期中专栏期末专栏单元测试新课标A版选修1-2•第一章统计案例•第二章推理与证明•第三章数系的扩充与复数的引入•第四章框图•月考专栏•期中专栏•期末专栏•单元测试•本章综合点击这里展开-- 查看子节点索引目录,更精确地筛选资料!第一章统计案例• 1.1回归分析的基本思想及其初步应用• 1.2独立性检验的基本思想及其初步应用•实习作业•同步练习•综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明•同步练习•综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•综合第四章框图• 4.1流程图• 4.2结构图•同步练习•综合月考专栏期中专栏期末专栏单元测试本章综合新课标A版选修二•新课标人教A版选修2-1•新课标人教A版选修2-2•新课标人教A版选修2-3新课标人教A版选修2-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章空间向量与立体几何•单元测试•本册综合第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•本章综合第二章圆锥曲线与方程• 2.1曲线与方程• 2.2椭圆• 2.3双曲线• 2.4抛物线•同步练习•本章综合第三章空间向量与立体几何• 3.1空间向量及其运算• 3.2立体几何中的向量方法•同步练习•本章综合单元测试本册综合新课标人教A版选修2-2•第一章导数及其应用•第二章推理与证明•第三章数系的扩充与复数的引入•单元测试•本册综合第一章导数及其应用• 1.1变化率与导数• 1.2导数的计算• 1.3导数在研究函数中的应用• 1.4生活中的优化问题举例• 1.5定积分的概念• 1.6微积分基本定理• 1.7定积分的简单应用•同步练习•本章综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明• 2.3数学归纳法•同步练习•本章综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•本章综合单元测试本册综合新课标人教A版选修2-3•第一章计数原理•第二章随机变量及其分布•第三章统计案例•单元测试•本册综合第一章计数原理• 1.1分类加法计数原理与分步乘法计.• 1.2排列与组合• 1.3二项式定理•同步练习•本章综合第二章随机变量及其分布• 2.1离散型随机变量及其分布列• 2.2二项分布及其应用• 2.3离散型随机变量的均值与方差• 2.4正态分布•同步练习•本章综合第三章统计案例• 3.1回归分析的基本思想及其初步应用• 3.2独立性检验的基本思想及其初步•本章综合•同步练习单元测试本册综合新课标A版选修三•新课标A版选修3-1•新课标A版选修3-3•新课标A版选修3-4新课标A版选修3-1•第一讲早期的算术与几何•第二讲古希腊数学•第三讲中国古代数学瑰宝•第四讲平面解析几何的产生•第五讲微积分的诞生•第六讲近代数学两巨星•第七讲千古谜题•第八讲对无穷的深入思考•第九讲中国现代数学的开拓与发展•单元测试•本册综合第一讲早期的算术与几何•一古埃及的数学•二两河流域的数学•三丰富多彩的记数制度•同步练习•本章综合第二讲古希腊数学•一希腊数学的先行者•二毕达哥拉斯学派•三欧几里得与《原本》•四数学之神──阿基米德•同步练习•本章综合第三讲中国古代数学瑰宝•一《周髀算经》与赵爽弦图•二《九章算术》•三大衍求一术•四中国古代数学家•同步练习•本章综合第四讲平面解析几何的产生•一坐标思想的早期萌芽•二笛卡儿坐标系•三费马的解析几何思想•四解析几何的进一步发展•同步练习•本章综合第五讲微积分的诞生•一微积分产生的历史背景•二科学巨人牛顿的工作•三莱布尼茨的“微积分”•同步练习•本章综合第六讲近代数学两巨星•一分析的化身──欧拉•二数学王子──高斯•同步练习•本章综合第七讲千古谜题•一三次、四次方程求根公式的发现•二高次方程可解性问题的解决•三伽罗瓦与群论•四古希腊三大几何问题的解决•同步练习•本章综合第八讲对无穷的深入思考•一古代的无穷观念•二无穷集合论的创立•三集合论的进一步发展与完善•同步练习•本章综合第九讲中国现代数学的开拓与发展•一中国现代数学发展概观•二人民的数学家──华罗庚•三当代几何大师──陈省身•同步练习•本章综合单元测试本册综合新课标A版选修3-3•第一讲从欧氏几何看球面•第二讲球面上的距离和角•第三讲球面上的基本图形•第四讲球面三角形•第五讲球面三角形的全等•第六讲球面多边形与欧拉公式•第七讲球面三角形的边角关系•第八讲欧氏几何与非欧几何•单元测试•本册综合第一讲从欧氏几何看球面•一平面与球面的位置关系•二直线与球面的位置关系和球幂定理•三球面的对称性•同步练习•本章综合第二讲球面上的距离和角•一球面上的距离•二球面上的角•同步练习•本章综合第三讲球面上的基本图形•一极与赤道•二球面二角形•三球面三角形•同步练习•本章综合第四讲球面三角形•一球面三角形三边之间的关系•二、球面“等腰”三角形•三球面三角形的周长•四球面三角形的内角和•同步练习•本章综合第五讲球面三角形的全等•1.“边边边”(s.s.s)判定定理•2.“边角边”(s.a.s.)判定定理•3.“角边角”(a.s.a.)判定定理•4.“角角角”(a.a.a.)判定定理•同步练习•本章综合第六讲球面多边形与欧拉公式•一球面多边形及其内角和公式•二简单多面体的欧拉公式•三用球面多边形的内角和公式证明欧拉公式•同步练习•本章综合第七讲球面三角形的边角关系•一球面上的正弦定理和余弦定理•二用向量方法证明球面上的余弦定理•三从球面上的正弦定理看球面与平面•四球面上余弦定理的应用──求地球上两城市间的距离•同步练习•本章综合第八讲欧氏几何与非欧几何•一平面几何与球面几何的比较•二欧氏平行公理与非欧几何模型──庞加莱模型•三欧氏几何与非欧几何的意义•同步练习•本章综合单元测试本册综合新课标A版选修3-4•第一讲平面图形的对称群•第二讲代数学中的对称与抽象群的概念•第三讲对称与群的故事•综合专栏•单元测试第一讲平面图形的对称群•平面刚体运动•对称变换•平面图形的对称群•同步练习•本章综合第二讲代数学中的对称与抽象群的概念•n元对称群S•多项式的对称变换•抽象群的概念•同步练习•本章综合第三讲对称与群的故事•带饰和面饰•化学分子的对称群•晶体的分类•伽罗瓦理论•同步练习•本章综合综合专栏单元测试新课标A版选修四•新课标人教A版选修4-1•选修4-2•新课标A版选修4-4•新课标A版选修4-5新课标人教A版选修4-1•第一讲相似三角形的判定及有关性质•第二讲直线与圆的位置关系•第三讲圆锥曲线性质的探讨•单元测试•本册综合第一讲相似三角形的判定及有关性质•一平行线等分线段定理•二平行线分线段成比例定理•三相似三角形的判定及性质•四直角三角形的射影定理•同步练习•本章综合第二讲直线与圆的位置关系•一圆周角定理•二圆内接四边形的性质与判定定理•三圆的切线的性质及判定定理•四弦切角的性质•五与圆有关的比例线段•同步练习•本章综合第三讲圆锥曲线性质的探讨•一平行射影•二平面与圆柱面的截线•三平面与圆锥面的截线•同步练习•本章综合单元测试本册综合选修4-2•第一讲线性变换与二阶矩阵•第二讲变换的复合与二阶矩阵的乘法•第三讲逆变换与逆矩阵•第四讲变换的不变量与矩阵的特征向量•单元测试•本册综合第一讲线性变换与二阶矩阵•一线性变换与二阶矩阵•二二阶矩阵与平面向量的乘法•三线性变换的基本性质•同步练习•本章综合第二讲变换的复合与二阶矩阵的乘法•一复合变换与二阶短阵的乘法•二矩阵乘法的性质•同步练习•本章综合第三讲逆变换与逆矩阵•一逆变换与逆矩阵•二二阶行列式与逆矩阵•三逆矩阵与二元一次方程组•同步练习•本章综合第四讲变换的不变量与矩阵的特征向量•一变换的不变量---矩阵的特征向量•二特征向量的应用•同步练习•本章综合单元测试本册综合新课标A版选修4-4•第一章坐标系•第二章参数方程•单元测试•本册综合第一章坐标系• 1.1直角坐标系、平面上的伸缩变换• 1.2极坐标系• 1.3曲线的极坐标方程• 1.4圆的极坐标方程• 1.5柱坐标系与球坐标系•同步练习•本章综合第二章参数方程• 2.1曲线的参数方程• 2.2直线和圆的参数方程• 2.3圆锥曲线的参数方程• 2.4一些常见曲线的参数方程•同步练习•本章综合单元测试本册综合新课标A版选修4-5•第一讲不等式和绝对值不等式•第二讲讲明不等式的基本方法•第三讲柯西不等式与排序不等式•第四讲数学归纳法证明不等式•单元测试•本册综合第一讲不等式和绝对值不等式•一不等式•二绝对值不等式•单元测试•本章综合第二讲讲明不等式的基本方法•一比较法•二综合法与分析法•三反证法与放缩法•单元测试•本章综合第三讲柯西不等式与排序不等式•一二维形式的柯西不等式•二一般形式的柯西不等式•三排序不等式•单元测试•本章综合第四讲数学归纳法证明不等式•一数学归纳法•二用数学归纳法证明不等式•单元测试•本章综合单元测试本册综合。
1.6三角函数模型的简单应用自主学习知识梳理1.三角函数的周期性y=A sin(ωx+φ) (ω≠0)的周期是T=________;y=A cos(ωx+φ) (ω≠0)的周期是T=________;y=A tan(ωx+φ) (ω≠0)的周期是T=________.2.函数y=A sin(ωx+φ)+k (A>0,ω>0)的性质(1)y max=________,y min=________.(2)A=__________,k=__________.(3)ω可由__________确定,其中周期T可观察图象获得.(4)由ωx1+φ=______,ωx2+φ=__________,ωx3+φ=__________,ωx4+φ=__________,ωx5+φ=________中的一个确定φ的值.3.三角函数模型的应用三角函数作为描述现实世界中________现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.自主探究结合三角函数图象的特点,思考后写出下列函数的周期.(1)y=|sin x|的周期是________;(2)y=|cos x|的周期是________;(3)y=|tan x|的周期是________;(4)y=|A sin(ωx+φ)| (Aω≠0)的周期是________;(5)y=|A sin(ωx+φ)+k| (Aωk≠0)的周期是____________________________________________________________________;(6)y=|A tan(ωx+φ)| (Aω≠0)的周期是__________.对点讲练知识点一从实际问题中提炼三角函数模型例1如图(1)所示为一个观览车示意图,该观览车半径为4.8 m,圆上最低点与地面距离为0.8 m,60秒转动一圈,图中OA与地面垂直,以OA为始边,逆时针转动θ角到OB,设B点与地面距离为h.(1)(1)求h与θ间关系的函数解析式;(2)设从OA开始转动,经过t秒到达OB,求h与t间关系的函数解析式.回顾归纳如果实际问题中,某种变化着的现象具有一定的周期性,那么它就可以借助三角函数来描述,从而构建三角函数模型.变式训练1 如图所示,一个摩天轮半径为10 m ,轮子的底部在地面上2 m 处,如果此摩天轮按逆时针转动,每30 s 转一圈,且当摩天轮上某人经过点P 处(点P 与摩天轮中心高度相同)时开始计时.(1)求此人相对于地面的高度关于时间的关系式;(2)在摩天轮转动的一圈内,约有多长时间此人相对于地面的高度不小于17 m.知识点二 三角函数模型在物理学科中的应用例2 交流电的电压E (单位:伏)与时间t (单位:秒)的关系可用E =2203sin ⎝⎛⎭⎫100πt +π6来表示,求:(1)开始时的电压;(2)最大电压值重复出现一次的时间间隔; (3)电压的最大值和第一次取得最大值的时间.回顾归纳 三角函数模型在物理学科中有着广泛的应用.在应用三角函数知识解决物理问题时,应当注意从复杂的物理背景中提炼基本的数学关系,还要调动相关物理知识来帮助理解问题.变式训练2 如图表示电流I 与时间t 的函数关系式:I =A sin(ωt +φ)在同一周期内的图象.(1)据图象写出I =A sin(ωt +φ)的解析式;(2)为使I =A sin(ωt +φ)中t 在任意一段1100的时间内电流I 能同时取得最大值和最小值,那么正整数ω的最小值是多少?知识点三 三角函数模型在实际问题中的应用t 小时+B 的图象.(1)试根据数据表和曲线,求出y =A sin ωt +B 的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)回顾归纳 确定函数关系式y =A sin ωt +B ,就是确定其中的参数A ,ω,B 等,可从所给的数据中寻找答案.由于函数的最大值与最小值不是互为相反数,若设最大值为M ,最小值为m ,则A =M -m 2,B =M +m2.变式训练3 设y =f (t )是某港口水的深度y (米)关于时间t (时)的函数,其中0≤t ≤24.下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:函数中,最能近似表示表中数据间对应关系的函数是( )A .y =12+3sin π6t ,t ∈[0,24]B .y =12+3sin ⎝⎛⎭⎫π6t +π,t ∈[0,24]C .y =12+3sin π12t ,t ∈[0,24]D .y =12+3sin ⎝⎛⎭⎫π12t +π2,t ∈[0,24]1.三角函数模型是研究周期现象最重要的数学模型.三角函数模型在研究物理、生物、自然界中的周期现象(运动)有着广泛的应用.2.三角函数模型构建的步骤(1)收集数据,观察数据,发现是否具有周期性的重复现象. (2)制作散点图,选择函数模型进行拟合. (3)利用三角函数模型解决实际问题.(4)根据问题的实际意义,对答案的合理性进行检验.课时作业一、选择题1. 如图所示,单摆从某点开始来回摆动,离开平衡位置O 的距离s cm 和时间t s 的函数关系式为s =6sin ⎝⎛⎭⎫100πt +π6,那么单摆来回摆动一次所需的时间为( )A.150 sB.1100s C .50 s D .100 s 2.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f (x )=A sin(ωx+φ)+b ⎝⎛⎭⎫A >0,ω>0,|φ|<π2的模型波动(x 为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f (x )的解析式为( )A .f (x )=2sin ⎝⎛⎭⎫π4x -π4+7(1≤x ≤12,x ∈N *)B .f (x )=9sin ⎝⎛⎭⎫π4x -π4(1≤x ≤12,x ∈N *) C .f (x )=22sin π4x +7(1≤x ≤12,x ∈N *)D .f (x )=2sin ⎝⎛⎭⎫π4x +π4+7(1≤x ≤12,x ∈N *) 3.若函数f (x )=3sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6等于( ) A .3或0 B .-3或0 C .0 D .-3或34. 如图所示,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是( )二、填空题5.函数y =2sin ⎝⎛⎭⎫m 3x +π3的最小正周期在⎝⎛⎭⎫23,34内,则正整数m 的值是________. 6.设某人的血压满足函数式p (t )=115+25sin(160πt ),其中p (t )为血压(mmHg),t 为时间(min),则此人每分钟心跳的次数是________.7.一根长l cm 的线,一端固定,另一端悬挂一个小球,小球摆动时离开平衡位置的位移s (cm)与时间t (s)的函数关系式时s =3cos ⎝⎛⎭⎫g l t +π3,其中g 是重力加速度,当小球摆动的周期是1 s 时,线长l 等于________.三、解答题8. 如图,一个水轮的半径为4 m ,水轮圆心O 距离水面2 m ,已知水轮每分钟转动5圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计算时间.(1)将点P 距离水面的高度z (m)表示为时间t (s)的函数; (2)点P 第一次到达最高点大约需要多少时间?§1.6 三角函数模型的简单应用答案知识梳理 1.2π|ω| 2π|ω| π|ω|2.(1)A +k -A +k (2)y max -y min 2 y max +y min 2 (3)ω=2πT (4)0 π2 π 32π 2π3.周期 自主探究(1)π (2)π (3)π (4)π|ω| (5)2π|ω| (6)π|ω|对点讲练 例1 解(2)(1)由题意可作图如图(2)所示.过点O 作地面平行线ON ,过点B 作ON 的垂线BM 交ON 于M 点.当θ>π2时,∠BOM =θ-π2.h =|OA |+0.8+|BM |=5.6+4.8sin ⎝⎛⎭⎫θ-π2; 当0≤θ≤π2时,上述解析式也适合.综上所述,h =5.6+4.8sin ⎝⎛⎭⎫θ-π2. (2)点A 在⊙O 上逆时针运动的角速度是π30,∴t 秒转过的弧度数为π30t ,∴h =4.8sin ⎝⎛⎭⎫π30t -π2+5.6,t ∈[0,+∞). 变式训练1 解 (1)设在t s 时,摩天轮上某人在高h m 处.这时此人所转过的角为2π30t=π15 t ,故在t s 时,此人相对于地面的高度为h =10 sin π15t +12(t ≥0). (2)由10sin π15t +12≥17,得sin π15t ≥12,则52≤t ≤252. 故此人有10 s 相对于地面的高度不小于17 m. 例2 解 (1)当t =0时,E =1103(伏), 即开始时的电压为1103伏.(2)T =2π100π=150(秒),即时间间隔为0.02秒.(3)电压的最大值为2203伏.当100πt +π6=π2,即t =1300秒时第一次取得最大值.变式训练2 解 (1)由题图知,A =300,t 1=-1300,t 2=1150,∵T =2(t 2-t 1)=2(1150+1300)=150,∴ω=2πT=100π.由ωt 1+φ=0知φ=-ωt 1=π3,∴I =300sin(100πt +π3).(2)问题等价于T ≤1100,即2πω≤1100,也即ω≥200π,故最小正整数为ω=629.例3 解 (1)从拟合的曲线可知,函数y =A sin ωt +B 的一个周期为12小时,因此ω=2πT =π6. 又y min =7,y max =13,∴A =12(y max -y min )=3,B =12(y max +y min )=10.∴函数的解析式为y =3sin π6t +10 (0≤t ≤24).(2)由题意,水深y ≥4.5+7,即y =3sin π6t +10≥11.5,t ∈[0,24],∴sin π6t ≥12,π6t ∈⎣⎡⎦⎤2k π+π6,2k π+5π6,k =0,1, ∴t ∈[1,5]或t ∈[13,17],所以,该船在1∶00至5∶00或13∶00至17∶00能安全进港. 若欲于当天安全离港,它在港内停留的时间最多不能超过16小时.变式训练3 A [在给定的四个选项A 、B 、C 、D 中我们不妨代入t =0及t =3,容易看出最能近似表示表中数据间对应关系的函数是A.]课时作业 1.A 2.A3.D [因为f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,所以直线x =π6是函数f (x )图象的对称轴. 所以f ⎝⎛⎭⎫π6=3sin ⎝⎛⎭⎫π6ω+φ=3sin ⎝⎛⎭⎫k π+π2 =±3.因此选D.]4.C [d =f (l )=2sin l2.]5.26,27,28解析 ∵T =6πm ,又∵23<6πm <34∴8π<m <9π,且m ∈Z ,∴m =26,27,28. 6.80解析 T =2π160π=180(分).f =1T=80(次/分).7.g 4π2 解析 T =2πgl=1.∴ g l =2π.∴l =g4π2.8.解 (1)如图所示建立直角坐标系,设角φ⎝⎛⎭⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角.OP 每秒钟内所转过的角为5×2π60=π6. 由OP 在时间t (s)内所转过的角为⎝⎛⎭⎫5×2π60t =π6t .由题意可知水轮逆时针转动,得z =4sin ⎝⎛⎭⎫π6t +φ+2. 当t =0时,z =0,得sin φ=-12,即φ=-π6.故所求的函数关系式为z =4sin ⎝⎛⎭⎫π6t -π6+2.(2)令z =4sin ⎝⎛⎭⎫π6t -π6+2=6,得sin ⎝⎛⎭⎫π6t -π6=1, 令π6t -π6=π2,得t =4, 故点P 第一次到达最高点大约需要4 s.。
新课标人教A版章节内容一览表
必修1:集合与函数概念、基本初等函数(Ⅰ)--指对幂函数、函数的应用
必修4:三角函数、平面向量、三角恒等变换
必修5:解三角形、数列、不等式
必修2:空间几何体、点线面位置关系、直线与方程、圆与方程
必修3:算法初步、统计、概率
选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用
选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图
选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何
选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入
选修2-3:计数原理、随机变量及其分布、统计案例
选修1-1中,“第三章 3.4 生活中的优化问题举例(第101-105页)”部分作为选学内容。
选修1-2中,“第一章统计案例(第1-20页)”部分作为选学内容。
选修2-2中,“第一章导数及其应用中,1.4 生活着的优化问题举例;1.5 定积分的概念;1.6微积分基本定理;1.7定积分的简单应用;实习作业:走进微积分;第二章推理与证明(第34-100页)”部分作为选学内容。
选修2-3中,“第二章随机变量及其分布2.3.2 离散型随机变量的方差;2.4正态分布(第64-75页);第三章统计案例(第79-102页)”部分作为选学内容。
人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
人教A版高中数学目录必修1第一章集合与函数概念1 .1 集合2 .3 变量间的相关关系阅读与思考相关关系的强与弱2.5等比数列的前n项和1 .2 函数及其表示1 .3 函数的基本性质第三章概率3 .1 随机事件的概率第三章不等式第二章基本初等函数(Ⅰ)2.1 指数函数2 .2 对数函数2 .3 幂函数阅读与思考天气变化的认识过程3 .2 古典概型3 .3 几何概型3.1不等关系与不等式3.2一元二次不等式及其解法第三章函数的应用3.1 函数与方程3 .2 函数模型及其应用必修 4第一章三角函数1 .1 任意角和弧度制1 2 .任意角的三角函数3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域1 .3 三角函数的诱导公式必修21 .4 三角函数的图象与性质1 .5 函数 y=Asin (ωx+ψ) 3.3.2 简单的线性规划问题第一章空间几何体1 .6 三角函数模型的简单应1 .1 空间几何体的结构用1 .2 空间几何体的三视图和 3.4 基本不等式直观图1 .3 空间几何体的表面积与第二章平面向量体积 2 .1 平面向量的实际背景及第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2 .2 直线、平面平行的判定基本概念2 .2 平面向量的线性运算2 .3 平面向量的基本定理及坐标表示2 4 .平面向量的数量积2 5 .平面向量应用举例选修1-1第一章常用逻辑用语1.1命题及其关系及其性质2 .3 直线、平面垂直的判定及其性质第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式1.2充分条件与必要条件3 .2 简单的三角恒等变换第三章直线与方程1.3简单的逻辑联结词3.1 直线的倾斜角与斜率3 .2 直线的方程必修 51.4全称量词与存在量词 3 .3 直线的交点坐标与距离公式第一章解三角形必修31.1正弦定理和余弦定理第二章圆锥曲线与第一章算法初步1 .1 算法与程序框图 1.2应用举例方程1 .2 基本算法语句1 .3 算法案例阅读与思考割圆术1.3实习作业2.1椭圆2.2双曲线第二章统计2 .1 随机抽样阅读与思考一个著名的案第二章数列2.3抛物线例阅读与思考广告中数据的可靠性2.1数列的概念与简单表示法用第三章导数及其应阅读与思考如何得到敏感性问题的诚实反应2.2等差数列2 .2 用样本估计总体阅读与思考生产过程中的2.3等差数列的前n 项和质量控制图2.4等比数列3.1变化率与导数3.2导数的计算1人教A版高中数学目录选修 2-12.6导数在研究函数中 1.3 导数在研究函数的应用中的应用第一章常用逻辑用2.7生活中的优化问题 1.4 生活中的优化问语举例题举例3.4命题及其关系3.3.2定积分的概念1.5充分条件与必要选修1-21.4微积分基本定理条件第一章统计案例 1.7 定积分的简单应1.3 简单的逻辑联结用词1.1 回归分析的基本思想及其初步应用2.4全称量词与存在量词第二章推理与证明 1.2 独立性检验的基本思想及其初步应用2.5合情推理与演绎推理第二章圆锥曲线与方程第二章推理与证明 2.2 直接证明与间接证明 2.1 曲线与方程2.1 合情推理与演绎证明 2.3 数学归纳法2.2 椭圆2.2 直接证明与间接2.3 双曲线证明3.3抛物线第三章数系的扩充与复数的引入第三章数系的扩充 3.1 数系的扩充和复与复数的引入数的概念第三章空间向量与立体几何3.1 数系的扩充和复数 3.2 复数代数形式的的概念四则运算3.1空间向量及其运算3.2 复数代数形式的四则运算3.2立体几何中的向选修2-3 量方法第一章计数原理第四章框图选修 2-21.1分类加法计数原4.1 流程图理与分步乘法计数原理第一章导数及其应4.2 结构图1.2 排列与组合用1.3二项式定理 1.1 变化率与导数1.2导数的计算2人教A版高中数学目录第二章随机变量及第二讲直线与圆的其分布位置关系选修 3-22.8离散型随机变量第三讲圆锥曲线性及其分布列质的探讨选修 3-3 2.2 二项分布及其应用选修4-2 第一讲从欧氏几何3.5离散型随机变量看球面的均值与方差第一讲线性变换与二阶矩阵第二讲球面上的距3.6正态分布离和角第二讲变换的复合第三章统计案例与二阶矩阵的乘法第三讲球面上的基本图形3.3.3回归分析的基本第三讲逆变换与逆思想及其初步应用矩阵第四讲球面三角形3.3.4独立性检验的基第五讲球面三角形第四讲变换的不变本思想及其初步应用量与矩阵的特征向量的全等第六讲球面多边形与欧拉公式选修3-1 选修4-3第七讲球面三角形的第一讲早期的算术边角关系选修4-4 与几何第八讲欧氏几何与第一讲坐标系第二讲古希腊数学非欧几何第二讲参数方程第三讲中国古代数学瑰宝选修 3-4第四讲平面解析几选修4-5 何的产生第一讲平面图形的对称群第一讲不等式和绝第五讲微积分的诞对值不等式生第二讲代数学中的对称与抽象群的概念第二讲证明不等式第六讲近代数学两的基本方法巨星第三讲对称与群的故事第三讲柯西不等式第七讲千古谜题与排序不等式第八讲对无穷的深第四讲数学归纳法入思考选修 4-1证明不等式第九讲中国现代数第一讲相似三角形学的开拓与发展的判定及有关性质3人教 A 版高中数学目录2 .4 向量的应用 选修 4-6第二章 函数 2 .1 函数第一讲 整数的整除2 .2 一次函数和二次函数 2 .3 函数的应用(Ⅰ) 第三章 三角恒等变换3.1 和角公式2 .4 函数与方程3 .2 倍角公式和半角公式 第二讲 同余与同余 3 .3 三角函数的积化和差与方程和差化积 第三章 基本初等函数 (Ⅰ) 3 .1 指数与指数函数 程第三讲 一次不定方3 .2 对数与对数函数 3 .3 幂函数 3 .4 函数的应用(Ⅱ) 必修五 第一章 解直角三角形 1.1 正弦定理和余弦定理第四讲 数伦在密码中的应用必修二第一章 立体几何初步1 .2 应用举例 第二章 数列1.1 空间几何体 2 .1 数列 1 .2 点、线、面之间的位置 2 .2 等差数列 关系 2 .3 等比数列 选修 4-7第三章 不等式 第二章 平面解析几何初步第一讲 优选法 2 .1 平面真角坐标系中的基 本公式3 .1 不等关系与不等式 3 .2 均值不等式第二讲试验设计初2 .2 直线方程 2 .3 圆的方程3 .3 一元二次不等式及其解 法 步3 .4 不等式的实际应用 2 .4 空间直角坐标系3 .5 二元一次不等式(组) 与简单线性规划问题必修三选修 4-8选修 4-9第一章 算法初步1.1 算法与程序框图1 .2 基本算法语句1 .3 中国古代数学中的算法 案例选修 1-1 第一章 常用逻辑用语 1.1 命题与量词 1 .2 基本逻辑联结词1 .3 充分条件、必要条件与命题的四种形式第一讲 风险与决策的基本概念第二章 统计 2.1 随机抽样2 .2 用样本估计总体2 .3 变量的相关性第二章 圆锥曲线与方程2.1 椭圆2 .2 双曲线2 .3 抛物线第二讲 决策树方法第三章 概率 3 1 . 随机现象第三讲 风险型决策3 2第三章 导数及其应用3 .1 导数3 .2 导数的运算 3 .3 导数的应用WORD格式.古典概型的敏感性分析33.随机数的含义与应用34.概率的应用第四讲马尔可夫型决策简介必修四选修 1-2第一章统计案例第二章推理与证明第一章基本初等函( Ⅱ)高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1 .2 集合之间的关系与运算1 .1 任意角的概念与弧度制1 .2 任意角的三角函数1 .3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2 .3 平面向量的数量积第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1 2 .基本不等式4WORD格式人教A版高中数学目录1 .3 绝对值不等式的解法1 .4 绝对值的三角不等式1 .5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2 .2 排序不等式2 .3 平均值不等式( 选学)2 .4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3 .2 用数学归纳法证明不等式,贝努利不等式5。
创作编号:BG7531400019813488897SX 创作者: 别如克*必修1第一章 集合与函数概念 1.1 集合1.2 函数及其表示 1.3 函数的基本性质第二章 基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数 2.3 幂函数第三章 函数的应用 3.1 函数与方程3.2 函数模型及其应用必修2第一章 空间几何体 1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章 直线与方程3.1 直线的倾斜角与斜率 3.2 直线的方程3.3 直线的交点坐标与距离公式 必修3第一章 算法初步1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例阅读与思考 割圆术第二章 统计 2.1 随机抽样阅读与思考 一个著名的案例阅读与思考 广告中数据的可靠性阅读与思考 如何得到敏感性问题的诚实反应2.2 用样本估计总体 阅读与思考 生产过程中的质量控制图2.3 变量间的相关关系 阅读与思考 相关关系的强与弱第三章 概率3.1 随机事件的概率阅读与思考 天气变化的认识过程3.2 古典概型 3.3 几何概型必修4第一章 三角函数 1.1 任意角和弧度制创作编号:BG7531400019813488897SX 创作者: 别如克*1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图象与性质 1.5 函数y=Asin (ωx+ψ) 1.6 三角函数模型的简单应用第二章 平面向量 2.1 平面向量的实际背景及基本概念 2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章 解三角形1.1正弦定理和余弦定理 1.2应用举例 1.3实习作业第二章 数列2.1数列的概念与简单表示法 2.2等差数列2.3等差数列的前n 项和 2.4等比数列2.5等比数列的前n 项和第三章 不等式3.1不等关系与不等式3.2一元二次不等式及其解法 3.3二元一次不等式(组)与简单的线性规划问题 3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题 3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念创作编号:BG7531400019813488897SX创作者:别如克*3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形作编号:BG7531400019813488897SX作者:别如克*第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步作编号:BG7531400019813488897SX创作者: 别如克*1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章 统计 2.1 随机抽样2.2 用样本估计总体 2.3 变量的相关性第三章 概率 3.1 随机现象3.2 古典概型3.3 随机数的含义与应用 3.4 概率的应用必修四第一章 基本初等函(Ⅱ) 1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章 平面向量 2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积 2.4 向量的应用第三章 三角恒等变换 3.1 和角公式3.2 倍角公式和半角公式 3.3 三角函数的积化和差与和差化积必修五 第一章 解直角三角形 1.1 正弦定理和余弦定理1.2 应用举例第二章 数列 2.1 数列2.2 等差数列 2.3 等比数列第三章 不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用 3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章 常用逻辑用语 1.1 命题与量词1.2 基本逻辑联结词 1.3 充分条件、必要条件与命题的四种形式第二章 圆锥曲线与方程 2.1 椭圆2.2 双曲线 2.3 抛物线第三章 导数及其应用3.1 导数3.2 导数的运算 3.3 导数的应用选修1-2第一章 统计案例 第二章 推理与证明 第三章 数系的扩充与复数的引入 第四章 框图选修4-5第一章 不等式的基本性质和证明的基本方法 1.1 不等式的基本性质和一元二次不等式的解法 1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法第二章 柯西不等式与排序不等式及其应用 2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学) 2.4 最大值与最小值问题,优化的数学模型第三章 数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式作编号:BG7531400019813488897SX作编号:BG7531400019813488897SX 作者: 别如克*作者: 别如克*。
必修 1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2. 1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3. 1 函数与方程3.2 函数模型及其应用必修 2第一章空间几何体1 .1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3. 1 直线的倾斜角与斜率3.2 直线的方程3 . 3 直线的交点坐标与距离公式必修 3第一章算法初步1 .1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2 .1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2 .2 用样本估计总体阅读与思考生产过程中的质量控制图人教 A 版高中数学目录2. 3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3 .1 随机事件的概率阅读与思考天气变化的认识过程3. 2 古典概型3. 3 几何概型必修 4第一章三角函数1 .1 任意角和弧度制1. 2 任意角的三角函数1. 3 三角函数的诱导公式1. 4 三角函数的图象与性质1. 5 函数 y=Asin (ωx+ψ)1. 6 三角函数模型的简单应用第二章平面向量2 .1 平面向量的实际背景及基本概念2. 2 平面向量的线性运算2. 3 平面向量的基本定理及坐标表示2. 4 平面向量的数量积2. 5 平面向量应用举例第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式3. 2 简单的三角恒等变换必修 5第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n 项和2.4 等比数列2.5 等比数列的前n 项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域3.3.2 简单的线性规划问题3.4 基本不等式选修 1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例选修 1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4. 1 流程图4. 2 结构图人教 A 版高中数学目录选修 2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2 立体几何中的向量方法选修 2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修 2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2二项分布及其应用2.3 离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修 3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝人教 A 版高中数学目录选修 3-2选修 3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修 4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修 4-3选修 4-4第一讲坐标系第二讲参数方程第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修 3-4第一讲平面图形的选修 4-5对称群第一讲不等式和绝对值不等式第二讲代数学中的对称与抽象群的概念第二讲证明不等式的基本方法第三讲对称与群的故事第三讲柯西不等式与排序不等式选修 4-1第四讲数学归纳法证明不等式第一讲相似三角形的判定及有关性质选修 4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修 4-7第一讲优选法第二讲试验设计初步选修 4-8选修 4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版( B)教材目录介绍必修一第一章集合1. 1 集合与集合的表示方法1.2 集合之间的关系与运算人教 A 版高中数学目录第二章函数2.1 函数2. 2 一次函数和二次函数2. 3 函数的应用(Ⅰ)2. 4 函数与方程第三章基本初等函数(Ⅰ)3 .1 指数与指数函数3. 2 对数与对数函数3.3 幂函数3. 4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1. 2 点、线、面之间的位置关系第二章平面解析几何初步2 .1 平面真角坐标系中的基本公式2. 2 直线方程2. 3 圆的方程2. 4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1. 2 基本算法语句1. 3 中国古代数学中的算法案例第二章统计2.1 随机抽样2. 2 用样本估计总体2. 3 变量的相关性第三章概率3.1 随机现象3. 2 古典概型3. 3 随机数的含义与应用3. 4 概率的应用必修四第一章基本初等函(Ⅱ )1 .1 任意角的概念与弧度制1. 2 任意角的三角函数1. 3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2. 3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3 .1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修 1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修 1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式人教 A 版高中数学目录1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2. 1 柯西不等式2.2 排序不等式2.3 平均值不等式 ( 选学 )2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3. 1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
高中数学必人修教四A版练习册高中数学人教A 版必修4练习册目录导航人教A 版必修4练习1.1任意角和弧度制 ....................................................... 1 1.2任意角的三角函数 ..................................................... 3 1.3三角函数的诱导公式 ................................................... 5 1.4三角函数的图像与性质 . (7)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 .............. 10 第一章 三角函数基础过关测试卷 ........................................... 12 第一章三角函数单元能力测试卷 .. (14)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 .................... 18 2.2向量减法运算与数乘运算 .............................................. 20 2.3平面向量的基本定理及坐标表示 ........................................ 22 2.4平面向量的数量积与2.5平面向量应用举例 .............................. 25 第二章平面向量基础过关测试卷 ............................................ 27 第二章平面向量单元能力测试卷 .. (29)3.1两角和与差的正弦、余弦和正切公式 .................................... 33 3.2简单的三角恒等变换 .................................................. 36 第三章三角恒等变换单元能力测试卷 . (38)人教A 版必修4练习答案1.1任意角和弧度制 ...................................................... 42 1.2任意角的三角函数 .................................................... 42 1.3三角函数的诱导公式 .................................................. 43 1.4三角函数的图像与性质 (43)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 .............. 44 第一章三角函数基础过关测试卷 ............................................ 45 第一章三角函数单元能力测试卷 .. (45)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 .................... 46 2.2向量减法运算与数乘运算 .............................................. 46 2.3平面向量的基本定理及坐标表示 ........................................ 46 2.4平面向量的数量积与2.5平面向量应用举例 .............................. 47 第二章平面向量基础过关测试卷 ............................................ 48 第二章平面向量单元能力测试卷 .. (48)3.1两角和与差的正弦、余弦和正切公式 .................................... 49 3.2简单的三角恒等变换 .................................................. 49 第三章三角恒等变换单元能力测试卷 . (50)1.1任意角和弧度制一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( )A.,398- 38 B.,398- 142 C.,398- 1042 D.,14210422.集合α{=A ︱ 90⋅=k α,36-}Z k ∈,β{=B ︱180-180<<β},则B A 等于( )A.,36{- 54} B.,126{- 144} C.,126{-,36-,54144} D.,126{-54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于90的角},θ{=C ︱θ为第一象限角}, θ{=D ︱θ为小于 90的正角},则 ( ) A.B A = B.C B = C.C A = D.D A =4.若角α与β终边相同,则一定有 ( ) A.180=+βα B.0=+βαC.360⋅=-k βα,Z k ∈ D.360⋅=+k βα,Z k ∈ 5.已知α为第二象限的角,则2α所在的象限是 ( ) A.第一或第二象限 B.第二或第三象限 C.第一或第三象限 D.第二或第四象限 6.将分针拨慢5分钟,则分针转过的弧度数是 ( )A.3π B.3π- C.2π D.32π7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( )A.6πB.3πC.2πD.32π 8.已知角α的终边经过点)1,1(--P ,则角α为 ( )A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 9.角316π化为)20,(2παπα<<∈+Z k k 的形式 ( )A.35ππ+B.344ππ+C.326ππ-D.373ππ+10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B 的关系是 ( ) A.B A = B.B A ⊇ C.B A ⊆ D.B A ≠ 二、填空题(每题5分,共20分)11.角a 小于180而大于-180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.1)终边在x 轴的非负半轴上的角的集合__________; 2)终边在坐标轴上的角的集合__________;3)终边在第一、二象限及y 轴上的角的集合__________; 4)终边在第一、三象限的角平分线上的角的集合__________.13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________. 14.已知a {∈θ︱a =+πk },4)1(Z k k∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又720-<a < 0,求角a .16.已知角45=a ,(1)在区间720[-0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=kx 45+}Z k ∈ 那么两集合的关系是什么?17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同?18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( )A.55-B.55C.552 D.252.α是第四象限角,则下列数值中一定是正值的是 ( ) A.αsin B.αcos C.αtan D.αtan 13.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( )A.52B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于 ( )A.34B.43C.34±D.43± 5.函数x x y cos sin -+=的定义域是 ( )A.()Z k k k ∈+,)12(,2ππB.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos<θ则2θ是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角7.已知,54sin =α且α是第二象限角,那么αtan 的值为 ( ) A.34- B.43- C.43 D.348.已知点()ααcos ,tan P 在第三象限,则角α在 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________. 10.角α的终边上有一点(),5,m P 且(),013cos ≠=m mα则=+ααcos sin __________.11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________. 12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________. 三、解答题(第15题20分,其余每题10分,共40分) 13.求43π的角的正弦,余弦和正切值.14.已知,51sin =α求ααtan ,cos 的值.15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23 B.21C.23±D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32-B.m 23-C.m 32D.m 233.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21B.21-C.23D.23-4.如果),cos(|cos |π+-=x x 则x 的取值范围是( )A.)](22,22[Z k k k ∈++-ππππB.))(223,22(Z k k k ∈++ππππC.)](223,22[Z k k k ∈++ππππD.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin ( )A.21||aa + B.21aa +C.21aa +-D.211a+-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( )A.33B.33-C.3D.-37.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( ) A.0 B.1C.1-D.238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( ) A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形二、填空题(每题5分,共20分)9.求值:︒2010tan 的值为 .10.若1312)125sin(=-α,则=+)55sin(α . 11.=+++++76cos 75cos 74cos 73cos 72cos 7cos ππππππ .12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 . 三、解答题(每题10分,共40分) 13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( ) A.[]1,0 B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+ πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ2.函数)652cos(3π-=x y 的最小正周期是 ( )A52π B 25π C π2 D π5 3.x x y sin sin -=的值域是 ( ) A ]0,1- B ]1,0 C ]1,1[- D ]0,2[-4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1 D.(]1,∞-5.下列命题正确的是 ( ) A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( ) A 1C.0D.2- 7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( ) A.8 B.6 C.8± D.48.函数)32sin(π+=x y 的图象 ( )A.关于点⎪⎭⎫⎝⎛0,12π对称 B.关于点⎪⎭⎫ ⎝⎛-0,6π对称C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ 10.满足21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ C.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分) 11.函数)23sin(2x y -=π的单调递增区间是__________.12.函数)21(cos log 2-=x y 的定义域是__________. 13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图.16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间; (2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值. (1)1)42sin(2++=πx y (2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是 ( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω的一个可能值为 ( ) A.3 B.2 C.31 D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像 ( )A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位 4.函数1)62sin(2++=πx y 的最大值是 ( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为 ( )A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x fD.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为 ( )A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK K D.⎥⎦⎤⎢⎣⎡++1211,125ππππK K 7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是 ( )A.⎥⎦⎤⎢⎣⎡125,0πB.⎥⎦⎤⎢⎣⎡32,6ππC.⎥⎦⎤⎢⎣⎡1211,6ππD.⎥⎦⎤⎢⎣⎡1211,32ππ二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: 1)有0)()(31==x f x f 可得21x x -是π的整数倍; 2)表达式可改写为)62cos(4)(π-=x x f ;3)函数的图像关于点)0,6(π-对称;4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________.10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________. 三、解答题(每题25分,共50分) 11.已知函数)421sin(3π-=x y ,1)用“五点法”画函数的图像;2)说出此图像是由x y sin =的图像经过怎样的变换得到的; 3)求此函数的周期、振幅、初相;4)求此函数的对称轴、对称中心、单调递增区间.12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,1)求它的定义域; 2)求它的单调区间; 3)判断它的奇偶性;4)判断它的周期性,如果是周期函数,求出它的周期.第一章 三角函数基础过关测试卷一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( ) A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.233.函数x y sin 1-=的最大值为 ( ) A.1 B.0 C.2 D.1-4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是 ( ) A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是( ) A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( ) A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称 D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是 ( ) A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫ ⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,08.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )A.向左平移4π个单位 B.向右平移4π个单位 C .向左平移12π个单位 D .向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________.10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值.14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫ ⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列值①)1000sin( -;②)2200cos(-;③)10tan(-;④4sin 是负值的为 ( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( )A.0 B4π C 2πD π 4.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34-C.43D.34 5.若α是第四象限的角,则πα-是 ( ) A 第一象限的角 B 第二象限的角 C 第三象限的角 D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( )A.1sin 2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是 ( )A.2π=x B 2π-=x C 4π=x D 8π=9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数是( ) A.1个 B 2个 C 个 D 4个10.方程1sin 4x x π=的解的个数是( ) A B C 7 D 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( )A.)45,()2,4(ππππ B.),4(ππ C.)45,4(ππ D.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是 ( )A.2π B 4π- C 4πD 34π二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15 若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数 其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分) 17.求下列三角函数值: (1))316sin(π- (2))945cos( -18.比较大小:(1) 150sin ,110sin ; (2)200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域: (1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际背景及基本概念与2.2.1向量加法运算一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( ) A.一条线段 B.一段圆弧 C.两个孤立点 D.一个圆2.下列说法中,正确的是 ( )A.>,则b a >B.=,则b a =C.若b a =,则a ∥bD.若a ≠b ,则a 与b 不是共线向量3.设O 为△ABC 的外心,则AB 、BO 、CO 是 ( ) A.相等向量 B.平行向量 C.模相等的向量 D.起点相等的向量4.已知正方形ABCD 的边长为1,设a AB =,b BC =,c AC =, b ++=( ) A.0 B.3 C.22+ D.225.58==,的取值范围是 ( ) A.[]8,3 B.()8,3 C.[]13,3 D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B成立的是A.CA BC AB =+ B.BC AC AB =+C.AD BA AC =+D.DC AD AC =+ D C7.在边长为1的正三角形ABC 中,若向量a BA =,b BC =,+= ( ) A.7 B.5 C.3 D.28.向量a 、b 皆为非零向量,下列说法不正确的是 ( )A.向量a 与b >,则向量b a +与a 的方向相同B.向量a 与b <,则向量b a +与a 的方向相同C.向量a 与b 同向,则向量b a +与a 的方向相同D.向量a 与b 同向,则向量b a +与b 的方向相同二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量AB 与AC 的关系是__________.10.已知C B A ,,是不共线的三点,向量m 与向量AB 是平行向量,与BC 是共线向量,则m =__________.11.在菱形ABCD 中,∠DAB ︒=601==+__________.12.化简=++BO OP PB __________.三、解答题(13题16分,其余每题12分,共40分)13.化简:(1)FA BC CD DF AB ++++. (2)PM MN QP NQ +++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且OC AO =,OB DO =. 求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算一、选择题(每题5分,共40分) 1.在菱形ABCD 中,下列各式中不成立的是 ( ) A.-=AC AB BC B.-=AD BD AB C.-=BD AC BC D.-=BD CD BC2.下列各式中结果为O 的有 ( ) ①++AB BC CA ②+++OA OC BO CO ③-+-AB AC BD CD ④+-+MN NQ MP QP A.①② B.①③ C.①③④ D.①②③3.下列四式中可以化简为AB 的是 ( ) ①+AC CB ②-AC CB ③+OA OB ④-OB OA A.①④ B.①② C.②③ D.③④4. ()()=⎥⎦⎤⎢⎣⎡+-+ba b a24822131 ( )A.2a b -B.2b a -C.b a -D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( ) A.1 B.1- C.1± D.06.在△ABC 中,向量BC 可表示为 ( ) ①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④ 7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =( )A.a b +B.b a -C.-c bD.-b c 8.当C 是线段AB 的中点,则AC BC += ( ) A.AB B.BA C.AC D.O二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________, 两次位移和的和方向为__________,大小为__________. 11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________三、解答题(每题10分,共40分)13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值? 14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,AD =b ,试以a ,b 表示DE 、BF 、CG15.若菱形ABCD 的边长为2,求AB CB CD -+=?16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?AGE F BD2.3平面向量的基本定理及坐标表示一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a则向量b a2321-等于( ) A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(-2.若),3,1(),4,2(==AC AB 则BC 等于 ( ) A.)1,1( B.)1,1(-- C.)7,3( D.)7,3(--3.21,e e 是表示平面内所有向量的一组基底,下列四组向量中,不能作为一组基底的是 ( )A.21e e +和21e e -B.2123e e -和1264e e -C.212e e +和122e e +D.2e 和21e e +4.已知平面向量),,2(),3,12(m b m a =+=且b a //,则实数m 的值等于 ( ) A.2或23-B.23C.2-或23D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为 A.13- B.9 C.9- D.13 ( ) 6.已知平面向量),,2(),2,1(m b a -==且b a //,则b a 32+等于 ( ) A.)10,5(-- B.)8,4(-- C.)6,3(-- D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( ) A.若实数21,λλ使02211=+e e λλ,则021==λλ B.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+不一定在平面内D.对平面中的任一向量a ,使=a 2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===c b a ,且b a c 21λλ+=,则21,λλ的值分别为 ( ) A.1,2- B.2,1- C.1,2- D.2,1-9.已知),3,2(),2,1(-==b a 若b n a m -与b a 2+共线(其中R n m ∈,且)0≠n ,则nm 等于 ( )A.21-B.2C.21D.2- 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,b BD a AC == 则AF 等于 ( )A.b a 2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且b a //,则=x __________12.设向量)3,2(),2,1(==b a ,若向量b a +λ与向量)7,4(--=c 共线,则=λ__________13.已知x 轴的正方向与a 的方向的夹角为3π4=,则a 的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴,y 轴的正向上,则向量AC BC AB ++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量a 与b 不共线,实数y x ,满足等式b x a x b y a x 2)74()10(3++=-+,求y x ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e BC e e AB +=+=),(321e e CD -=则B A ,,D 三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R AC AB AP ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==c b a ,(1)求c b a 23-+;(2)求满足c n b m a +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例一、选择题(每题5分,共50分)1.若b a ,是两个单位向量,那么下列四个结论中正确的是 ( )A.b a =B.1=⋅b aC.≠D.=2.下面给出的关系始终正确的个数是 ( )①00=⋅a ②a b b a ⋅=⋅ ③2a = ④()()c b a c b a ⋅⋅=⋅⋅ b a ⋅≤ A.0 B.1 C.2 D.33.对于非零向量b a ,,下列命题中正确的是 ( )A.000==⇒=⋅b a b a 或B. b a //a ⇒在bC.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅4.下列四个命题,真命题的是 ( ) A.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是锐角三角形; B.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是钝角三角形; C.ABC ∆为直角三角形的充要条件是0=⋅BC AB ; D.ABC ∆为斜三角形的充要条件是.0≠⋅BC AB .5.e ,8=为单位向量,a 与e 的夹角为,60o 则a 在e 方向上的投影为 ( )A.34B.4C.24D.238+6.若向量b a ,a ,1==与b 的夹角为120,则=⋅+⋅b a a a ( )A.21 B.21- C.23 D.23-7.a ,631==与b 的夹角为,3π则b a ⋅的值为 ( )A.2B.2±C.1D.1±8.已知()(),5,5,0,3-==b a 则a 与b 的夹角为 ( ) A.4π B.3π C.43π D.32π9.若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-OA OC OB OC OB 则ABC ∆ 的形状为 ( ) A.正三角形 B.直角三角形 C.等腰三角形 D.A ,B ,C 均不是10.设向量()(),1,,2,1x b a ==当向量b a 2+与b a -2平行时,b a ⋅等于 ( )A.25 B.2 C.1 D.27二、填空题(每题5分,共20分)11.(),2,1,3==b 且,b a ⊥则a 的坐标是_____________. 12.若(),8,6-=a 则与a 平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e a λ+=与()2132e e b --=共线,则=λ________.14.有一个边长为1的正方形ABCD ,设,,,c AC b BC a AB ====b __________. 三、解答题(每题10分,共30分)15.()()61232,34=+⋅-==b a b a ,求a 与b的夹角θ.16.,43==且a 与b 不共线,当k 为何值的时,向量b k a +与b k a -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA ==,,d OD c OC ==则下列运算正确的是( )A.0=+++d c b a B.0 =-+-d c b a C.0 =--+d c b a D.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( ) A.1- B.9 C.9- D.13.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( ) A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( ) A.34-B. 32-C.21-D.23- 5.下列命题中真命题是 ( )A.000 ==⇒=⋅b a b a 或B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D的坐标为 ( ) A.)2,2( B.)0,6(- C.)6,4( D.)2,4(-7.设21,e e 为两不共线的向量,则21e e a λ+=与()1232e e b --=共线的等价条件是 A.23=λ B.32=λ C.32-=λ D.23-=λ ( ) 8.下面给出的关系式中正确的个数是 ( )① 00 =⋅a ②a b b a ⋅=⋅ ③22a a = ④)()(c b a c b a ⋅=⋅ ⑤||||b a b a⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( ) ①一个平面内只有一对不共线的向量可作为基底; ②两个非零向量平行,则他们所在直线平行;ACOD③零向量不能作为基底中的向量; ④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P 延长线上,22PP =,则点P 坐标是( ) A.)11,2(- B.)3,34( C.)3,32( D.)7,2(-11.若b a k b a b a b a 432,1||||-+⊥==与且也互相垂直,则k 的值为 ( ) A.6- B.6 C.3 D.3- 二、填空题(每题5分,共15分)12.已知向量)2,1(,3==b a,且b a ⊥,则a 的坐标是__________.13.若()0,2,122=⋅-==a b a b a,则b a 与的夹角为__________.14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________. 三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a ,求(1)b a b a+⋅,的值;(2)a 与b的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD 为正方形.第二章平面向量单元能力测试卷一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+ ②AC BE BC EA +=- ③ED AB EA AD +=+ ④0AB BC CD DE EA ++++= ⑤0AB BC AC +-=其中错误等式的个数是( )A.1B.2C.3D.42.已知正方形ABCD 的边长为1,设c AC b BC a AB ===,,=++b ( ) A.0 B.3 C.22+D.223.设1e 、2e 是两个不共线向量,若向量 a =2153e e +与向量213e e m b -=共线,则m 的值等于 ( ) A.35-B.-59C.53-D.95-4.已知)3,1(),1,2(=-=b a 则b a 32+-等于 ( ) A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为 A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+CB CA CB CA ,则ΔABC 为 ( ) A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量a ,b ,40-=⋅b a =8,则向量a 与b 的夹角为 ( ) A.60B. 60-C.120D.120-8.已知)0,3(=a ,)5,5(-=b ,则a 与b 的夹角为 ( )A.4πB.43π C.3π D.32π 9.若b a b a⊥==,1||||且b a 32+与b a k 4-也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-NA BDM C10.已知a =(2,3),b =(4-,7),则a 在b上的投影值为 ( )A.13B.513 C.565 D.6511.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( ) A.平行四边形B.菱形C.等腰梯形D.非等腰梯形12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =, 则P 点坐标为 ( ) A.)11,2(-B.)3,34(C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分)13.已知|a |=1,|b |=2,且(a -b )和a 垂直,则a 与b的夹角为__________.14.若向量),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.15.已知向量a )2,3(-=,b )1,2(-,c )4,7(-=,且b a cμλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.如图,ABCD 中,点M 是AB 的中点,点N 在BD 上,且BD BN 31=,求证:C N M ,,三点共线.18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--AE =31AC ,BF =31BC , 1)求点E 、F 及向量EF 的坐标; 2)求证:EF ∥AB .19.24==夹角为120,求:(1)b a ⋅;(2))()2(b a b a +⋅-;(3)a 3+.20.已知)2,3(),2,1(-==b a,当k 为何值时:(1)b a k +与b a 3-垂直;(2)b a k +与b a3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x b x x a -+==π,b a x f ⋅=)(,求:(1)函数()x f 的最小正周期; (2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅BC AC ,求α2sin 的值;(213=+,且),0(πα∈,求OB 与OC 的夹角.3.1两角和与差的正弦、余弦和正切公式一、选择题(每题5分,共45分)1. 345cos 的值等于 ( )A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( ) A.0 B.21 C.23D.21- 3.已知1312sin -=θ,)0,2(πθ-∈,则)4cos(πθ-的值为 ( )A.2627-B.2627C.26217-D.26217 4.已知53)4sin(=-x π,则x 2sin 的值为 ( )A.2519B.2516C.2514D.257 5.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于 ( )A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于 ( )A.45πB.4πC.45π或4πD.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( ) A.2 B.2- C.4 D.4-9.函数56sin2sin 5cos 2cos )(ππx x x f -=的单调递增区间是 ( ) A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分)10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________. 11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分) 14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ.(2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=,(1)求)(x f 的最大值及最小正周期;(2)若锐角α满足323)(-=αf ,求α54tan 的值.16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A .23 B .23-C .21 D .21- 2.下列各式中,最小的是 ( ) A .40cos 22B .6cos 6sin 2 C .37sin 50cos 37cos 50sin - D .41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( ) A .2πB .πC .π2D .π4 4.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( ) A .21 B .23 C .21- D .3-5.若316sin =⎪⎭⎫ ⎝⎛-απ,则=⎪⎭⎫ ⎝⎛+απ232cos ( ) A .97-B .31-C .31D .97 6.若函数x x y tan 2sin =,则该函数有 ( ) A .最小值0,无最大值 B .最大值2,无最小值 C .最小值0,最大值2 D .最小值2-,最大值2 7.若παπ223<<,则=++α2cos 21212121 ( ) A .2cosαB .2sinαC .2cosα- D .2sinα-8.若()x x f 2sin tan =,则()=-1f ( ) A .1 B .1- C .21D .21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________.10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.sin αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________.三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22.15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值.16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期;(2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( )A.26 B.23 C.45 D.431+2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( ) A.2 B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系 A.b a = B.b a > C.b a < D.b a ≠ ( )4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( )A.1B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为( ) A.π,1 B.π,2 C.π2,1 D.π2,2 6.xx xx sin cos sin cos -+= ( )A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x 7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是A.6π=x B.4π=x C.6π-=x D.2π-=x ( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为 ( ) A.2 B.4 C.8 D.169.若51)cos(=+βα,53)cos(=-βα,则βαtan tan = ( )A.2B.21C.1D.010.函数[]0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( ) A.⎥⎦⎤⎢⎣⎡--65,ππ B.⎥⎦⎤⎢⎣⎡--6,65ππ C.⎥⎦⎤⎢⎣⎡-0,3π D.⎥⎦⎤⎢⎣⎡-0,6π 11.已知A 、B 为小于︒90的正角,且31sin =A ,21sin =B ,则)(2sin B A +的值是 A.97B.23C.1832+D.183724+ ( )12.若22)4sin(2cos -=-παα,则ααsin cos +的值为 ( ) A.27-B.21-C.21D.27 二、填空题(每题5分,共20分) 13.已知32tan=θ,则θθθθsin cos 1sin cos 1+++-=__________.14.函数)2sin()3sin(ππ+⋅+=x x y 的最小正周期T =__________. 15.已知xxx f +-=11)(,若),2(ππα∈则)cos ()(cos αα-+f f 可化简为__________.16.若2cos sin -=+αα,则ααtan 1tan +=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.(1)已知54cos =α,且παπ223<<,求2tan α.(2)已知1cos )cos()22sin(sin 3=⋅+--θθπθπθ,),0(πθ∈,求θ的值.18.已知135)43sin(=+πα,53)4cos(=-βπ,且434,44πβππαπ<<<<-, 求)cos(βα-的值.19.已知函数R x x x x x x f ∈++=,cos 3cos sin 2sin )(22, 求:(1)函数)(x f 的最大值及取得最大值的自变量x 的集合; (2)函数)(x f 的单调增区间.20.已知α、β),0(π∈,且αtan 、βtan 是方程0652=+-x x 的两根,求:(1)βα+的值;(2))cos(βα-的值.。
1.6 三角函数模型的简单应用
(建议用时:45分钟)
[学业达标]
一、选择题
1.已知某人的血压满足函数解析式f (t )=24sin 160πt +110.其中f (t )为血压,t 为时间,则此人每分钟心跳的次数为( )
A .60
B .70
C .80
D .90
【解析】 由题意可得f =1T =160π2π=80,所以此人每分钟心跳的次数为80,故选C.
【答案】 C
2.如图165,单摆从某点开始来回摆动,离开平衡位置O 的距离s (cm)和时间t (s)的函数关系式为s =6sin ⎝
⎛⎭⎪⎫2πt +π6,那么单摆摆动一个周期所需的时间为( )
图165
A .2π s
B .π s
C .0.5 s
D .1 s
【解析】 依题意是求函数s =6sin ⎝ ⎛⎭⎪⎫2πt +π6的周期,T =2π2π=1,故选D.
【答案】 D
3.函数f (x )的部分图象如图166所示,则下列选项正确的是( )
图166
A .f (x )=x +sin x
B .f (x )=cos x
x
C .f (x )=x cos x
D .f (x )=x ⎝
⎛⎭⎪⎫x -π2⎝ ⎛⎭⎪⎫x -3π2
【解析】 观察图象知函数为奇函数,排除D 项;又函数在x =0处有意义,排除B 项;取x =π2,f ⎝ ⎛⎭
⎪⎫π2=0,A 项不合适,故选C. 【答案】 C
4.一种波的波形为函数y =-sin π
2x 的图象,若其在区间[0,t ]上至少有2个波峰(图
象的最高点),则正整数t 的最小值是( )
A .5
B .6
C .7
D .8
【解析】 函数y =-sin π
2x 的周期T =4且x =3时y =1取得最大值,因此t ≥7.故
选C.
【答案】 C
5.下表是某市近30年来月平均气温(℃)的数据统计表:
A .y =a cos πx
6
B .y =a cos x -1 π
6+k (a >0,k >0)
C .y =-a cos x -1 π
6+k (a >0,k >0)
D .y =a cos πx
6
-3
【解析】 当x =1时图象处于最低点,且易知a =-5.9+22.8
2>0.故选C.
【答案】 C 二、填空题
6.某简谐运动的图象满足函数y =2sin(ωx +φ)(φ>0),其初相和频率分别为-π和3
2
,则它的相位是________. 【导学号:70512019】 【解析】 由题意知φ=-π,f =32,则T =23=2π
ω,∴ω=3π,∴相位为3πx -π.
【答案】 3πx -π
7.如图167是弹簧振子做简谐振动的图象,横轴表示振动的时间,纵轴表示振动的位
移,则这个振子振动的函数解析式是________. 【导学号:00680029】
图167
【解析】 由题图可设y =A sin(ωt +φ),则A =2, 又T =2(0.5-0.1)=0.8, 所以ω=2π0.8=5
2
π,
所以y =2sin ⎝ ⎛⎭
⎪⎫52πt +φ, 将点(0.1,2)代入y =2sin ⎝ ⎛⎭
⎪
⎫5π2t +φ中,
得sin ⎝
⎛⎭⎪⎫φ+π4=1, 所以φ+π4=2k π+π
2,k ∈Z ,
即φ=2k π+π
4,k ∈Z ,
令k =0,得φ=π
4,
所以y =2sin ⎝
⎛⎭
⎪⎫5π2t +π4. 【答案】 y =2sin ⎝ ⎛⎭
⎪⎫5π2t +π4
三、解答题
8.交流电的电压E (单位:伏)与时间t (单位:秒)的关系可用E =2203sin ⎝ ⎛⎭⎪⎫100πt +π6来表示,求:
(1)开始时的电压;
(2)电压的最大值和第一次获得这个最大值的时间.
【解】 (1)当t =0时,E =2203sin π
6=1103(伏),即开始时的电压为1103伏.
(2)电压的最大值为2203伏,
当100πt +π6=π2,即t =1
300
秒时第一次取得这个最大值.
9.如图168,某市拟在长为8 km 的道路OP 的一侧修建一条运动赛道,赛道的前一
部分为曲线段OSM ,该曲线段为函数y =A sin ωx (A >0,ω>0)(x ∈[0,4])的图象,且图象的最高点为S (3,23);赛道的最后一部分为折线段MNP .为保证参赛运动员的安全,限定∠MNP =120°.求A ,ω的值和M ,P 两点间的距离.
图168
【解】 由题意得A =23,T 4=3,又T =2π
ω
,
∴ω=π6,∴y =23sin π
6x .
当x =4时,y =23sin 2π
3=3,
∴M (4,3).
又点P (8,0),∴|MP |= 8-4 2
+ 0-3 2
=5(km).
[能力提升]
1.如图169所示,有一广告气球,直径为6 m ,放在公司大楼上空,当行人仰望气球中心的仰角∠BAC =30°时,测得气球的视角为2°(若β很小时,可取sin β≈β),试估算该气球的高BC 的值约为( )
图169
A .70 m
B .86 m
C .102 m
D .118 m
【解析】 假设气球到人的距离AC 为s , ∴6=s ×sin 2°=s ×2×2π
360,
∴s ≈171.887 m,
∴h =BC =s ×sin 30°=85.94 m≈86 m. 【答案】 B
2.如图1610所示,一个半径为10米的水轮按逆时针方向每分钟转4圈.记水轮上的点P 到水面的距离为d 米(在水面下则d 为负数),则d (米)与时间t (秒)之间满足关系式:d =A sin(ωt +φ)+k ⎝
⎛⎭⎪⎫A >0,ω>0,-π2<φ<π2.当P 点从水面上浮现时开始计算时间.有以
下四个结论:①A =10;②ω=2π15;③φ=π
6
;④k =5.则其中所有正确结论的序号是________.
图1610
【解析】 由题意知A =10,k =5,T =604=15秒,ω=2πT =2π
15
,所以d =10sin ⎝
⎛⎭
⎪
⎫2π15t +φ+5.
又当t =0时,d =0,所以10sin φ+5=0,所以sin φ=-12,又-π2<φ<π
2,所以
φ=-π
6
.
【答案】 ①②④
3.当我们所处的北半球为冬季的时候,新西兰的惠灵顿市恰好是盛夏,因此北半球的人们冬天愿意去那里旅游,下面是一份惠灵顿机场提供的月平均气温统计表.
(1)根据这个统计表提供的数据,为惠灵顿的月平均气温作出一个函数模型; (2)当自然气温不低于13.7 ℃时,惠灵顿市最适宜于旅游,试根据你所确定的函数模型,确定惠灵顿市的最佳旅游时间.
得如图所示的曲线.
由于各地月平均气温的变化是以12个月为周期的函数,依散点图所绘制的图象,我们
可以考虑用t =A cos(ωx +φ)+k 来描述.
由最高气温为17.9 ℃,最低气温为9.5 ℃, 则A =17.9-9.52=4.2;k =17.9+9.52=13.7.
显然2πω=12,故ω=π
6
.
又x =2时y 取最大值,依ωx +φ=0, 得φ=-ωx =-π6×2=-π3.
所以t =4.2cos ⎝
⎛⎭
⎪⎫πx 6-π3+13.7为惠灵顿市的常年气温模型函数式.
(2)作直线t =13.7与函数图象交于两点(5,13.7),(11,13.7).这说明在每年的十一月初至第二年的四月末气温不低于13.7 ℃,是惠灵顿市的最佳旅游时间.。