2控制系统状态空间表达式的-luo
- 格式:ppt
- 大小:2.51 MB
- 文档页数:77
控制系统状态空间法控制系统状态空间法是现代控制理论中常用的一种方法,它描述了控制系统的动态行为,并通过状态变量来表示系统的内部状态。
在这篇文章中,我们将详细介绍控制系统状态空间法的基本概念、理论原理以及应用。
一、控制系统状态空间法的基本概念状态空间法是一种描述动态系统的方法,通过一组一阶微分方程来表示系统的动态行为。
在这个方法中,我们将控制系统看作是一个黑盒子,输入和输出之间的关系可以用状态方程和输出方程来描述。
1. 状态方程状态方程描述了系统的内部状态随时间的演化规律。
它是一个一阶微分方程组,通常用向量形式表示:ẋ(t) = Ax(t) + Bu(t)其中,x(t)表示系统的状态向量,A是状态转移矩阵,B是输入矩阵,u(t)是输入向量。
2. 输出方程输出方程描述了系统的输出与内部状态之间的关系。
它通常用线性方程表示:y(t) = Cx(t) + Du(t)其中,y(t)表示系统的输出向量,C是输出矩阵,D是直接传递矩阵。
3. 状态空间表示将状态方程和输出方程合并,可以得到系统的状态空间表示:ẋ(t) = Ax(t) + Bu(t)y(t) = Cx(t) + Du(t)在状态空间表示中,状态向量x(t)包含了系统的所有内部状态信息,它决定了系统的行为和性能。
二、控制系统状态空间法的理论原理控制系统状态空间法基于线性时不变系统理论,通过分析系统的状态方程和输出方程,可以得到系统的稳定性、可控性和可观测性等性质。
1. 系统稳定性系统稳定性是判断系统是否能够在有限时间内达到稳定状态的重要指标。
对于线性时不变系统,当且仅当系统的所有状态变量都是稳定的,系统才是稳定的。
通过分析状态方程的特征值,可以判断系统的稳定性。
2. 系统可控性系统可控性表示是否可以通过选择合适的输入来控制系统的状态。
一个系统是可控的,当且仅当存在一组输入矩阵B的列向量线性组合可以使得系统的状态从任意初始条件变为目标状态。
通过分析状态转移矩阵的秩,可以判断系统的可控性。
第二章 控制系统的状态空间表达式2-1 状态、状态变量、状态空间、状态方程、动态方程任何一个系统在特定时刻都有一个特定的状态,每个状态都可以用最小的一组(一个或多个)独立的状态变量来描述。
设系统有n 个状态变量n x x x ,,21,它们都是时间t 的函数,控制系统的每一个状态都可以在一个由n x x x ,,21为轴的n 维状态空间上的一点来表示,用向量形式表示就是:()t x 称作系统的状态向(矢)量。
设系统的控制输入为:r u u u ,,,21 ,它们也是时间t 的函数。
记:那么表示系统状态变量x(t)随系统输入u(t)以及时间t 变化的规律的方程就是控制系统的状态方程:其中()()()[]T=t f t f t f f n 21 是一个函数矢量。
设系统的输出变量为m y y y ,,,21 ,则()Tm y y y y ,,,21 = 称为系统的输出向量。
表示输出变量y(t)与系统状态变量x(t)、系统输入u(t)以及时间t 的关系的方程就称作系统的输出方程: 其中()Tm g g g g ,,,21 = 是一个函数矢量。
在现代控制理论中,用系统的状态方程和输出方程来描述系统的动态行为,状态方程和输出方程合起来称作系统的状态空间表达式或称动态方程。
根据函数向量F 和G 的不同情况,一般控制系统可以分为如下四种: ∙线性定常(时不变)系统(LTI-Linear Time-Invariant); ∙ 线性不定常(时变)系统(Linear Time-Variant); ∙ 非线性定常系统(Nonlinear Time-Invariant); ∙ 非线性时变系统(Nonlinear Time-Variant)。
在本课程中,我们主要考虑线性定常系统(LTI)。
这时,系统的状态空间表达式可以表示如下: 写成矢量形式为:其中:n n nn n n n n a a a a a a a a a A ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 212222111211 , r n nr n n r r b b b b b bb b b B ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 212222111211n m mn m m n n c c c c c c c c c C ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 212222111211 , rm mr m m r r a a a a a aa a d D ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 212222111211n n A ⨯----称为系统矩阵,由系统内部结构及其参数决定,体现了系统内部的特性;r n B ⨯----称为输入(或控制)矩阵,主要体现了系统输入的施加情况;n m C ⨯----称为输出矩阵,它表达了输出变量与状态变量之间的关系,r m D ⨯----称为直接传递(转移)矩阵,表示了控制向量U 直接转移到输出变量Y 的转移关系。
2-3 由控制系统的方块图求系统状态空间表达式系统方块图是经典控制中常用的一种用来表示控制系统中各环节、各信号相互关系的图形化的模型,具有形象、直观的优点,常为人们采用。
要将系统方块图模型转化为状态空间表达式,一般可以由下列三个步骤组成:第一步:在系统方块图的基础上,将各环节通过等效变换分解,使得整个系统只有标准积分器(1/s )、比例器(k )及其综合器(加法器)组成,这三种基本器件通过串联、并联和反馈三种形式组成整个控制系统。
第二步:将上述调整过的方块图中的每个标准积分器(1/s )的输出作为一个独立的状态变量i x ,积分器的输入端就是状态变量的一阶导数dtdx i 。
第三步:根据调整过的方块图中各信号的关系,可以写出每个状态变量的一阶微分方程,从而写出系统的状态方程。
根据需要指定输出变量,即可以从方块图写出系统的输出方程。
例2-5 某控制系统的方块图如图2-6所示,试求出其状态空间表达式。
解:该系统主要有一个一阶惯性环节和一个积分器组成。
对于一阶惯性环节,我们可以通过等效变换,转化为一个前向通道为一标准积分器的反馈系统。
图2-6 系统方块图图2-6所示方块图经等效变换后如下图所示。
我们取每个积分器的输出端信号为状态变量1x 和2x ,积分器的输入端即1x和2x 。
从图可得系统状态方程:()⎪⎪⎩⎪⎪⎨⎧+--=-+-==uT K x T x T K K x K u T K x T x x T K x 112111311311212222111 取y 为系统输出,输出方程为:1x y =写成矢量形式,我们得到系统的状态空间表达式:[]⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎦⎤⎢⎢⎣⎡=x y u T K x K K T K x 01010113122例2-6 求如图2-7(a )所示系统的动态方程。
解:图2-7(a)中第一个环节21++s s 可以分解为⎪⎭⎫⎝⎛+-211s ,即分解为两个通道。