北京市海淀区2013-2014学年高二上学期期末考试数学(理)试题
- 格式:doc
- 大小:830.00 KB
- 文档页数:9
海淀区高二年级第一学期期末练习数学(文科) 2014.01一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求 (1)抛物线22y x =的准线方程是 ( ) (A ) 12y =-(B )1y =- (C )12x =-(D )1x =-(2)若直线10x ay ++=与直线20x y ++=平行,则实数a = ( ) (A )12-(B )2- (C )12 (D )2(320y +-=与圆224x y +=相交所得的弦的长为 ( ) (A) (B) (C(D(4)已知双曲线221x ay -=的两条渐近线方程为y =,那么此双曲线的虚轴长为( )(A) (B )2 (C(D )1(5)已知函数()f x 的导函数为'()f x ,那么“0'()0f x =”是“0x 是函数()f x 的一个极值点”的 ( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件(6)已知命题:p 函数3()f x x =是增函数,命题:q x R $ ,1x的导数大于0,那么 ( ) (A )p q ∧是真命题 (B )p q ∨是假命题 (C )p ⌝是真命题 (D )q ⌝是真命题(7)函数2e 1x y x =-的部分图象为 ( )(B (C ) (D )(8)在平面直角坐标系xOy 中,已知集合{}2()001x,y y x ,x ≤≤≤≤且所表示的图形的面积为31,若集合},1),{(≤-=x y y x M }1),{(2+≥=x y y x N ,则N M 所表示的图形面积为( ) (A )31 (B )32 (C )1 (D )34二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上. (9)已知()cos f x x x =,则'()f x = .(10)过点(1,1)且与圆2220x x y -+=相切的直线的方程是 .(11)曲线2y ax b =+在1x =处的切线方程为41y x =-,则a =______,b =______.(12)已知抛物线C :24y x =,O 为坐标原点,F 为C 的焦点,P 是C 上一点. 若OPF ∆是等腰三角形,则PO = .(13)已知点12,F F 是双曲线C 的两个焦点,过点2F 的直线交双曲线C 的一支于,A B 两点,若1ABF ∆为等边三角形,则双曲线C 的离心率为 .(14)如图所示,在正方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F .给出下列四个结论:①存在点E ,使得11A C //平面1BED F ; ②存在点E ,使得1B D ⊥平面1BED F ; ③对于任意的点E ,平面11AC D ⊥平面1BED F ;④对于任意的点E ,四棱锥11B BED F -的体积均不变. 其中,所有正确结论的序号是___________.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题共11分)已知函数321()43f x x ax =-+,且2x =是函数()f x 的一个极小值点. (Ⅰ)求实数a 的值;(Ⅱ)求)(x f 在区间[1,3]-上的最大值和最小值.F ED 1C 1B 1A 1DCA(16)(本小题共11分)已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 交抛物线C 于点P ,Q . (Ⅰ)若3PF =(点P 在第一象限),求直线l 的方程;(Ⅱ)求证:OP OQ ⋅为定值(点O 为坐标原点).(17)(本小题共11分)已知椭圆M :22221(0)x y a b a b+=>>经过点(1,-,(0,1). (Ⅰ)求椭圆M 的方程;(Ⅱ)设椭圆M 的左、右焦点分别为12,F F ,过点2F 的直线交椭圆M 于, A B 两点,求1ABF ∆面积的最大值.(18)(本小题共11分)已知函数22()2ln (0)f x x a x a =->. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)记函数()f x 的最小值为M ,求证:1M ≤.海淀区高二年级第一学期期末练习数学(文科)参考答案及评分标准 2014.01一. 选择题:本大题共8小题,每小题4分,共32分.二.填空题:本大题共6小题,每小题4分,共24分.(9)cos sin x x x - (10)10y -= (11)2,1(12)32或1 (13 (14)①③④ 注:(11)题每空2分;(12)题少一个答案扣2分.三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分11分)解:(Ⅰ)2'()2f x x ax =-. ………………………2分2x =是函数()f x 的一个极小值点,∴'(2)0f =.即440a -=,解得1a =. ………………………4分 经检验,当1a =时,2x =是函数()f x 的一个极小值点.∴ 实数a 的值为1. ………………………5分(Ⅱ)由(Ⅰ)知,321()43f x x x =-+.2'()2(2)f x x x x x =-=-.令'()0f x =,得0x =或2x =. ………………………6分 当x 在[1,3]-上变化时,()'(),f x f x 的变化情况如下:当1x =-或2x =时,()f x 有最小值83; 当0x =或3x =时,()f x 有最大值4. ………………………11分(16)(本小题满分11分)解:(Ⅰ)设00(,)P x y ,由题意,00x >且00y >.点P 在抛物线C 上,且3PF =,∴点P 到准线1x =-的距离为3.∴013x +=,02x =. ………………………2分又 2004y x =,00y >,∴0y =∴(2,P .(1,0)F , ………………………4分 ∴直线l的方程为1)y x =-,即y =-. ………………………5分(Ⅱ)由题意可设直线l 的方程为:1x my =+.由21,4x my y x=+⎧⎨=⎩得214y my =+,即2440y my --=. ………………………7分显然216160m ∆=+>恒成立.设11(,)P x y ,22(,)Q x y ,则12124,4.y y m y y +=⎧⎨⋅=-⎩ ………………………9分∴1212OP OQ x x y y ⋅=+1212(1)(1)my my y y =+++21212(1)()1m y y m y y =++++224(1)41m m =-+++3=-.即3OP OQ ⋅=-为定值. ………………………11分(17)(本小题满分11分)解:(Ⅰ)由题意1b =,椭圆M 的方程为2221(1)x y a a+=>. ………………………1分将点(1,-代入椭圆方程,得21112a +=,解得22a =. 所以 椭圆M 的方程为2212x y +=. ………………………3分(Ⅱ)由题意可设直线AB 的方程为:1x my =+.由221,22x my x y =+⎧⎨+=⎩得22(2)210m y my ++-=. 显然 2244(2)0m m ∆=++>.设11(,)A x y ,22(,)B x y ,则1221222,21.2m y y m y y m -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩………………………7分因为 1ABF ∆的面积12121||(||||)2S F F y y =+,其中120y y <. 所以 12121||||2S F F y y =-. 又22121212()()4y y y y y y -=+-22221422m m m --⎛⎫⎛⎫=- ⎪ ⎪++⎝⎭⎝⎭22288(2)m m +=+, 12(1,0),(1,0)F F -. ………………………9分∴2212()S y y =-2222211118[]8()222(2)22m m m =-=--+≤+++.当0m =时,上式中等号成立.即当0m =时,1ABF ∆. ………………………11分(18)(本小题满分11分) 解:(Ⅰ)22()2ln (0)f x x a x a =->的定义域为(0,)+∞.22'()2a f x x x =-2222x a x -=2()()x a x a x+-=. ………………………2分 令'()0f x =,解得x a =或x a =-(舍).当x 在(0,)+∞内变化时,()'(),f x f x 的变化情况如下:由上表知,()f x 的单调递增区间为(,)a +∞;()f x 的单调递减区间为(0,)a .………………………5分(Ⅱ)由(Ⅰ)知,()f x 的最小值222ln M a a a =-. ………………………6分 令22()2ln (0)g x x x x x =->,则'()24ln 24ln g x x x x x x x =--=-.令'()0g x =,解得1x =. ………………………8分 当x 在(0,)+∞内变化时,()'(),g x g x 的变化情况如下:所以 函数()g x 的最大值为1,即()1g x ≤.因为0a >,所以 222ln 1M a a a =-≤. ………………………11分注:对于其它正确解法,相应给分.。
海淀区2013-2014学年七年级第一学期期末数学练习 2014.1一、选择题(本题共36分,每题3分) 1、—6的相反数是A. —6B. 6C. 61- D. 612、下列四个数中,最小的数是A 、|—6|B 、—2C 、0D 、21-3、右图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是A B C D4、据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3 120 000吨,把数3 120 000用科学记数法表示为A 、51012.3⨯B 、710312.0⨯C 、5102.31⨯D 、61012.3⨯5、若53=x 是关于x 的方程05=-m x 的解,则m 的值为 A 、3 B 、31 C 、-3 D 、31-6、如图,下列说法中不正确...的是 A .直线AC 经过点A B.射线DE 与直线AC 有公共点 C .点B 在直线AC 上 D.直线AC 与线段BD 相交于点A 7、下列运算正确的是A 、42633=-a aB 、532532b b b =+C 、b a ba b a 22245=-D 、ab b a =+ 8、将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是9、若α∠与β∠互为补角, β∠是α∠的2倍,则α∠为 A 、30° B 、40° C 、60° D 、120°10、如图,直线AB 与CD 相交于点O ,OE 平分AOC ∠,且︒=∠140BOE , 则BOC ∠为A 、140°B 、100°C 、80°D 、40°A ECBD11、如图,从边长(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形ABCD (不重叠无缝隙),则AD 、AB 的长分别是 A. 3、2a+5 B. 5、2a+8 C. 5、2a+3 D. 3、2a+212、在三角形ABC 中,AB=8,AC=9,BC=10.o P 为BC 边上的一点,在边AC 上取点1P ,使得01CP CP =。
北京市海淀区2023-2024学年高二下学期期末考试数学试卷本试卷共6页,共两部分。
19道题,共100分。
考试时长90分钟。
试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
考试结束后,请将答题卡交回。
第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.5(1)x -的展开式中,所有二项式的系数和为A.0B.52C.1D.622.已知函数sin (),cos xf x x=则(0)f '的值为A.0B.1C.1- D.π3.若等比数列{}n a 的前n 项和21n n S =-,则公比q =A.12B.12-C.2D.2-4.下列函数中,在区间[]1,0-上的平均变化率最大的时A.2y x = B.3y x = C.12xy ⎛⎫= ⎪⎝⎭D.2xy =5.将分别写有2,0,2,4的四章卡片,按一定次序排成一行组成一个四位数(首位不为0),则组成的不同四位数的个数为A.9B.12C.18D.246.小明投篮3次,每次投中的概率为0.8,且每次投篮互不影响,若投中一次的2分,没投中得0分,总得分为X ,则A.() 2.4E X = B.() 4.8E X = C.()0.48D X = D.()0.96D X =7.已知一批产品中,A 项指标合格的比例为80%,B 项指标合格的比例为90%,A 、B 两项指标都合格的比例为60%,从这批产品中随机抽取一个产品,若A 项指标合格,则该产品的B 项指标也合格的概率是A.37B.23C.34D.568.已知等差数列n a 的前n 项和为n S ,若10a <、则“n S 有最大值”是“公差0d <”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.设函数()()ln 1sin f x x a x =-+.若()()0f x f ≤在()1,1-上恒成立,则A.0a =B.1a ≥C.01a <≤ D.1a =10.在经济学中,将产品销量为x 件时的总收益称为收益函数,记为()R x ,相应地把()R x '称为边际收益函数,它可以帮助企业决定最优的生产或销售水平.假设一个企业的边际收益函数()1000R x x '=-(注:经济学中涉及的函数有时是离散型函数,但仍将其看成连续函数来分析).给出下列三个结论:①当销量为1000件时,总收益最大;②若销量为800件时,总收益为T ,则当销量增加400件时,总收益仍为T ;③当销量从500件增加到501件时,总收益改变量的近似值为500.其中正确结论的个数为A.0B.1C.2D.3第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分。
海淀区高二年级练习数学(答案在最后)2024.01考生须知1.本试卷共7页,共3道大题,19道小题.满分100分.考试时间90分钟.2.在试卷上准确填写学校名称、班级名称、姓名.3.答案一律填涂或书写在试卷上,用黑色字迹签字笔作答.4.考试结束,请将本试卷交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.椭圆C :2222x y +=的焦点坐标为()A.(1,0)-,(1,0) B.(0,1)-,(0,1)C.(),)D.(0,,(【答案】B 【解析】【分析】先化为标准方程2212y x +=,求得222,1,1a b c ====,判断焦点位置,写焦点坐标.【详解】因为椭圆C :2222x y +=,所以标准方程为2212y x +=,解得222,1,1a b c ===,因为焦点在y 轴上,所以焦点坐标为(0,1)-,(0,1).故选:B【点睛】本题主要考查椭圆的几何性质,还考查了理解辨析的能力,属于基础题.2.抛物线2y x =的准线方程是()A.12x =-B.14x =-C.12y =-D.14y =-【答案】B 【解析】【分析】由抛物线的标准方程及性质,直接求解.【详解】由抛物线方程2y x =可知1212p p ==,,故准线方程为:124p x =-=-.故选:B.3.直线310x ++=的倾斜角是()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】先求解出直线的斜率,然后根据倾斜角与斜率的关系求解出倾斜角的大小.【详解】因为直线方程为310x +=,所以斜率k ==设倾斜角为θ,所以tan θ=,所以120θ=°,故选:C.4.已知点P 与(0,2),(1,0)A B -共线,则点P 的坐标可以为()A.(1,1)- B.(1,4)C.1,12⎛⎫-- ⎪⎝⎭D.(2,1)-【答案】B 【解析】【分析】三点共线转化为向量共线,利用共线条件逐个判断即可.【详解】设(,)P x y ,则(,2),(1,2)AP x y AB =-=--,由,,P A B 三点共线,则//AP AB,所以2(2)0x y -+-=,则220x y -+=.选项A ,21(1)250⨯--+=≠,不满足220x y -+=,故A 错误;选项B ,21420⨯-+=,满足220x y -+=,故B 正确;选项C ,12(1)2202⎛⎫⨯---+=≠ ⎪⎝⎭,不满足220x y -+=,故C 错误;选项D ,2(2)1230⨯--+=-≠,不满足220x y -+=,故D 错误.故选:B.5.已知P 为椭圆222:14x y C b+=上的动点.(1,0),(1,0)A B -,且||||4PA PB +=,则2b =()A.1B.2C.3D.4【答案】C 【解析】【分析】根据题意,结合椭圆的定义,得到点P 的轨迹表示以,A B 为焦点的椭圆,进而求得2b 的值.【详解】因为(1,0),(1,0)A B -,可得2AB =,则||||42A PA PB B +>==,由椭圆的定义,可得点P 的轨迹表示以,A B 为焦点的椭圆,其中24,21a c ==,可得2,1a c ==,所以2223b a c =-=,又因为点P 在椭圆222:14x y C b+=,所以23b =.故选:C.6.已知三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,则“1CB BB ⊥”是“CB AB ⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由面面垂直的性质定理可证明“1CB BB ⊥”是“CB AB ⊥”的必要条件,由底面为正三角形的直三棱柱模型,可知“1CB BB ⊥”不是“CB AB ⊥”的充分条件.【详解】①已知侧面11ABB A ⊥底面ABC ,且侧面11ABB A 底面ABC AB =,又BC ⊂平面ABC ,若BC AB ⊥,则由面面垂直的性质定理可得BC ⊥平面11ABB A ,1BB ⊂平面11ABB A ,则1CB BB ⊥,所以则“1CB BB ⊥”是“CB AB ⊥”的必要条件;②若三棱柱111ABC A B C -是直三棱柱,底面ABC 是正三角形,则1BB ⊥底面ABC ,1BB ⊂平面11ABB A ,则满足条件侧面11ABB A ⊥底面ABC .又BC ⊂平面ABC ,则1CB BB ⊥,但BC 与AB 不垂直.所以“1CB BB ⊥”不是“CB AB ⊥”的充分条件.综上所述,“1CB BB ⊥”是“CB AB ⊥”的必要不充分条件.故选:B.7.在空间直角坐标系O xyz -中,点(2,3,1)-P 到x 轴的距离为()A.2B.3C.D.【答案】D 【解析】【分析】结合空间直角坐标系,数形结合利用勾股定理求解点(2,3,1)-P 到x 轴的距离.【详解】在空间直角坐标系O xyz -中,过P 作PH ⊥平面xOy ,垂足为H ,则PH x ⊥轴,在坐标平面xOy 内,过H 作1HP x ⊥轴,与x 轴交于1P ,由(2,3,1)-P ,则1(2,0,0)P -,(2,3,0)H -,由1PH HP H = ,PH ⊂平面1PHP ,1HP ⊂平面1PHP ,则x 轴⊥平面1PHP ,1PP ⊂平面1PHP ,则x 轴1PP ⊥,故1PP即点(2,3,1)-P 到x 轴的距离,则1PP ==故选:D.8.已知双曲线222:1y C x b-=的左右顶点分别为12,A A ,右焦点为F ,以1A F 为直径作圆,与双曲线C 的右支交于两点,P Q .若线段PF 的垂直平分线过2A ,则2b 的数值为()A.3B.4C.8D.9【答案】C 【解析】【分析】由双曲线方程得1a =,结合圆的性质及线段垂直平分线的性质得2A 是1A F 的中点,得到,a c 关系求c ,进而求出2b .【详解】由双曲线222:1y C x b-=,得1a =,12(1,0),(1,0),(,0)A A F c -,由题意,点P 在以1A F 为直径的圆上,则1A P PF ⊥,取PF 的中点M ,由线段PF 的垂直平分线过2A ,则2A M PF ⊥,则12//A P A M ,故2A 是1A F 的中点,122A A A F=且12222,1A A a A F c a c ===-=-,所以12c -=,解得3c =,故222918b c a =-=-=.故选:C.9.设动直线l 与()22:15C x y ++= 交于,A B 两点.若弦长AB 既存在最大值又存在最小值,则在下列所给的方程中,直线l 的方程可以是()A.2x y a +=B.2ax y a +=C.2ax y +=D.x ay a+=【答案】D 【解析】【分析】由动直线恒与圆相交得直线过圆内一定点,再验证弦长取最值即可.【详解】()22:15C x y ++= ,圆心(1,0)C -,半径5r =,选项A ,由直线2x y a +=斜率为12-,可得动直线为为平行直线系,圆心(1,0)C -到直线20x y a +-=的距离15a d --=当6a ≤-或4a ≥时,5d ≥A 错误;选项B ,由直线2ax y a +=可化为(2)0a x y -+=,则直线恒过(2,0),因为()2215+>,点(2,0)在圆外,故直线不一定与圆相交,故B 错误;选项C ,由直线2ax y +=恒过(0,2),点(0,2)在圆上,当12a =时,直线方程可化为240x y +-=,此时圆心(1,0)C -到直线240x y +-=的距离1455d r --===,圆与直线相切,不满足题意,故C 错误;选项D ,由直线方程x ay a +=可化为(1)0x a y +-=,则直线恒过(0,1)M ,且点M 在圆C 内,故直线恒与圆C 相交,当直线过圆心C 时,弦长最长,由(1,0)-在直线(1)0x a y +-=上,可得1a =-,AB 取到最大值;如图,取AB 中点T ,则CT AB ⊥,圆心到直线的距离d CT CM=≤AB ==,当d 取最大值CM 时,弦长最短,即当直线与CM 垂直时,弦长最短,由CM 的斜率为01110CM k -==--此时直线斜率为11k a==,即当1a =时,AB 取到最小值.故D 正确.故选:D.10.如图,已知菱形ABCD 的边长为2,且60,,A E F ∠=︒分别为棱,AB DC 中点.将BCF △和ADE V 分别沿,BF DE 折叠,若满足//AC 平面DEBF ,则线段AC 的取值范围为()A. B. C.2,⎡⎣ D.2,⎡⎣【答案】A 【解析】【分析】借助空间直观想象,折叠前在平面图形中求出AC 的长度,折叠过程中证明平面//EAB 平面FDC ,面面距离即为AC 的最小值,由此得到AC 的范围.【详解】折叠前,连接,AC BD .由题意,在菱形ABCD 中,2AB BC ==,18060120ABC ∠=-= ,则由余弦定理得,22212cos 44222122AC AB BC AB BC ABC ⎛⎫=+-⋅∠=+-⨯⨯⨯-= ⎪⎝⎭,所以,AC =,故在折叠过程中,AC ≤.折叠后,若//AC 平面DEBF ,则AC ⊄平面DEBF ,则AC <BD 项错误;折叠前,在菱形ABCD 中,2BA BD ==,60DAB ∠= ,则ABD △是正三角形,由,E F 分别为棱,AB DC 中点,则,,//DE AB BF DC AB DC ⊥⊥,所以//DE BF .折叠后,,,DE AE DE EB AE EB E ⊥⊥= ,又AE ⊂平面EAB ,且EB ⊂平面EAB ,则DE ⊥平面EAB ,同理BF ⊥平面FDC ,所以平面//EAB 平面FDC ,则平面EAB 与平面FDC 的距离即为22DE =⨯=,由点A ∈平面EAB ,点C ∈平面FDC ,则AC ≥.在折叠过程中,当60DFC AEB ∠=∠= 时,由,AE EB DF FC ==,则,EBA DFC 均为正三角形,可构成如图所示的正三棱柱DFC EBA -,满足//AC 平面DEBF ,此时AC DE ==.所以AC A 正确,C 项错误.故选:A.第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分.11.双曲线22:14y C x -=的渐近线方程为_________.【答案】2y x =±【解析】【分析】利用双曲线的性质即可求得渐近线方程.【详解】由双曲线的相关知识可知:1a =,2b =所以焦点在x 轴双曲线的渐近线方程为:2by x x a=±=±故答案为:2y x=±12.如图,已知E ,F 分别为三棱锥D ABC -的棱,AB DC 的中点,则直线DE 与BF 的位置关系是__________(填“平行”,“异面”,“相交”).【答案】异面【解析】【分析】假设共面推出矛盾.【详解】假设直线,DE BF 共面,EB ⊂平面DEBF ,由A EB ∈,则AB ⊂平面DEBF ,同理,DC ⊂平面DEBF ,故,AB CD 共面,这与D ABC -是三棱锥矛盾,故假设错误,故直线,DE BF 异面.故答案为:异面.13.经过点(0,1)A 且与直线:210l x y +-=垂直的直线方程为_______________.【答案】210x y -+=【解析】【分析】求出所求直线的斜率,利用点斜式方程可得出所求直线的方程.【详解】直线:210l x y +-=的斜率为12-,则与直线:210l x y +-=垂直的直线的斜率为2,则直线方程为12(0)y x -=-,即210x y -+=.故答案为:210x y -+=14.作为我国古代称量粮食的量器,米斗有着吉祥的寓意,是丰饶富足的象征,带有浓郁的民间文化韵味.右图是一件清代老木米斗,可以近似看作正四棱台,测量得其内高为12cm ,两个底面内棱长分别为18cm 和9cm ,则估计该米斗的容积为__________3cm .【答案】2268【解析】【分析】先画出正四棱台的直观图,再利用台体的体积公式即可求解.【详解】根据题意,正四棱台的直观图如下:由题意可知,高112cm OO h ==,下底面正方形的变长9cm AB =,其面积()219981cmS =⨯=,上底面正方形的变长18cm AB =,其面积()221818324cm S =⨯=,由台体的体积公式可得,该正四面体的体积:()()()3121181324122268cm 33V S S h =++=⨯++⨯=.故该米斗的容积为32268cm .故答案为:2268.15.已知四边形ABCD 是椭圆22:12x M y +=的内接四边形,其对角线AC 和BD 交于原点O ,且斜率之积为13-.给出下列四个结论:①四边形ABCD 是平行四边形;②存在四边形ABCD 是菱形;③存在四边形ABCD 使得91AOD ∠=︒;④存在四边形ABCD 使得2264||||5AC BD +=.其中所有正确结论的序号为__________.【答案】①③④【解析】【分析】利用椭圆的对称性判断①;利用菱形的对角线互相垂直可判断②;利用正切函数的和差公式与性质判断③;利用斜率关系得到22||||OA OB +的表达式,然后利用基本不等式求22||||AC BD +的最大值,可判断④.【详解】因为四边形ABCD 是椭圆22:12x M y +=的内接四边形,AC 和BD 交于原点O ,由椭圆的对称性可知OA OC =且OB OD =,所以四边形ABCD 是平行四边形,故①正确;假设对角线AC 和BD 的斜率分别为12,k k ,若四边形ABCD 是菱形,则其对角线互相垂直,即121k k ×=-,而这与1213k k ⋅=-矛盾,所以不存在四边形ABCD 是菱形,故②错误;不妨设直线AC 的倾斜角为α,直线BD 的倾斜角为β,且αβ>,则12tan ,tan 0k k αβ==>,又1213k k ⋅=-,则1213k k =-,则()122122tan tan 31tan tan 1tan tan 123k k AOD k k k k αβαβαβ⎛⎫--∠=-===-- ⎪++⎝⎭3tan1202≤-⨯=︒,又0180AOD ︒<∠<︒,则90120AOD ︒<∠<︒,所以存在四边形ABCD 使得91AOD ∠=︒,故③正确;直线AC 的方程1y k x =,直线BD 的方程2y k x =,由12212y k xx y =⎧⎪⎨+=⎪⎩,得()22122x k x +=,即122122k x =+,可得1222212A C x k x =+=,同理可得2222212B D x k x =+=,则()()22122222221212212111||221212121k kOA OB k k k k +++=+=++++++,由1213k k ⋅=-,得222119k k =,令()22121,09k t k t t==>,则22211119||||222221199t t t ttOA OB +=+++++=+++()()()92221123321922192t t t t t t +-+-=++=+++++2552181321813116333355t t t t t ++++=+=+≤++=,当且仅当218t t =,即221211,33t k k ===时,等号成立;于是()()()22222264||224||5AC BD OA OB OA OB +=+=+≤,当且仅当221213k k ==,即四边形ABCD 矩形时,等号成立,所以存在四边形ABCD 使得2264||||5AC BD +=,故④正确.故答案为:①③④.【点睛】关键点睛:本题结论④的解决关键是利用弦长公式得到22||||AC BD +关于t 的表达式,从而利用基本不等式即可得解.三、解答题共4小题,共40分.解答应写出文字说明、演算步骤或证明过程.16.已知圆222:(2)(0)C x y r r -+=>与y 轴相切.(1)直接写出圆心C 的坐标及r 的值;(2)直线:3410l x y --=与圆C 交于两点,A B ,求||AB .【答案】(1)圆心(2,0)C ,2r =(2)【解析】【分析】(1)由圆的方程得圆心坐标,结合图形,圆与y 轴相切得半径;(2)法一由弦长公式求解;法二利用几何法勾股定理求解.【小问1详解】圆222:(2)(0)C x y r r -+=>,则圆心(2,0)C ,因为圆222:(2)(0)C x y r r -+=>与y 轴相切,则半径2r =.【小问2详解】由(1)知,圆的方程为22:(2)4C x y -+=,圆心(2,0)C ,半径为2.法一:设()()1122,,,A x y B x y ,联立()22341024x y x y --=⎧⎪⎨-+=⎪⎩,得2257010x x -+=,2(70)42548000∆=--⨯=>,则1212141,525x x x x +==,所以12AB x=-===法二:圆心(2,0)C到直线:3410l x y--=的距离12d==<,则AB===故AB=.17.已知直线:1l y kx=+经过抛物线2:2C x py=的焦点F,且与C的两个交点为P,Q.(1)求C的方程;(2)将l向上平移5个单位得到,l l''与C交于两点M,N.若24MN=,求k值.【答案】(1)24x y=(2)k=【解析】【分析】(1)由直线l与y轴交点得焦点F,待定p可得方程;(2)联立直线l'与抛物线C的方程,由已知弦长利用弦长公式建立关于k的方程,求解可得.【小问1详解】抛物线2:2C x py=的焦点F在y轴上,直线:1l y kx=+,令0x=,得1y=,则焦点(1,0)F,所以12p=,即2p=,所以抛物线C的方程为24x y=;【小问2详解】直线:1l y kx=+向上平移5个单位得到:6l y kx'=+,由246x y y kx ⎧=⎨=+⎩,消y 得24240x kx --=,设直线l '与C 交于两点1122(,),(,)M x y N x y ,则216960k ∆=+>,且12124,24x x k x x +==-,MN =====,由24MN =,化简整理得427300k k +-=,解得210k =-(舍)或23k =,所以k =.18.如图,四棱锥E ABCD -中,⊥AE 平面,,,2,1ABCD AD AB AD BC AE AB BC AD ⊥====∥,过AD 的平面分别与棱,EB EC 交于点M ,N .(1)求证:AD MN ∥;(2)记二面角A DN E --的大小为θ,求cos θ的最大值.【答案】(1)证明见解析(2)33【解析】【分析】(1)由线面平行判定定理与性质定理可证;(2)建立空间直角坐标系,设[],0,1BM BE λλ=∈,利用法向量方法,用λ表示两平面法向量夹角的余弦,再由向量夹角与二面角大小关系求cos θ最大值.【小问1详解】因为//AD BC ,AD ⊄平面BCE ,BC ⊂平面BCE ,所以//AD 平面BCE .因为过AD 的平面分别与棱,EB EC 交于,M N ,所以//AD MN ;【小问2详解】因为⊥AE 平面ABCD ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,所以,AE AB AE AD ⊥⊥,又因为AB AD ⊥,如图,建立空间直角坐标系A xyz -,则(2,0,0),(2,0,2),(0,2,0),(0,0,1)B C E D ,所以(0,2,1),(2,2,2),(2,2,0),(0,0,1)ED EC BE AD =-=-=-=,设[],0,1BM BE λλ=∈,则(2,0,0)(2,2,0)(22,2,0)AM AB BM λλλ=+=+-=-,设平面AND 即平面AMND 的法向量为111(,,)m x y z =,则1110(22)20m AD z m AM x y λλ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,令1x λ=,则11y λ=-,于是(,1,0)m λλ=-;设平面END 即平面ECD 的法向量为222(,,)n x y z =,则22222202220n ED y z n EC x y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令21y =,则222,1z x ==-,于是(1,1,2)n =-,所以cos ,m nm n m n ⋅===⋅,因为[]0,1λ∈,所以cos ,,36m n ⎡∈--⎢⎣⎦,由二面角A DN E --的大小为θ,根据(,1,0),(1,1,2)m n λλ=-=- 的方向判断可得π,m n θ=-,所以,当12λ=时,cos θ的最大值为33.19.已知椭圆2222:1(0)x y E a b a b +=>>的两个顶点分别为(2,0),(2,0)A B -,离心率()()0001,,02e P x y y =≠为椭圆上的动点,直线,PA PB 分别交动直线x t =于点C ,D ,过点C 作PB 的垂线交x 轴于点H .(1)求椭圆E 的方程;(2)HC HD ⋅是否存在最大值?若存在,求出最大值;若不存在,说明理由.【答案】19.22143x y +=20.存在;12【解析】【分析】(1)由离心率及顶点坐标结合222b c a +=即可求解;(2)结合两点式得直线,PA PB 方程,进而得到点,C D 坐标,由直线CH 与直线PB 垂直得到直线CH 的斜率,结合点斜式得直线CH 的方程,进而的到点H 坐标,结合数量积的坐标运算及二次函数的最值即可求解.【小问1详解】由12ce a==,又两个顶点分别为(2,0),(2,0)A B -,则2,1a c ==,2223b a c =-=,故椭圆E 的方程为22143x y +=;【小问2详解】()()000,0P x y y ≠为椭圆上的动点,则02x ≠±,故直线,PA PB 的斜率存在且不为0,则直线PA :0022y x y x +=+,即00(2)2y y x x =++,则点00(,(2))2y C t t x ++,则直线PB :0022y x y x -=-,即00(2)2y y x x =--,则点00(,(2))2y D t t x --,则直线CH 的斜率为002x y -,故直线CH :00002(2)()2y x y t x t x y --+=-+,令0y =,得2020(2)4H t y x t x +=+-,又()00,P x y 在椭圆上,则2200143x y +=,整理得()2020344x y -=,所以36(2)44H t x t t -=-+=,则6,04t H -⎛⎫⎪⎝⎭,所以()22200020004(2)(2)3636(36),,4242164t y t y t y t t t HC HD x x x -⎛⎫⎛⎫+-+++⋅=⋅=+ ⎪ ⎪+--⎝⎭⎝⎭ ()22234(36)3(6)1216416t t t -+-=-=-+综上,存在6t =,使得HC HD ⋅有最大值12.确,运算要细心,是中档题.。
海淀区高一年级第一学期期末练习数 学2014.1学校 班级 姓名 成绩 本试卷共100分.考试时间90分钟.一.选择题:本大题共8小题, 每小题4分,共32分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4},{1,2},{2,3},U A B ===则 ( )U A B =ð ( )A.{2,3}B.{1,2,3}C.{2,3,4}D.{1,2,3,4}2.代数式sin120cos210的值为 ( )A.34-C.32-D.143.已知向量2(1,1),(,2),x x ==+a b 若,a b 共线,则实数x 的值为 ( ) A.1-B.2C.1或2-D.1-或2 4.函数1()lg 1f x x =-的定义域为 ( )A.(0,)+∞B.(0,1)(1,)+∞C.(1,)+∞D.(0,10)(10,)+∞5.如图所示,矩形ABCD 中,4,AB = 点E 为AB 中点,若DE AC ⊥,则||DE = ( )A.52B. C.3 D.6.函数41()log 4x f x x =-的零点所在的区间是 ( )A.(10,2)B.(1,12) C.(1,2) D.(2,4)7.下列四个函数中,以π为最小正周期,且在区间π(,π)2上为减函数的是 ( )EDCBAA.2|sin |y x =B.sin2y x =C.2|cos |y x =D.cos2y x =8.已知函数||()||x af x x a -=-,则下列说法中正确的是 ( )A.若0a ≤,则()1f x ≤恒成立B.若()1f x ≥恒成立,则0a ≥C.若0a <,则关于x 的方程()f x a =有解D.若关于x 的方程()f x a =有解,则01a <≤二.填空题:本大题共6小题, 每小题4分,共24分.把答案填在题中横线上. 9. 已知角α的顶点在坐标原点,始边在x轴的正半轴,终边经过点(1,,则 cos ____.α=10.比较大小:sin1 cos1(用“>”,“<”或“=”连接). 11.已知函数()13,(,1)x f x x =-∈-∞,则()f x 的值域为 . 12.如图,向量1,4BP BA =若+,OP xOA yOB = 则____.x y -= 13.已知sin tan 1αα⋅=,则cos ____.α=14.已知函数π()sin 2f x x =,任取t ∈R ,记函数()f x 在区间[,1]t t +上的最大值为,t M 最小值为 t m ,记()t t h t M m =-. 则关于函数()h t 有如下结论: ①函数()h t 为偶函数; ②函数()h t的值域为[1-; ③函数()h t 的周期为2;④函数()h t 的单调增区间为13[2,2],22k k k ++∈Z .其中正确的结论有____________.(填上所有正确的结论序号)POB A三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分10分)已知函数2()f x x bx c =++,其中,b c 为常数. (Ⅰ)若函数()f x 在区间[1,)+∞上单调,求b 的取值范围;(Ⅱ)若对任意x ∈R ,都有(1)(1)f x f x -+=--成立,且函数()f x 的图象经过点(,)c b -,求,b c 的值.16.(本小题满分12分)y11 xO 已知函数()sin(2)3f x x π=-.(Ⅰ)请用“五点法”画出函数()f x 在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图); (Ⅱ)求函数()f x 的单调递增区间;(Ⅲ)当[0,]2x π∈时,求函数()f x 的最大值和最小值及相应的x 的值.17.(本小题满分12分)已知点(1,0),(0,1)A B -,点(,)P x y 为直线1y x =-上的一个动点.(Ⅰ)求证:APB ∠恒为锐角;(Ⅱ)若四边形ABPQ 为菱形,求BQ AQ ⋅的值.18.(本小题满分10分)已知函数()f x 的定义域为[0,1],且()f x 的图象连续不间断. 若函数()f x 满足:对于给定的m (m ∈R 且01m <<),存在0[0,1]x m ∈-,使得00()()f x f x m =+,则称()f x 具有性质()P m .(Ⅰ)已知函数21()()2f x x =-,[0,1]x ∈,判断()f x 是否具有性质1()3P ,并说明理由;(Ⅱ)已知函数 141, 0,413()41, ,44345, 1.4x x f x x x x x ⎧-+≤≤⎪⎪⎪=-<<⎨⎪⎪-+≤≤⎪⎩若()f x 具有性质()P m ,求m 的最大值;(Ⅲ)若函数()f x 的定义域为[0,1],且()f x 的图象连续不间断,又满足(0)(1)f f =,求证:对任意*k ∈N 且2k ≥,函数()f x 具有性质1()P k.海淀区高一年级第一学期期末练习数 学参考答案及评分标准 2014.1一、选择题(本大题共8小题,每小题4分,共32分)二、填空题(本大题共4小题,每小题4分)三、解答题(本大题共6小题,共80分) 15.(本小题满分10分)解:(I)因为函数2()f x x bx c =++,所以它的开口向上,对称轴方程为2bx =- ………………2分 因为函数()f x 在区间[,)2b -+∞上单调递增,所以12b-≤,所以2b ≥- ………………………4分(Ⅱ)因为(1)(1)f x f x -+=--, 所以函数()f x 的对称轴方程为1x =-,所以2b = ………………………6分又因为函数()f x 的图象经过点(,)c b -,所以有 222c c c ++=- ………………………8分即2320c c ++=,所以2c =-或1c =- ………………………10分9.12 10. > 11. (2),1-12.21-13. 14.③④说明:14题答案如果只有③ 或④,则给2分,错写的不给分16.(本小题满分12分) 解:(I ) 令23X x π=-,则1()23x X π=+.填表:………………………2分………………4分(Ⅱ)令222(232k x k ππππ-≤-Z ………………………6分解得()1212k x k k π5ππ-≤≤π+∈Z 所以函数sin(2)3y x π=-的单调增区间为5[,]()1212k k k πππ-π+∈Z ………………………8分(Ⅲ)因为[0,]2x π∈,所以2[0,]x ∈π,(2)[,]333x ππ2π-∈- ………………10分 所以当233x ππ-=-,即0x =时,in(2)3y s x π=-取得最小值2- 当232x ππ-=,即12x 5π=时,sin(2)3y x π=-取得最大值1 ……………………12分17.(本小题满分12分)解:(Ⅰ)因为点(,)P x y 在直线1y x =-上,所以点(,1)P x x - ………………………1分所以(1,1),(,2)PA x x PB x x =---=--, 所以1O yx1222132222(1)=2[()]24PA PB x x x x x ⋅=-+=-+-+>………………………3分所以c |P PP⋅<………………………4分若,,A P B 三点在一条直线上,则//PA PB ,得到(1)(2)(1)0x x x x +---=,方程无解,所以0APB ∠≠ …………………5分 所以APB ∠恒为锐角. ………………………6分 (Ⅱ)因为四边形ABPQ 为菱形, 所以|A B B P=,即………………………8分化简得到2210x x -+=,所以1x =,所以(1,0)P ………………………9分设(,)Q a b ,因为PQ BA =, 所以(1a b -=--,所以01a b =⎧⎨=-⎩………………………11分(0,2)(1,1)2BQ AQ ⋅=-⋅-=………………………12分18.(本小题满分10分)解:(Ⅰ)设01[0,1]3x ∈-,即02[0,]3x ∈ 令001()()3f x f x =+, 则2200111()()232x x -=+- 解得013x =2[0,]3∈, 所以函数()f x 具有性质1()3P ………………………3分 (Ⅱ)m 的最大值为12首先当12m =时,取012x =则01()()12f x f ==,011()()(1)122f x m f f +=+==所以函数()f x 具有性质1()2P ………………………5分 假设存在112m <<,使得函数()f x 具有性质()P m则1012m <-<当00x =时,01(,1)2x m +∈,00()1,()1f x f x m =+>,00()()f x f x m ≠+当0(0,1]x m ∈-时,01(,1]2x m +∈,00()1,()1f x f x m <+≥,00()()f x f x m ≠+所以不存在0[0,1]x m ∈-,使得00()()f x f x m =+ 所以,m的最大值为12………………………7分 (Ⅲ)任取*,2k k ∈≥N设1()()()g x f x f x k =+-,其中1[0,]k x k-∈ 则有 1(0)()(0)g f f k=-121()()()g f f k k k=-232()()()g f f k k k =- (1)()()()t ttg f f k k k k =+-……11()(1)()k k g f f k k --=-以上各式相加得:11(0)()...()...()(1)(0)0t k g g g g f f k k k -+++++=-= 当11(0),(),...,()k g g g k k -中有一个为0时,不妨设为()0,{0,1,2,...,1}ig i k k =∈-,即1()()()0i i ig f f k k k k =+-=则函数()f x 具有性质1()P k 当11(0),(),...,()k g g g k k -均不为0时,由于其和为0,则必然存在正数和负数, 不妨设()0,()0,i jg g k k >< 其中i j ≠,,{0,1,2,...,1}i j k ∈-由于()g x 是连续的,所以当j i >时,至少存在一个0(,)i jx k k ∈(当j i <时,至少存在一个0(,)i jx k k ∈)使得0()0g x =, 即0001()()()0g x f x f x k =+-=所以,函数()f x 具有性质1()P k ………………………10分说明: 若有其它正确解法,请酌情给分,但不得超过原题分数.。
北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:不等式一、选择题1 .(2013届北京丰台区一模理科)已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则2x ye +的最大值是 ( )A .3eB .2eC .1D .4e -2 .(2013届北京丰台区一模理科)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( )A .13B .18C .21D .263 .(2013届北京海滨一模理科)不等式组1,40,0x x y kx y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则k 的值为A.2-B .1-C .0D .14 .(2013届门头沟区一模理科)定义在 R 上的函数()y f x =是减函数,且函数(2)y f x =+的图象关于点(2,0)-成中心对称,若,s t 满足不等式组()(2)0()0f t f s f t s +-≤⎧⎨-≥⎩,则当23s ≤≤时,2s t +的取值范围是( )A .[3,4] (B) [3,9] (C) [4,6] D .[4,9]5 .(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )已知2,,z x y x y =+满足2y xx y x m ≥⎧⎪+≤⎨⎪≥⎩,且z 的最大值是最小值的4倍,则m 的值是 ( )A .14B .15C .16D .176 .(北京市东城区普通校2013届高三3月联考数学(理)试题 )设0,0.a b >>若1133a b a b+与的等比中项,则的最小值为( )A .8B .4C .1D .147 .(北京市东城区2013届高三上学期期末考试数学理科试题)已知x ,y 满足不等式组0,0,,2 4.x y x y s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数y x z 23+=的最大值的变化范围是 ( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]8 .(北京市西城区2013届高三上学期期末考试数学理科试题)已知,a b 是正数,且满足224a b <+<.那么22a b+的取值范围是 ( )A .416(,)55 B .4(,16)5C .(1,16)D .16(,4)59 .(北京市顺义区2013届高三第一次统练数学理科试卷(解析))设不等式组⎪⎩⎪⎨⎧≥-≥-≤+01,0,4x x y y x 表示的平面区域为D .若圆()()22211:r y x C =+++ ()0>r 不经过区域D 上的点,则r 的取值范围是( )A .[]52,22B .(]23,22C .(]52,23D .()()+∞⋃,5222,0二、填空题10.(北京市东城区2013届高三上学期期末考试数学理科试题)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价%p ,第二次提价%q ;方案乙:每次都提价%2p q+,若0p q >>,则提价多的方案是 . 11.(北京市海淀区北师特学校2013届高三第四次月考理科数学)已知点(2,)P t 在不等式组40,30x y x y --≤⎧⎨+-≤⎩表示的平面区域内,则点(2,)P t 到直线34100x y ++=距离的最大值为____________.12.(北京市海淀区北师特学校2013届高三第四次月考理科数学)已知0,(,20x x y y xk x y k ≥⎧⎪≤⎨⎪++≤⎩满足为常数)若y x z 3+=的最大值为8,则k=_____13.(北京市通州区2013届高三上学期期末考试理科数学试题 )已知,x y 满足约束条件24,2400x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,,则z x y=+的最大值为14.(北京市通州区2013届高三上学期期末考试理科数学试题 )若10x +>,则11x x ++的最小值为 . 15.(北京市丰台区2013届高三上学期期末考试 数学理试题 )已知直线y x b =+与平面区域C:||2,||2x y ≤⎧⎨≤⎩的边界交于A ,B两点,若AB ≥,则b 的取值范围是________.16.(【解析】北京市朝阳区2013届高三上学期期末考试数学理试题 )若关于x ,y 的不等式组0, , 10x y x kx y ⎧⎪⎨⎪-+⎩………(k是常数)所表示的平面区域的边界是一个直角三角形,则k = .17.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )点(,)P x y 在不等式组 0,3,1x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域内,若点(,)P x y 到直线1y kx =-的最大距离为___.k =18.(【解析】北京市石景山区2013届高三上学期期末考试数学理试题 )已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩,,表示的平面区域S的面积为4,则=a ;若点S y x P ∈),(,则y x z +=2 的最大值为 .19.(北京市房山区2013届高三上学期期末考试数学理试题 )某汽车运输公司,购买了一批豪华大客车投入运营,据市场分析每辆客车运营前n *()n ∈N 年的总利润n S (单位:万元)与n 之间的关系为2(6)11n S n =--+.当每辆客车运营的平均利润最大时, n 的值为 .三、解答题20.(2013届北京市延庆县一模数学理)A 是由定义在]4,2[上且满足如下条件的函数)(x ϕ组成的集合:(1)对任意]2,1[∈x ,都有)2,1()2(∈x ϕ ;(2)存在常数)10(<<L L ,使得对任意的]2,1[,21∈x x ,都有-)2(|1x ϕ|)2(2x ϕ||21x x L -≤.(Ⅰ)设]4,2[,1)(3∈+=x x x ϕ,证明:A x ∈)(ϕ;(Ⅱ)设A x ∈)(ϕ,如果存在)2,1(0∈x ,使得)2(00x x ϕ=,那么这样的0x 是唯一的;(Ⅲ)设A x ∈)(ϕ,任取)2,1(∈n x ,令,,2,1),2(1⋅⋅⋅==+n x x n n ϕ证明:给定正整数k ,对任意的正整数p ,不等式||1||121x x LL x x k k p k --≤--+成立.北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:不等式参考答案一、选择题 1. B 2. C 3. D 4. D 5. A 6. B7. 【答案】D解:,当3s =时,对应的平面区域为阴影部分,由y x z 23+=得322z y x =-+,平移直线由图象可知当直线经过点C 时,直线322z y x =-+的截距最大,此时3,24x y y x +=⎧⎨+=⎩解得12x y =⎧⎨=⎩,即(1,2)C ,代入y x z 23+=得7z =。
2024北京海淀高二(上)期末数 学2024.01学校_____________ 班级______________ 姓名______________(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)椭圆2212y x +=的焦点坐标为 ( )(A )(1,0),(1,0)− (B )(0,1),(0,1)− (C )( (D )(0, (2)抛物线2y x =的准线方程为 ( ) (A )14x =−(B )12y =− (C )12x=− (D )14y =−(3)直线310x ++=的倾斜角为 ( ) (A )30 (B )60 (C )120 (D )150(4)已知点P 与(0,2),(1,0)A B −共线,则点P 的坐标可以为 ( )(A )(1,1)− (B )(1,4) (C )1(,1)2−− (D )(2,1)−(5)已知P 为椭圆222:14x y C b+=上的动点,(1,0),(1,0)A B −,且||||4PA PB +=,则2b =( )(A )1 (B )2 (C )3 (D )4(6)已知三棱柱111ABC A B C −中,侧面11ABB A ⊥底面ABC ,则“1CB BB ⊥”是“CB AB ⊥”的 ( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(7)在空间直角坐标系O xyz −中,点P (2,3,1)−到x 轴的距离为 ( ) (A )2 (B )3 (C (D (8)已知双曲线:C 2221y x b−=的左右顶点分别为12,A A ,右焦点为F ,以1A F 为直径作圆,与双曲线C的右支交于两点,P Q .若线段PF 的垂直平分线过2A ,则2b 的数值为 ( )1(A )3 (B )4 (C )8 (D )9(9)设动直线l 与⊙:O 22(1)5x y ++=交于,A B 两点. 若弦长||AB 既存在最大值又存在最小值,则在下列所给的方程中,直线l 的方程可以是 ( )(A )2x y a += (B )2ax y a += (C )2ax y += (D )x ay a +=(10)如图,已知菱形ABCD 的边长为2,且60A ∠=,,E F 分别为边AB ,DC 中点. 将△BCF 和△ADE 分别沿,BF DE 折叠,若满足//AC 平面DEBF ,则线段AC 的取值范围为( )(A) (B) (C) (D)第二部分(非选择题 共60分)二、填空题共5小题,每小题4分,共20分。
海淀区高二年级第一学期期末练习数学(理科)2011.011. 椭圆1162522=+yx的焦点坐标为A. (3±,0)B. (4±,0)C. (0, 3±)D. (0, 4±)2. 已知向量 2(-=a ,3,)1,1(=b ,1-,)0,则=+||b aA.26B. 14C. 2D. 6 3. 已知双曲线经过点(6,3) ,且它的两条渐近线的方程是x y 31±=,那么此双曲线的方程是A.193622=-yxB.198122=-yxC.1922=-yxD.131822=-yx4. 命题“Q a ∈∀,a a≥2”的否定是A. Q a ∉∀,a a≥2B. Q a ∈∃,a a <2C. Q a ∈∃,a a≥2D. Q a ∉∀,a a<25. 如图,已知10||=AB ,图中的一系列圆是圆心分别A ,B 的两组同心圆,每组同心圆的半径分别是1,2,3,…,n ,利用这两组同心圆可以画出以A ,B 为焦点的椭圆,设其中经过点M ,N ,P 的椭圆的离心率分别是M e ,N e ,P e ,则 A. M e =N e =P eB. P e <M e =N eC. M e <N e <P eD. P e <M e <N e6. 已知点M 是平面α内的动点,1F ,2F 是平面α内的两个定点,则“点M 到点1F ,2F 的距离之和为定值”是“点M 的轨迹是以1F ,2F 为焦点的椭圆”的 A.充分必要条件B. 充分而不必要条件C. 必要而不充分条件D. 即不充分也不必要条件7. 已知三棱锥O-ABC ,点G 是ABC ∆的重心。
设a =→OA ,b =→OB ,c =→OC ,那么向量→OG 用基底}{c b,a,可以表示为A. c b a 312121++B. c b a 313131++C. c b a 212121++D.c b a 323232++8. 如图,点A ,B ,C 是椭圆M :12222=+by ax 的三个顶点,1F ,2F 是它的左、右焦点,P 是M 上一点,且OB PF ⊥2。
北京市海淀区2013届高三第一学期期末考试数学(理)试题一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 复数21i-化简的结果为 A.1i + B.1i -+ C. 1i - D.1i --2.已知直线2,:2x t l y t =+⎧⎨=--⎩(t 为参数)与圆2cos 1,:2sin x C y θθ=+⎧⎨=⎩(θ为参数),则直线l 的倾斜角及圆心C 的直角坐标分别是A.π,(1,0)4B.π,(1,0)4-C.3π,(1,0)4D.3π,(1,0)4-3.向量(3,4),(,2)x ==a b , 若||⋅=a b a ,则实数x 的值为A.1-B.12-C.13- D.14.某程序的框图如图所示, 执行该程序,若输入的p 为24,则输出 的,n S 的值分别为A.4,30n S ==B.5,30n S ==C.4,45n S ==D.5,45n S ==5.如图,PC 与圆O 相切于点C ,直线PO 交圆O 于,A B 两点,弦CD 垂直AB 于E . 则下面结论中,错误..的结论是 A.BEC ∆∽DEA ∆ B.ACE ACP ∠=∠ C.2DE OE EP =⋅ D.2PC PA AB =⋅6.数列{}n a 满足111,n n a a r a r +==⋅+(*,n r ∈∈N R 且0r ≠),则“1r =”是“数列{}n a 成等差数列”的A.充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件7. 用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为 A. 144 B.120 C. 108 D.728. 椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P∆为等腰三角形,则椭圆C 的离心率的取值范围是A.12(,)33B.1(,1)2C. 2(,1)3D.111(,)(,1)322二、填空题:本大题共6小题,每小题5分,共30分.9. 以y x =±为渐近线且经过点(2,0)的双曲线方程为______.10.数列{}n a 满足12,a =且对任意的*,N m n ∈,都有n mn ma a a +=,则3_____;a ={}n a 的前n 项和n S =_____.BP11. 在261(3)x x+的展开式中,常数项为______.(用数字作答)12. 三棱锥D ABC -及其三视图中的主视图和左视图如图所示,则棱BD 的长为_________.13. 点(,)P x y 在不等式组 0,3,1x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域内,若点(,)P x y 到直线1y kx =-的最大距离为则___.k =14. 已知正方体1111ABCD A B C D -的棱长为1,动点P 在正方体1111ABCD A B C D -表面上运动,且PA r =(0r <<,记点P 的轨迹的长度为()f r ,则1()2f =____;关于r 的方程()f r k =的解的个数可以为_.(填上所有可能的值).三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题满分13分)已知函数21()cos cos 2222x x x f x =+-,ABC ∆三个内角,,A B C 的对边分别为,,a b c .(I )求()f x 的单调递增区间;(Ⅱ)若()1,f B C +=1a b =,求角C 的大小. 16.(本小题满分13分)汽车租赁公司为了调查A,B 两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:A 型车(I )从出租天数为3天的汽车(仅限A,B 两种车型)中随机抽取一辆,估计这辆汽车恰好是A 型车的概率; (Ⅱ)根据这个星期的统计数据,估计该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A ,B 两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.DABC左视图17. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,12,AB AC AA ===E 是BC 中点. (I )求证:1//A B 平面1AEC ;(II )若棱1AA 上存在一点M ,满足11B M C E ⊥,求AM 的长; (Ⅲ)求平面1AEC 与平面11ABB A 所成锐二面角的余弦值.18. (本小题满分13分)已知函数e ().1axf x x =- (I ) 当1a =时,求曲线()f x 在(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间.19. (本小题满分14分)已知()2,2E 是抛物线2:2C y px =上一点,经过点(2,0)的直线l 与抛物线C 交于,A B 两点(不同于点E ),直线,EA EB 分别交直线2x =-于点,M N . (Ⅰ)求抛物线方程及其焦点坐标;(Ⅱ)已知O 为原点,求证:MON ∠为定值. 20. (本小题满分13分)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为“一阶比增函数”;若2()f x y x =在(0,)+∞上为增函数,则称()f x 为“二阶比增函数”. 我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω. (Ⅰ)已知函数32()2f x x hx hx =--,若1(),f x ∈Ω且2()f x ∉Ω,求实数h 的取值范围; (Ⅱ)已知0a b c <<<,1()f x ∈Ω且()f x 的部分函数值由下表给出,求证:(24)0d d t +->;(Ⅲ)定义集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取,请问:是否存在常数M ,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立?若存在,求出M 的最小值;若不存在,说明理由.EC 1B 1A 1CBA海淀区高三年级第一学期期末练习数 学 (理)参考答案及评分标准 2013.1说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分)15.(本小题满分13分)解:(I )因为21()cos cos 2222x x x f x =+-cos 122cos 121x x x x =+-=++ πsin()6x =+ ………6分又sin y x =的单调递增区间为ππ2π,2π 22k k -+(),()Z k ∈ 所以令πππ2π2π262k x k -<+<+ 解得2ππ2π2π 33k x k -<<+ 所以函数()f x 的单调增区间为2ππ(2π,2π) 33k k -+,()Z k ∈ ………………8分 (Ⅱ) 因为()1,f B C +=所以πsin()16B C ++=,又(0,π)B C +∈,ππ7π(,)666B C ++∈所以πππ,623B C B C ++=+=,所以2π3A = ……10分 由正弦定理sin sin B A b a= 把1a b =代入,得到1sin 2B = …………12分 又,b a <B A <,所以π6B =,所以π6C = …………13分16.(本小题满分13分) 解:(I )这辆汽车是A 型车的概率约为3A 3A,B =出租天数为天的型车辆数出租天数为天的型车辆数总和300.63020=+这辆汽车是A 型车的概率为0.6 …………3分 (II )设“事件i A 表示一辆A型车在一周内出租天数恰好为i 天”,“事件j B 表示一辆B型车在一周内出租天数恰好为j 天”,其中,1,2,3,...,7i j = 则该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率为132231132231()()()()P A B A B A B P A B P A B P A B ++=++ ………………5分132231()()()()()()P A P B P A P B P A P B =++ ………………7分520102030141001001001001001009125=⋅+⋅+⋅=该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率为9125………………9分(Ⅲ)设设Y 为B 型车出租的天数,则Y 的分布列为()10.0520.1030.3040.3550.1560.0370.02=3.62E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯()10.1420.2030.2040.1650.1560.1070.05E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=3.48………………12分 一辆A 类型的出租车一个星期出租天数的平均值为3.62天,B 类车型一个星期出租天数的平均值为3.48天. 从出租天数的数据来看,A 型车出租天数的方差小于B 型车出租天数的方差,综合分析,选择A 类型的出租车更加合理 . ………………13分17.(本小题满分14分)(I) 连接A C 1交AC 1于点O ,连接EO因为1ACC A 1为正方形,所以O 为A C 1中点,又E 为CB 中点,所以EO 为1A BC ∆的中位线, 所以1//EO A B ………………2分又EO ⊂平面1AEC ,1A B ⊄平面1AEC 所以1//A B 平面1AEC…4分(Ⅱ)以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴建立空间直角坐标系 所以111(0,0,0),(0,0,2),(2,0,0),(2,0,2),(0,2,0),(0,2,2),(1,1,0),A A B B C C E 设(0,0,)(02)M m m ≤≤,所以11(2,0,2),(1,1,2)B M m C E =--=--,因为11B M C E ⊥,所以 110B M C E ⋅=,解得1m =,所以1AM = ………………8分 (Ⅲ)因为1(1,1,0),(0,2,2)AE AC ==,设平面1AEC 的法向量为(,,)n x y z =, 则有100AE n AC n ⎧⋅=⎪⎨⋅=⎪⎩ ,得00x y y z +=⎧⎨+=⎩,令1,y =-则1,1x z ==,所以可以取(1,1,1)n =-, ………10分因为AC ⊥平面1ABB A 1,取平面1ABB A 1的法向量为 (0,2,0)AC =………11分所以cos ,||||AC n AC n AC n ⋅<>==………………13分平面1AEC 与平面1ABB A 1………………14分 18. (本小题满分13分)解:当1a =时,e ()1axf x x =-,2e (2)'()(1)x xf x x -=- ………………2分 又(0)1f =-,'(0)2f =-,所以()f x 在(0,(0))f 处的切线方程为21y x =-- ………4分(II )2e [(1)]'()(1)ax ax a f x x -+=- 当0a =时,21'()0(1)f x x -=<- 又函数的定义域为{|1}x x ≠ 所以 ()f x 的单调递减区间为(,1),(1,)-∞+∞ ………6分 当 0a ≠时,令'()0f x =,即(1)0ax a -+=,解得1a x a+=………………7分 当0a >时,11a x a+=>,所以()f x ',()f x 随x 的变化情况如下表:所以()f x 的单调递减区间为(,1)-∞,1(1,)a a +, 单调递增区间为1(,)a a++∞ ……10分 当0a <时,11a x a+=< 所以()f x ',()f x 随x 的变化情况如下表:所以()f x 的单调递增区间为1(,)a a+-∞,单调递减区间为1(,1)a a +,(1,)+∞ ………13分19. (本小题满分14分)解:(Ⅰ)将()2,2E 代入22y px =,得1p = 所以抛物线方程为22y x =,焦点坐标为1(,0)2…3分(Ⅱ)设211(,)2y A y ,222(,)2y B y ,(,),(,)M M N N M x y N x y ,法一:因为直线l 不经过点E ,所以直线l 一定有斜率 设直线l 方程为(2)y k x =-与抛物线方程联立得到 2(2)2y k x y x=-⎧⎨=⎩,消去x ,得:2240ky y k --=则由韦达定理得:121224,y y y y k=-+= …6分 直线AE 的方程为:()12122222y y x y --=--,即()12222y x y =-++,令2x =-,得11242M y y y -=+ …………9分 同理可得:22242N y y y -=+ …10分又 4(2,),(2,)m m OM y ON y -=-=- ,所以121224244422M N y y OM ON y y y y --⋅=+=+⋅++ 121212124[2()4]4[2()4]y y y y y y y y -++=++++ 44(44)444(44)k k--+=+-++ 0= …13分所以OM ON ⊥,即MON ∠为定值π2…………14分 法二:设直线l 方程为2x my =+ 与抛物线方程联立得到 222x my y x=+⎧⎨=⎩,消去x ,得:2240y my --= 则由韦达定理得:12124,2y y y y m =-+= ……6分直线AE 的方程为:()12122222y y x y --=--,即()12222y x y =-++, 令2x =-,得11242M y y y -=+ ………………9分 同理可得:22242N y y y -=+ …10分又 4(2,),(2,)m m OM y ON y -=-=- ,12124(2)(2)44(2)(2)M N y y OM ON y y y y --⋅=+=+++ 121212124[2()4]4[2()4]y y y y y y y y -++=++++ 4(424)44(424)m m --+=+-++ 0= ……12分所以OM ON ⊥,即MON ∠为定值π2………………13分 20. (本小题满分14分)解:(I )因为1(),f x ∈Ω且2()f x ∉Ω, 即2()()2f x g x x hx h x==--在(0,)+∞是增函数,所以0h ≤ ………………1分而2()()2f x h h x x h x x ==--在(0,)+∞不是增函数,而2'()1hh x x =+ 当()h x 是增函数时,有0h ≥,所以当()h x 不是增函数时,0h < 综上,得0h < …4分(Ⅱ) 因为1()f x ∈Ω,且0a b c a b c <<<<++ 所以()()4=f a f a b c a a b c a b c++<++++, 所以4()a f a d a b c =<++,同理可证4()b f b d a b c =<++,4()cf c t a b c=<++三式相加得4()()()()24,a b c f a f b f c d t a b c++++=+<=++ 所以240d t +-< ……6分因为,d d a b <所以()0,b a d ab-<而0a b <<, 所以0d < 所以(24)0d d t +-> ……8分 (Ⅲ) 因为集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取, 所以()f x ∀∈ψ,存在常数k ,使得 ()f x k < 对(0,)x ∈+∞成立我们先证明()0f x ≤对(0,)x ∈+∞成立 假设0(0,),x ∃∈+∞使得0()0f x >, 记020()0f x m x => 因为()f x 是二阶比增函数,即2()f x x是增函数. 所以当0x x >时,0220()()f x f x m x x >=,所以2()f x mx > 所以一定可以找到一个10x x >,使得211()f x mx k >> 这与()f x k < 对(0,)x ∈+∞成立矛盾……11分()0f x ≤对(0,)x ∈+∞成立 所以()f x ∀∈ψ,()0f x ≤对(0,)x ∈+∞成立下面我们证明()0f x =在(0,)+∞上无解假设存在20x >,使得2()0f x =,则因为()f x 是二阶增函数,即2()f x x 是增函数 一定存在320x x >>,322232()()0f x f x x x >=,这与上面证明的结果矛盾 所以()0f x =在(0,)+∞上无解 综上,我们得到()f x ∀∈ψ,()0f x <对(0,)x ∈+∞成立 所以存在常数0M ≥,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立又令1()(0)f x x x=->,则()0f x <对(0,)x ∈+∞成立,又有23()1f x x x-=在(0,)+∞上是增函数 ,所以()f x ∈ψ,而任取常数0k <,总可以找到一个00x >,使得0x x >时,有()f x k >所以M 的最小值 为0 ……13分。
北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y 2=2,则其圆心和半径分别为( )A .(1,0),2B .(﹣1,0),2C .D .2.抛物线x 2=4y 的焦点到准线的距离为( )A .B .1C .2D .43.双曲线4x 2﹣y 2=1的一条渐近线的方程为( )A .2x+y=0B .2x+y=1C .x+2y=0D .x+2y=14.在空间中,“直线a ,b 没有公共点”是“直线a ,b 互为异面直线”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知A ,B 为圆x 2+y 2=2ax 上的两点,若A ,B 关于直线y=2x+1对称,则实数a=( )A .B .0C .D .16.已知直线l 的方程为x ﹣my+2=0,则直线l ( )A .恒过点(﹣2,0)且不垂直x 轴B .恒过点(﹣2,0)且不垂直y 轴C .恒过点(2,0)且不垂直x 轴D .恒过点(2,0)且不垂直y 轴7.已知直线x+ay ﹣1=0和直线ax+4y+2=0互相平行,则a 的取值是( )A .2B .±2C .﹣2D .08.已知两直线a ,b 和两平面α,β,下列命题中正确的为( )A .若a ⊥b 且b ∥α,则a ⊥αB .若a ⊥b 且b ⊥α,则a ∥αC .若a ⊥α且b ∥α,则a ⊥bD .若a ⊥α且α⊥β,则a ∥β9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : . 12.椭圆x 2+9y 2=9的长轴长为 .13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 .14.如图,在四棱锥P ﹣ABCD 中,底面四边形ABCD 的两组对边均不平行.①在平面PAB 内不存在直线与DC 平行;②在平面PAB 内存在无数多条直线与平面PDC 平行;③平面PAB 与平面PDC 的交线与底面ABCD 不平行;上述命题中正确命题的序号为 .15.已知向量,则与平面BCD 所成角的正弦值为 .16.若某三棱锥的三视图如图所示,则该棱锥的体积为 ,表面积为 .三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC 的三个顶点坐标为A (0,0),B (8,4),C (﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.19.已知椭圆G:的离心率为,经过左焦点F1(﹣1,0)的直线l与椭圆G相交于A,B两点,与y轴相交于C点,且点C在线段AB上.(Ⅰ)求椭圆G的方程;(Ⅱ)若|AF1|=|CB|,求直线l的方程.北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y2=2,则其圆心和半径分别为()A.(1,0),2 B.(﹣1,0),2 C.D.【考点】圆的标准方程.【分析】利用圆的标准方程的性质求解.【解答】解:圆(x+1)2+y2=2的圆心为(﹣1,0),半径为.故选:D.2.抛物线x2=4y的焦点到准线的距离为()A.B.1 C.2 D.4【考点】抛物线的简单性质.【分析】直接利用抛物线方程求解即可.【解答】解:抛物线x2=4y的焦点到准线的距离为:P=2.故选:C.3.双曲线4x2﹣y2=1的一条渐近线的方程为()A.2x+y=0 B.2x+y=1 C.x+2y=0 D.x+2y=1【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,求得a,b,由双曲线的渐近线方程y=±x,即可得到所求结论.【解答】解:双曲线4x2﹣y2=1即为﹣y2=1,可得a=,b=1,由双曲线的渐近线方程y=±x,可得所求渐近线方程为y=±2x.故选:A.4.在空间中,“直线a,b没有公共点”是“直线a,b互为异面直线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】空间中直线与直线之间的位置关系.【分析】利用空间中两直线的位置关系直接求解.【解答】解:“直线a,b没有公共点”⇒“直线a,b互为异面直线或直线a,b为平行线”,“直线a,b互为异面直线”⇒“直线a,b没有公共点”,∴“直线a,b没有公共点”是“直线a,b互为异面直线”的必要不充分条件.故选:B.5.已知A,B为圆x2+y2=2ax上的两点,若A,B关于直线y=2x+1对称,则实数a=()A.B.0 C.D.1【考点】直线与圆的位置关系.【分析】根据题意,圆心C(a,0)在直线y=2x+1上,C的坐标并代入直线2x+y+a=0,再解关于a的方程,即可得到实数a的值.【解答】解:∵A,B为圆x2+y2=2ax上的两点,A,B关于直线y=2x+1对称,∴圆心C(a,0)在直线y=2x+1上,∴2a+1=0,解之得a=﹣故选:A.6.已知直线l的方程为x﹣my+2=0,则直线l()A.恒过点(﹣2,0)且不垂直x轴 B.恒过点(﹣2,0)且不垂直y轴C.恒过点(2,0)且不垂直x轴D.恒过点(2,0)且不垂直y轴【考点】直线的一般式方程.【分析】由直线l的方程为x﹣my+2=0,令y=0,解得x即可得出定点,再利用斜率即可判断出与y轴位置关系.【解答】解:由直线l的方程为x﹣my+2=0,令y=0,解得x=﹣2.于是化为:y=﹣x﹣1,∴恒过点(﹣2,0)且不垂直y轴,故选:B.7.已知直线x+ay﹣1=0和直线ax+4y+2=0互相平行,则a的取值是()A.2 B.±2 C.﹣2 D.0【考点】直线的一般式方程与直线的平行关系.【分析】由直线的平行关系可得1×4﹣a•a=0,解得a值排除重合可得.【解答】解:∵直线x+ay﹣1=0和直线ax+4y+2=0互相平行,∴1×4﹣a•a=0,解得a=2或a=﹣2,经验证当a=﹣2时两直线重合,应舍去故选:A8.已知两直线a,b和两平面α,β,下列命题中正确的为()A.若a⊥b且b∥α,则a⊥α B.若a⊥b且b⊥α,则a∥αC.若a⊥α且b∥α,则a⊥b D.若a⊥α且α⊥β,则a∥β【考点】空间中直线与平面之间的位置关系.【分析】利用空间线面平行、线面垂直以及面面垂直的性质定理和判定定理对选项分别分析选择.【解答】解:对于A,若a⊥b且b∥α,则a与α位置关系不确定;故A错误;对于B,若a⊥b且b⊥α,则a与α位置关系不确定;可能平行、可能在平面内,也可能相交;故B 错误;对于C,若a⊥α且b∥α,根据线面垂直和线面平行的性质定理,可以得到a⊥b;故C正确;对于D ,若a ⊥α且α⊥β,则a ∥β或者a 在平面β内,故D 错误;故选:C .9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .【考点】抛物线的简单性质.【分析】求出P 的坐标,设P 在x 轴上的射影为C ,则tan ∠APC==,可得∠APB=120°,即可求出cos ∠APB .【解答】解:由题意,|PB|=|PF|=PA|,∴P 的横坐标为3,不妨取点P (3,2),设P 在x 轴上的射影为C ,则tan ∠APC==, ∴∠APC=30°,∴∠APB=120°,∴cos ∠APB=﹣. 故选:C .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3【考点】点、线、面间的距离计算.【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出线段B 1P 的长度的最大值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设P (a ,b ,0),则D 1(0,0,2),E (1,2,0),B 1(2,2,2),=(a ﹣2,b ﹣2,﹣2),=(1,2,﹣2), ∵B 1P ⊥D 1E ,∴=a ﹣2+2(b ﹣2)+4=0,∴a+2b ﹣2=0,∴点P 的轨迹是一条线段,当a=0时,b=1;当b=0时,a=2,设CD 中点F ,则点P 在线段AF 上,当A 与P 重合时,线段B 1P 的长度为:|AB 1|==2; 当P 与F 重合时,P (0,1,0),=(﹣2,﹣1,﹣2),线段B 1P 的长度||==3, 当P 在线段AF 的中点时,P (1,,0),=(﹣1,﹣,﹣2),线段B 1P 的长度||==. ∴线段B 1P 的长度的最大值为3.故选:D .二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : ∃x ∈R ,x 2<0 . 【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题p :“∀x ∈R ,x 2≥0”,则¬p :∃x ∈R ,x 2<0. 故答案为:∃x ∈R ,x 2<0.12.椭圆x 2+9y 2=9的长轴长为 6 .【考点】椭圆的简单性质.【分析】将椭圆化为标准方程,求得a=3,即可得到长轴长2a .【解答】解:椭圆x 2+9y 2=9即为+y 2=1,即有a=3,b=1,则长轴长为2a=6.故答案为:6.13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 (2,+∞) .【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,由题意可得m >0且m ﹣2>0,解不等式即可得到所求范围.【解答】解:曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,可得﹣=1,即有m>0,且m﹣2>0,解得m>2.故答案为:(2,+∞).14.如图,在四棱锥P﹣ABCD中,底面四边形ABCD的两组对边均不平行.①在平面PAB内不存在直线与DC平行;②在平面PAB内存在无数多条直线与平面PDC平行;③平面PAB与平面PDC的交线与底面ABCD不平行;上述命题中正确命题的序号为①②③.【考点】棱锥的结构特征.【分析】①用反证法利用线面平行的性质即可证明.②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,即可判断;③用反证法利用线面平行的性质即可证明.【解答】解:①用反证法.设在平面PAB内存在直线与DC平行,则CD∥平面PAB,又平面ABCD∩平面PAB=AB,平面ABCD∩平面PCD=CD,故CD∥AB,与已知矛盾,故原命题正确;②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,故在平面PAB内存在无数多条直线与平面PDC平行,命题正确;③用反证法.设平面PAB与平面PDC的交线l与底面ABCD平行,则l∥AB,l∥CD,可得:AB∥CD,与已知矛盾,故原命题正确.故答案为:①②③.15.已知向量,则与平面BCD所成角的正弦值为.【考点】直线与平面所成的角.【分析】求出平面BCD的法向量,利用向量法能求出与平面BCD所成角的正弦值.【解答】解:∵向量,∴==(﹣1,2,0),==(﹣1,0,3),设平面BCD的法向量为=(x,y,z),则,取x=6,得=(6,3,2),设与平面BCD所成角为θ,则sinθ===.∴与平面BCD所成角的正弦值为.故答案为:.16.若某三棱锥的三视图如图所示,则该棱锥的体积为,表面积为3.【考点】由三视图求面积、体积.【分析】几何体为三棱锥,棱锥底面为等腰三角形,底边为2,底边的高为1,棱锥的高为.棱锥顶点在底面的射影为底面等腰三角形的顶点.【解答】解:由三视图可知几何体为三棱锥,棱锥顶点在底面的射影为底面等腰三角形的顶点,棱锥底面等腰三角形的底边为2,底边的高为1,∴底面三角形的腰为,棱锥的高为.∴V==,S=+××2+=3.故答案为,三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC的三个顶点坐标为A(0,0),B(8,4),C(﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.【考点】直线与圆的位置关系;直线的斜率;圆的一般方程.【分析】(1)证明•=﹣16+16=0,可得⊥,即可证明△ABC 是直角三角形;(2)求出△ABC 的外接圆的方程,利用△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,可得圆心到直线的距离d=4,即可求m 的值.【解答】(1)证明:∵A (0,0),B (8,4),C (﹣2,4),∴=(8,4),=(﹣2,4),∴•=﹣16+16=0,∴⊥,∴ABC 是直角三角形;(2)解:△ABC 的外接圆是以BC 为直径的圆,方程为(x ﹣3)2+(y ﹣4)2=25,∵△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,∴圆心到直线的距离d=4=,∴m=﹣4或﹣44.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)推导出CC 1∥AA 1,AD ∥BC ,从而平面AA 1D ∥平面CC 1B ,由此能证明AE ∥平面CC 1B . (Ⅱ)法1:推导出AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD ,以AB ,AD ,AA 1分别x ,y ,z 轴建立空间直角坐标系,利用向量法能证明A 1D ⊥平面ABE .法2:推导出AA 1⊥AB ,AB ⊥AD ,从而AB ⊥A 1D ,再由AE ⊥A 1D ,能证明A 1D ⊥平面ABE .(Ⅲ)推导出平面EFD ⊥平面ABE ,从而二面角D ﹣EF ﹣B 为90°,设,且λ∈[0,1],则G (2,2,3λ),再由A 1D ⊥BG ,能求出CG 的长.【解答】证明:(Ⅰ)因为CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,所以CC 1∥AA 1,因为ABCD 是正方形,所以AD∥BC,因为AA1∩AD=A,CC1∩BC=C,所以平面AA1D∥平面CC1B.因为AE⊂平面AA1D,所以AE∥平面CC1B.(Ⅱ)法1:因为AA1⊥平面ABCD,所以AA1⊥AB,AA1⊥AD,因为ABCD是正方形,所以AB⊥AD,以AB,AD,AA1分别x,y,z轴建立空间直角坐标系,则由已知可得B(2,0,0),D(0,2,0),A1(0,0,2),E(0,1,1),,,因为,所以,所以A1D⊥平面ABE.法2:因为AA1⊥平面ABCD,所以AA1⊥AB.因为ABCD是正方形,所以AB⊥AD,所以AB⊥平面AA1D,所以AB⊥A1D.因为E为棱A1D中点,且,所以AE⊥A1D,所以A1D⊥平面ABE.(Ⅲ)因为A1D⊥平面ABE,且A1D⊂平面EFD,所以平面EFD⊥平面ABE.因为平面ABE即平面BEF,所以二面角D﹣EF﹣B为90°.设,且λ∈[0,1],则G(2,2,3λ),因为A1D⊥平面ABE,BG⊂平面ABE,所以A1D⊥BG,所以,即,所以.19.已知椭圆G :的离心率为,经过左焦点F 1(﹣1,0)的直线l 与椭圆G 相交于A ,B 两点,与y 轴相交于C 点,且点C 在线段AB 上.(Ⅰ)求椭圆G 的方程;(Ⅱ)若|AF 1|=|CB|,求直线l 的方程.【考点】椭圆的简单性质.【分析】(Ⅰ)设椭圆焦距为2c ,运用离心率公式和a ,b ,c 的关系,即可得到椭圆方程;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),代入椭圆方程,运用韦达定理和向量共线的坐标表示,解方程即可得到所求方程.【解答】解:(Ⅰ)设椭圆焦距为2c ,由已知可得,且c=1,所以a=2,即有b 2=a 2﹣c 2=3,则椭圆G 的方程为;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),由消y ,并化简整理得(4k 2+3)x 2+8k 2x+4k 2﹣12=0,由题意可知△>0,设A (x 1,y 1),B (x 2,y 2),则,因为点C ,F 1都在线段AB 上,且|AF 1|=|CB|,所以,即(﹣1﹣x 1,﹣y 1)=(x 2,y 2﹣y C ),所以﹣1﹣x 1=x 2,即x 1+x 2=﹣1,所以,解得,即.所以直线l的方程为或.。
2016级高二期末考试试卷理科数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.i 为虚数单位,则2013i = ( )A .i -B .1-C .iD .1 2.若()e x f x x =,则(1)f '=( )A .0B .eC .2eD .2e3.已知双曲线2219x y m-=的一个焦点坐标是()5,0,则双曲线的渐近线方程是 ( )A .34y x =±B .43y x =±C.y x = D.y x = 4.下列叙述:①若两条直线平行,则它们的方向向量方向相同或相反;②若两个向量均为同一个平面的法向量,则以这两个向量为方向向量的直线一定平行; ③若一条直线的方向向量与某一个平面的法向量垂直,则该直线与这个平面平行. 其中正确的个数是 ( ) A .0个 B .1个 C .2个 D .3个5.学校体育场南侧有4个大门,北侧有3个大门,西侧有2个大门,某学生到该体育场训练,但必须是从南或北门进入,从西门或北门出去,则他进出门的方案有( )A .7个B .12个C .24个D .35个 6.下列推理中属于归纳推理且结论正确的是( )A .设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =B .由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D .由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +>7.已知函数32()393f x x x x =--+,若函数()()g x f x m =-在[]2,5x ∈-上有3个零点,则m 的取值范围为( ) A .(-24,8)B .(-24,1]C .[1,8]D .[1,8)8.抛物线22(0)y px p =>的焦点为F ,已知点,A B 为抛物线上的两个动点,且满足90AFB ∠=.过弦AB的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为ABC .1D二、 75分,共35分.9.204sin xdx π=⎰10.已知01a <<,复数z 的实部为a ,虚部为1,则复数z 对应的点Z 到原点距离的取值范围是 11.曲线C :ln xy x=在点(1,0)处的切线方程是 . 12.棱长均为3的三棱锥S ABC -,若空间一点P 满足(1)SP xSA ySB zSC x y z =++++=,则SP 的最小值为 .13.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是 .14.椭圆22:143x y C +=的左、右顶点分别为12A A 、,点P 在椭圆C 上,记直线2PA 的斜率为2k ,直线1PA 的斜率为1k ,则 1k ·2k = . 15.函数2()ln(1)f x x a x =++有两个不同的极值点12,x x ,且12x x <,则实数a 的范围是 三、解答题:本大题共6个小题,共75分,解答题写出文字说明、证明过程或演算步骤.16.(本小题满分12分) 设p :实数x 满足22430x ax a -+<, :q 实数x 满足31x -<. (1)若1,a =且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围. 17.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=︒,12AC BC CC ===. (1)求证:11AB BC ⊥;(2)求二面角111C AB A --的大小.18.(本小题满分12分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的关系式()2462m y x x =+--,其中26x <<,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数). 19.(本小题满分13分)设数列{}n a 的前n 项和为n S (即123n n S a a a a =++++),且方程20n n x a x a --=有一根为n S -1,n =1,2,3…….(1)求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法给出严格的证明.20.(本小题满分13分)已知椭圆C :22221x y a b +=(0)a b >>2.(1)求椭圆C 的方程;(2)过点M (0,13-)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以A B 为直径的圆恒过定点T ?若存在,求出点T 的坐标;若不存在,请说明理由. 21.(本小题满分13分)已知),1ln()(+=x x f bx ax x g +=221)( (1)若0=a ,1=b 时,求证:0)()(≤-x g x f 对于),1(+∞-∈x 恒成立; (2)若2=b ,且)()1()(x g x f x h --=存在单调递减区间,求a 的取值范围;(3)利用(1)的结论证明:若y x <<0,则2ln )(ln ln yx y x y y x x ++>+.CCBBDADA 9.4 10.()1,2 11.1y x =- 12.6 13.24 14.-34 15.10,2⎛⎫⎪⎝⎭16.解:(1). 由22430x ax a -+<得(3)()0x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.……………2分由31x -<, 得131x -<-<, 得24x <<即q 为真时实数x 的取值范围是24x <<,……4分 若p q ∧为真,则p 真且q 真,所以实数x 的取值范围是23x <<.……6分(2) 由22430x ax a -+<得(3)()0x a x a --< p ⌝是q ⌝的充分不必要条件,即p ⌝⇒q ⌝,且q ⌝⇒/p ⌝, ……………8分设A ={|}x p ⌝,B ={|}x q ⌝,则AB ,又A ={|}x p ⌝={|3}x x a x a ≤≥或, B ={|}x q ⌝={x|x≥4或x≤2},……………10分 则02a <≤,且34a ≥所以实数a 的取值范围是423a ≤≤12分 17.解::方法一:(1)∵11,AC BC AC CC BCCC C ⊥⊥=且∴11AC C CBB ⊥平面,又111BC C CBB ⊂平面∴1111,,AC BC B C BC AC B C C ⊥⊥=且 ∴1111BC AB C AB AB C ⊥⊂平面,又平面 ∴11AB BC ⊥(2)取11A B 的中点为H ,在平面11A ABB 内过H 作1HQ AB ⊥于点Q ,连接1C Q 则111C H A ABB ⊥平面,∴11C H AB ⊥,而1C H HQ H =∴1111AB C HQ AB C Q ⊥∴⊥平面,∴1C QH ∠是二面角111C AB A --的平面角,又1162C H A AB HQ ==,在内,解得∴111tan 3,60C HC QH C QH HQ∠==∠=︒∴二面角111C AB A --为60°.18.解:(1)因为4x =时,21y =, 代入关系式()2462m y x x =+--,得16212m +=, 解得10m =.……………………4分 (2)由(1)可知,套题每日的销售量()210462y x x =+--,……………5分 所以每日销售套题所获得的利润()()()()()223210()24610462456240278262f x x x x x x x x x x ⎡⎤=-+-=+--=-+-<<⎢⎥-⎣⎦……………………8分从而()()()()2'121122404310626f x x x x x x =-+=--<<.令()'0f x =,得103x =,且在102,3⎛⎫ ⎪⎝⎭上,0)('>x f ,函数)(x f 单调递增;在10,63⎛⎫⎪⎝⎭上,0)('<x f ,函数)(x f 单调递减, ……………………10分所以103x =是函数)(x f 在()2,6内的极大值点,也是最大值点,所以当103.33x =≈时,函数)(x f 取得最大值. 故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大. …………………12分19.解:(1)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.……………3分当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝⎛⎭⎫a 2-122-a 2⎝⎛⎭⎫a 2-12-a 2=0,解得a 2=16.……5分 (2)由题设(S n -1)2-a n (S n -1)-a n =0,即S 2n -2S n +1-a n S n =0. 当n ≥2时,a n =S n -S n -1,代入上式得S n -1S n -2S n +1=0.① 由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3…. ……………7分下面用数学归纳法证明这个结论. (ⅰ)n =1时已知结论成立.……………8分(ⅱ)假设n =k (k ≥1,k ∈N *)时结论成立,即S k =kk +1,当n =k +1时,由①得S k +1=12-S k,……………10分 即S k +1=k +1k +2,故n =k +1时结论也成立.……………12分综上,由(ⅰ)(ⅱ)可知S n =nn +1对所有正整数n 都成立.……………13分1CA BC1A1B20.解:(1)设椭圆的焦距为2c,则由题设可知2221a c ca a cb ⎧-=⎪⎪=⎨⎪⎪=+⎩,解此方程组得a =1b =. 所以椭圆C 的方程是2212x y +=. ……………………5分 (2)解法一:假设存在点T (u, v ). 若直线l 的斜率存在,设其方程为13y kx =-, 将它代入椭圆方程,并整理,得22(189)12160k x kx +--=.设点A 、B 的坐标分别为1122(,),(,)A x y B x y ,则 12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为1122(,),(,)TA x u y v TB x u y v =--=--及112211,,33y kx y kx =-=-所以1212()()()()TA TB x u x u y v y v =--+--2221212121(1)()()339v k x x u k kv x x u v =+-+++++++222222(666)4(3325)62u v k ku u v v k +--+++-=+ …………………9分 当且仅当0TA TB =恒成立时,以AB 为直径的圆恒过定点T ,所以2222618180,0,33250.u v u u v v ⎧+-=⎪=⎨⎪++-=⎩解得0, 1.u v ==此时以AB 为直径的圆恒过定点T (0,1). …………………11分 当直线l 的斜率不存在,l 与y 轴重合,以AB 为直径的圆为221x y +=也过点T (0,1). 综上可知,在坐标平面上存在一个定点T (0,1),满足条件. …………………13分解法二:若直线l 与y 轴重合,则以AB 为直径的圆是22 1.x y +=若直线l 垂直于y 轴,则以AB 为直径的圆是22116().39x y ++=……………7分 由22221,116().39x y x y ⎧+=⎪⎨++=⎪⎩解得01x y =⎧⎨=⎩.由此可知所求点T 如果存在,只能是(0,1). ………………8分 事实上点T (0,1)就是所求的点. 证明如下:当直线l 的斜率不存在,即直线l 与y 轴重合时,以AB 为直径的圆为221x y +=,过点T (0,1);当直线l 的斜率存在,设直线方程为13y kx =-,代入椭圆方程,并整理,得22(189)12160.k x kx +--= 设点A 、B 的坐标为1122(,),(,)A x y B x y ,则12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩…………………10分因为1122(,1),(,1)TA x y TB x y =-=-,21212121212416()1(1)()39TA TA x x y y y y k x x k x x =+-++=+-++222216161632160.189k k k k ---++==+所以TA TB ⊥,即以AB 为直径的圆恒过定点T (0,1).综上可知,在坐标平面上存在一个定点T (0,1)满足条件. …………………13分 21.解:(1)设x x x g x f x -+=-=)1ln()()()(ϕ,则.1111)('+-=-+=x x x x ϕ………………….2分当时,)(x 有最大值0 ∴0)(≤x 恒成立。
专题14:圆锥曲线1.(2012年海淀一模理10)过双曲线221916x y -=的右焦点,且平行于经过一、三象限的渐近线的直线方程是 .2.(2012年门头沟一模理7)已知点P 在抛物线24y x =上,则点P 到直线1:4360l x y -+=的距离和到直线2:1l x =- 的距离之和的最小值为( )A.3716B.115C.2D.33.(2012年东城一模理13)抛物线2y x =的准线方程为 ;此抛物线的焦点是F ,则经 过F 和点(1,1)M ,且与准线相切的圆共有 个.4.(2012年丰台一模理9)已知双曲线的中心在原点,焦点在x 轴上,一条渐近线方程为34y x =,则该双曲线的离心率是______. 5.(2012年密云一模理13)若双曲线)0,0(12222>>=-b a by a x 的两个焦点为12,F F ,P 为双曲线上一点,且213PF PF =,则该双曲线离心率的取值范围是________.6.(2012年朝阳一模理9)已知双曲线的方程为2213x y -=,则此双曲线的离心率为 ,其焦点到渐近线的距离为 .7.(2012年东城11校联考理13)已知双曲线的中心在原点,焦点在x 轴上,它的一条渐近线与x 轴的夹角为α,且34παπ<<,则双曲线的离心率的取值范围是_______.8.(2012年朝阳二模理3)已知双曲线2215x y m -=(0m >)的右焦点与抛物线212y x =的焦点相同,则此双曲线的离心率为( )A .6B .2C .32D . 349.(2012年海淀二模理5)已知点12,F F 是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12PF PF +的最小值是( )A .0 B.1 C.2 D.10.(2012年丰台二模理10)已知椭圆22221(7x y m m m +=>-上一点M 到两个焦点的距离分别是5和3,则该椭圆的离心率为______.11.(2012年昌平二模理10)已知双曲线的方程为1422=-y x ,则其渐近线的方程为____________,若抛物线px y 22=的焦点与双曲线的右焦点重合,则_______p =.12.(2012年东城二模理7)若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率为( )A 或13.(2013届北京大兴区一模理科)双曲线221x my -=的实轴长是虚轴长的2倍,则m 等于( ) A .14B .12C .2D .414.(2013届北京海滨一模理科)抛物线24y x =的焦点为F ,点(,)P x y 为该抛物线上的动点,又点(1,0)A -,则||||PF PA 的最小值是( )A .12B .C .D .315.(2013届北京市延庆县一模数学理)已知双曲线)0,0(12222>>=-b a by a x 的离心率为2,一个焦点与抛物线x y 162=的焦点相同,则双曲线的渐近线方程为( )A .x y 23±= B .x y 23±= C .x y 33±=D .x y 3±= 16.(2013届东城区一模理科)已知1(,0)F c -,2(,0)F c 分别是双曲线1C :22221x y a b-=(0,0)a b >>的两个焦点,双曲线1C 和圆2C :222x y c +=的一个交点为P ,且12212PF F PF F ∠=∠,那么双曲线1C 的离心率为( )A B C .2 D 117.(北京市东城区2013届高三上学期期末考试数学理科试题)已知抛物线22y px =的焦点F与双曲线2217x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|||AK AF ,则△AFK 的面积为( )A .4B .8C .16D .3218.(北京市海淀区2013届高三第四次月考理科数学)方程2x xy x +=的曲线是( ) A .一个点B .一条直线C .两条直线D .一个点和一条直线19.(北京市海淀区北师特学校2013届高三第四次月考理科数学)已知双曲线22221(0,0)x y a b a b-=>>,过其右焦点且垂直于实轴的直线与双曲线交于,M N 两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( )A B C D20.(北京市通州区2013届高三上学期期末考试理科数学试题 )已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( )A B .2 C .115D .321.(北京市朝阳区2013届高三上学期期末考试数学理试题 )已知双曲线的中心在原点,一个焦点为)0,5(1-F ,点P 在双曲线上,且线段PF 1的中点坐标为(0,2),则此双曲线的方程是( )A .1422=-y xB .1422=-y x C .13222=-y x D .12322=-y x 22.(2013届北京西城区一模理科)在直角坐标系xOy 中,点B 与点(1,0)A -关于原点O 对称.点00(,)P x y 在抛物线24y x =上,且直线AP 与BP 的斜率之积等于2,则0x =______.23.(2013届房山区一模理科数学)已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为4,且过点(2,3),则它的渐近线方程为 . 24.(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )若双曲线22221(0,0)x y a b a b-=>>与直线y =无交点,则离心率e 的取值范围是 .25.(北京市西城区2013届高三上学期期末考试数学理科试题)已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12PF F 的面积是______. 26.(北京市顺义区2013届高三第一次统练数学理科试卷(解析))在平面直角坐标系xOy 中,设抛物线x y 42=的焦点为F ,准线为P l ,为抛物线上一点,l PA ⊥,A 为垂足.如果直线AF 的倾斜角为 120,那么=PF _______.27.(北京市昌平区2013届高三上学期期末考试数学理试题 )以双曲线221916x y -=的右焦点为圆心,并与其渐近线相切的圆的标准方程是 _____. 28.(北京市海淀区2013届高三上学期期末考试数学理试题 )以y x =±为渐近线且经过点(2,0)的双曲线方程为______. 29.(北京市石景山区2013届高三上学期期末考试数学理试题 )已知定点A 的坐标为(1,4),点F 是双曲线221412x y -=的左焦点,点P 是双曲线右支上的动点,则PF PA +的最小值为 .。
专题4:极坐标与参数方程1.(2012年海淀一模理3)在极坐标系中,过点3(2,)2π且平行于极轴的直线的极坐标方程是( )A .sin 2ρθ=-B .cos 2ρθ=-C .sin 2ρθ=D .cos 2ρθ=2.(2012年西城一模理12)在极坐标系中,极点到直线:l πsin()4ρθ+=_____ 3.(2012年门头沟一模理5)极坐标2cos ρθ=和参数方程2sin cos x y θθ=⎧⎨=⎩(θ为参数)所表示的图形分别是( )A.直线、圆B.直线、椭圆C.圆、圆D. 圆、椭圆 4.(2012年东城一模理10)在极坐标系中,圆2=ρ的圆心到直线cos sin 2ρθρθ+=的 距离为 .5.(2012年朝阳一模理12)在极坐标系中,曲线ρθ=和cos 1ρθ=相交于点,A B ,则线段AB 的中点E 到极点的距离是 .6.(2012年东城11校联考理12)在平面直角坐标系下,已知曲线1:C 22,,x t a y t =+⎧⎨=-⎩(t 为参数)和曲线2:C 2cos ,(),12sin x y =⎧⎨=+⎩为参数θθθ若曲线1C ,2C 有公共点,则实数a 的取值范围为 .7.(2012年石景山一模理3)圆2cos ,2sin 2x y θθ=⎧⎨=+⎩的圆心坐标是( )A.(0,2)B.(2,0)C.(0,2)-D.(2,0)-8.(2012年房山一模理4)在平面直角坐标系xOy 中,点P 的直角坐标为(1,.若以原点O 为极点,x 轴正半轴为极轴建立极坐标系,则点P 的极坐标可以是( )A.(2,)3π- B.4(2,)3π C.(1,)3π- D.4(2,)3π-9.(2012年密云一模理3)在极坐标系中,点()1,0到直线()cos sin 2ρθθ+=的距离为( )A B .1 C D 10.(2012年西城二模理3)椭圆 3cos 5sin x y ϕϕ=⎧⎨=⎩(ϕ是参数)的离心率是( )A .35 B.45 C.925 D.162511.(2012年海淀二模理3)直线11x t y t =+⎧⎨=-⎩(t 为参数)的倾斜角的大小为( )A .4-π B.4π C.2π D.34π12.(2012年丰台二模理9)在极坐标系中,圆2sin ρθ=的圆心的极坐标是____.13.(2012年昌平二模理4)已知直线l :为参数)t t y tx (1⎩⎨⎧+==,圆C :2cos ρθ=,则圆心C 到直线l 的距离是( )A. 2B. 3C. 2D. 115.(2013届北京西城区一模理科)已知曲线C 的参数方程为2cos 12sin x y =⎧⎨=+⎩αα(α为参数),则曲线C 的直角坐标方程为 .16.(北京市朝阳区2013届高三上学期期末考试数学理试题 )在极坐标系中,过圆4cos ρθ=的圆心,且垂直于极轴的直线的极坐标方程为 .17.(2013届北京丰台区一模理科)在平面直角坐标系中,已知直线C 1:1x ty t=⎧⎨=-⎩(t 是参数)被圆C 2:cos sin x y θθ=⎧⎨=⎩(θ是参数)截得的弦长为 ;18.(2013届北京海滨一模理科)在极坐标系中, 曲线4cos ρθ=围成的图形面积为( )A.πB .4 C.4π D.1619.(2013届北京市延庆县一模数学理)在极坐标系下,圆03sin 4:2=++θρρC 的圆心坐标为( ) A .)0,2(B .)2,2(πC .),2(πD .)2,2(π-20.(2013届房山区一模理科数学)在极坐标系中,圆2sin ρθ=的圆心到直线cos 2sin 10ρθρθ-+=的距离为( )AB C D21.(2013届门头沟区一模理科)下列直线中,平行于极轴且与圆2cos ρθ=相切的是( )A .cos 1ρθ=B .sin 1ρθ=C .cos 2ρθ=D .sin 2ρθ=22.(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )在极坐标系中,过点(3,)3π且垂直于极轴的直线方程( )A .3sin 2=ρθ B .3cos 2=ρθ C .3sin 2=ρθ D .3cos 2=ρθ 23.(北京市东城区普通校2013届高三3月联考数学(理)试题 )极坐标方程4cos ρθ=化为直角坐标方程是( ) A .22(2)4x y -+= B .224x y += C .22(2)4x y +-=D .22(1)(1)4x y -+-=24.(北京市西城区2013届高三上学期期末考试数学理科试题)在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( ) A .sin 1=ρθB.sin =ρθC .cos 1=ρθ D.cos =ρθ25.(北京市顺义区2013届高三第一次统练数学理科试卷(解析))参数方程⎩⎨⎧--=-=t y t x 21,2(为参数)与极坐标方程θρsin =所表示的图形分别是( )A .直线、直线B .直线、圆C .圆、圆D .圆、直线26.(北京市通州区2013届高三上学期期末考试理科数学试题 )已知圆的直角坐标方程为2220x y x +-=.在以原点为极点,x 轴非负半轴为极轴的极坐标系中,该圆的方程为( )A .2cos ρθ=B .2sin ρθ=C .2cos ρθ=-D .2sin ρθ=-27.(北京市海淀区2013届高三上学期期末考试数学理试题 )已知直线2,:2x t l y t =+⎧⎨=--⎩(t为参数)与圆2cos 1,:2sin x C y θθ=+⎧⎨=⎩(θ为参数),则直线l 的倾斜角及圆心C 的直角坐标分别是( )A .π,(1,0)4B .π,(1,0)4-C .3π,(1,0)4D .3π,(1,0)4-28.(2013届北京大兴区一模理科)已知直线y kx =与曲线42cos ()2sin x y q q q ì=+ïïíï=ïî为参数有且仅有一个公共点,则k =。
北京市海淀区2007-2008学年高三年级第一学期期末练习数学(理科) 2008.01学校: 班级: 姓名:一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)设集合{|12},{|A x x B x x a ==≤≤≥若A B ⊆,则a 的范围是( )(A )1a < (B )1a ≤ (C )2a < (D )2a ≤(2)函数⎪⎭⎫⎝⎛+=34c o s πx y 图象的两条相邻对称轴间的距离为 ( )(A )8π (B ) 4π (C )2π(D )π (3ABC 中,设,,,AB BC CA ===c a b 则⋅⋅⋅a b+b c +c a 等于( )(A) 3-(B) 0(C)1 (D) 3(4)设i为虚数单位,则()41i +展开式中的第三项为( )(A )4 i (B )4i - (C) 6(D) 6-(5)设m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:① 若//,//,αβαγ 则//βγ ②若αβ⊥,//m α,则m β⊥③ 若,//m m αβ⊥,则αβ⊥ ④若//,m n n α⊂,则//m α其中真命题的序号是( )(A) ①④ (B) ②③ (C) ②④ (D) ①③(6)已知点()0,A b ,B 为椭圆22x a +22y b=1()0a b >>的左准线与x 轴的交点,若线段AB的中点C 在椭圆上,则该椭圆的离心率为( )(A(B )(C )(D(A ) (B ) (C ) (D )(8) 已知函数()y f x =是定义在[,]a b 上的增函数,其中,0.a b b a ∈<<-R,且设函数22()[()][()]F x f x f x =--,且()F x 不恒等于0,则对于()F x 有如下说法:①定义域为[,]b b - ②是奇函数 ③最小值为0 ④在定义域内单调递增其中正确说法的个数有 ( )(A )4个 (B )3个 (C )2个 (D )1个二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.(9)双曲线22194x y -=的一个焦点到一条渐近线的距离是 .(10)在ABC ∆中, 2A C B +=,5,BC =且ABC ∆的面积为B = ;AB = .(11)已知函数2|1|(0),()1(0),x x f x x x -+⎧=⎨->⎩≤ 那么不等式()0f x <的解集为 .(12)设不等式组||203022x y x y -⎧⎪-⎨⎪-⎩≤≤≤所表示的平面区域为S ,则S 的面积为 ;若A ,B 为S 内的两个点, 则||AB 的最大值为 .(13)已知,,,P A B C 是以O 为球心的球面上的四个点,,,PA PB PC 两两垂直,且2PA PB PC ===,则球O 的半径为 ;球心O 到平面ABC 的距离为(14)在100,101,102,…,999这些数中,各位数字按严格递增(如“145”)或严格递减(如“321”)顺序排列的数的个数是 个. 把符合条件的所有数按从小到大的顺序排列,则321是第____个数. (用数字作答)三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. (15)(本小题共12分)已知向量(cos 2sin ,sin ),(cos sin ,2cos ),x x x x x x =+=-a b 设函数()f x =⋅a b . (I) 求函数)(x f 的单调递增区间;(II) 求函数)(x f 的最大值及取得最大值时x 的集合. (16)(本小题共14分)如图,在四棱锥S ABCD -中,底面ABCD 是正方形, SA ⊥底面ABCD ,SA AB =, 点M 是SD 的中点, AN SC ⊥,且交SC 于点N .(I ) 求证: //SB 平面ACM ;(II ) 求二面角D AC M --的大小; (III )求证:平面SAC ⊥平面AMN .(17)(本小题共12分) 某城市有30﹪的家庭订阅了A 报,有60﹪的家庭订阅了B 报,有20﹪的家庭同时订阅了A 报和B 报,从该城市中任取4个家庭.(Ⅰ)求这4个家庭中恰好有3个家庭订阅了A 报的概率; (Ⅱ)求这4个家庭中至多有3个家庭订阅了B 报的概率;(Ⅲ)求这4个家庭中恰好有2个家庭A,B 报都没有订阅的概率.(18)(本小题共14分)已知抛物线S 的顶点在坐标原点,焦点在x 轴上,ABC ∆的三个顶点都在抛物线上,且ABC ∆的重心为抛物线的焦点,若BC 所在直线l 的方程为4200.x y +-=SNMD CBA(I )求抛物线S 的方程;(II )若O 是坐标原点,P 、Q 是抛物线S 上的两动点,且满足PO OQ ⊥.试说明动直线PQ 是否过一个定点.(19)(本小题共14分)设1x 、2x )(21x x ≠是函数)0()(223>-+=a x a bx ax x f 的两个极值点. (I )若2,121=-=x x ,求函数)(x f 的解析式; (II )若22||||21=+x x ,求b 的最大值;(III )设函数)()(')(1x x a x f x g --=,12(,)x x x ∈,当a x =2时,求证:21()(32)12g x a a +≤.(20)(本小题共14分)已知定义在R 上的函数()f x 满足:,5(1)2f =,且对于任意实数,x y ,总有 ()()()()f x f y f x y f x y =++-成立.(I )求(0)f 的值,并证明函数()f x 为偶函数;(II )定义数列{}n a :2(1)()(1,2,3,)n a f n f n n =+-= ,求证:{}n a 为等比数列; (III )若对于任意非零实数y ,总有()2f y >.设有理数12,x x 满足12||||x x <,判断1()f x 和2()f x 的大小关系,并证明你的结论.海淀区高三年级第一学期期末练习数学(理科) 参考答案及评分标准2008.01二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分)(9)2 (10)3π,8 (11)(,1)(1,1)-∞-- (12)16(13 (14) 204 ,53三、解答题(本大题共6小题,共80分.) (15) (共12分) 解: (I)由已知可得xx x x x x x f cos sin 2)sin )(cos sin 2(cos )(+-+=1分x x x x x x x x cos sin 2sin 2cos sin 2cos sin cos 22+-+-= x x x x 22sin 2cos sin 3cos -+= )12(cos 2sin 23)2cos 1(21-+++=x x x 21)42sin(22321)2cos 2(sin 23-+=-+=πx x x 6分 由224222πππππ+<+<-k x k 得:883ππππ+<<-k x k 8分即函数)(x f 的单调递增区间为)8,83(ππππ+-k k ()k ∈Z . 9分 (II) 由(I) 有21)42sin(223)(-+=πx x f , ∴2123)(max -=x f . 10分所求x 的集合为{|,}8x x k k ππ=+∈Z . 12分(16) (共14分)方法一:(Ⅰ)证明:连结BD 交AC 于E ,连结ME . 1分ABCD 是正方形,∴ E 是BD 的中点. M 是SD 的中点,∴ME 是DSB ∆的中位线.∴//ME SB.2分又∵ME ⊂平面ACM , SB ⊄平面ACM , 3分∴SB //平面A.4分(Ⅱ)解:取AD 中点F ,则MF //SA .作FQ AC ⊥于Q ,连结MQ . 5分∵SA ⊥底面ABCD ,∴MF ⊥底面ABCD . ∴FQ 为MQ 在平面ABCD 内的射影.∵FQ AC ⊥,∴MQ ⊥AC . ∴FQM∠为二面角D A C --的平面角.7分设SA AB a ==,在Rt MFQ ∆中,11,222a MF SA FQ DE ====,∴tan aFQM ==∴二面角D AC M--的大小为.9分(III )证明:由条件有,,DC SA DC DA ⊥⊥∴ DC ⊥平面SAD ,∴.AM DC ⊥ 10分又∵ ,SA AD M =是SD 的中点,∴.AM SD ⊥ ∴AM ⊥平面.S D11分∴.SC AM ⊥由已知,SC MN ⊥ ∴SC ⊥平面.AMN 又SC ⊂平面,S A C∴平面S A C ⊥平面.A M N14分方法二:解:(II )如图,以A 为坐标原点,建立空间直角坐标系O xyz -, 5分由SA AB =故设1AB AD AS ===,则11(0,0,0),(0,1,0),(1,1,0),(1,0,0),(0,0,1),(,0,)22A B C D S M .SA ⊥底面ABCD , ∴AS 是平面ABCD 的法向量,AS (0,0,1)=.设平面ACM 的法向量为(,,)x y z =n ,11(1,1,0),(,0,)22AC AM == ,7分则0,0.AC AM ⎧⋅=⎪⎨⋅=⎪⎩ n n 即00,1100.22x y x z ++=⎧⎪⎨++=⎪⎩ ∴ ,.y x z x =-⎧⎨=-⎩ 令1x =,则(1,1,1)=--n .8分∴cos ,3||||AS AS AS ⋅<>===-⋅n n n ,∴二面角D A--的大小为arccos3. 9分 (III)11,0,22AM ⎛⎫= ⎪⎝⎭,()1,1,1CS =--,10分11022AM CS ∴⋅=-+=AM CS∴⊥12分又SC AN ⊥ 且AN AM A = .SC AMN ∴⊥平面. 又SC ⊂平面,SAC∴平面SAC⊥平面A.14分(17)(共12分)解:(Ⅰ)设“这4个家庭中恰好有3个家庭订阅了A 报”的事件为A , 1分334()(0.3)(0.7)0.0756P A C ==4分答:这4个家庭中恰好有3个家庭订阅了A 报的概率为0.0756. (Ⅱ)设“这4个家庭中至多有3个家庭订阅了B 报”的事件为B , 5分8704.01296.01)6.0(1)(4=-=-=B P8分答:这4个家庭中至多有3个家庭订阅了B 报的概率为0.8704. (III ) 设“这4个家庭中恰好有2个家庭A ,B 报都没有订阅”的事件为C , 9分因为有30﹪的家庭订阅了A 报,有60﹪的家庭订阅了B 报,有20﹪的家庭同时订阅了A 报和B 报.所以两份报纸都没有订阅的家庭有30﹪. 所以()()2224()0.30.70.2646P C C ==12分答:这4个家庭中恰好有2个家庭A ,B 报都没有订阅的概率为0.2646.注:第三问若写出两份报纸都没有订阅的家庭有30﹪,后面计算有误,给到10分.(18)(共14分)解:(I)设抛物线S的方程为22.y px =1分由24200,2,x y y px +-=⎧⎨=⎩ 可得2220y p y p +-=3分由0∆>,有0p >,或160.p <-设1122(,),(,),B x y C x y 则12,2py y +=- 121212(5)(5)1010.4448y y y y px x +∴+=-+-=-=+5分设33(,)A x y ,由ABC ∆的重心为(,0),2p F 则123123,0323x x x y y y p ++++==, 331110,.82p px y ∴=-=6分∵点A 在抛物线S上,∴2112(10),28p p p ⎛⎫=- ⎪⎝⎭∴8.p =7分∴抛物线S 的方程为216.y x =8分(II )当动直线PQ 的斜率存在时,设动直线PQ方程为y k x =+,显然0,k b ≠≠9分∵PO OQ ⊥,∴ 1.OP OQ k k ⋅=- 设(,)(,)P P Q Q P x y Q x y ∴1,QP P Qy y x x ⋅=- ∴0.P Q P Q x x y y +=10分将y kx b =+代入抛物线方程,得216160,ky y b -+=∴16.P Q by y k= 从而22222,16P Q P Q y y b x x k ⋅==∴22160.b b k k+= ∵0,0k b ≠≠,∴16,b k =-∴动直线方程为16(16)y kx k k x =-=-, 此时动直线PQ过定点(16,0).12分当PQ 的斜率不存在时,显然PQ x ⊥轴,又PO OQ ⊥,∴POQ 为等腰直角三角形.由216,,y x y x ⎧=⎨=⎩ 216,,y x y x ⎧=⎨=-⎩得到(16,16),(16,16)P Q -, 此时直线PQ亦过点(16,0).13分综上所述,动直线PQ过定点(16M .14分(19)(共14分)解(I )∵)0()(223>-+=a x a bx ax x f ,∴)0(23)(22>-+='a a bx ax x f1分依题意有⎩⎨⎧='=-'0)2(0)1(f f ,∴)0(041202322>⎪⎩⎪⎨⎧=-+=--a a b a a b a .2分解得⎩⎨⎧-==96b a ,∴x x x x f 3696)(23-+=. . 4分(II )∵)0(23)(22>-+='a a bx ax x f ,依题意,12,x x 是方程()0f x '=的两个根,且22||||21=+x x ,∴8||22)(2121221=+-+x x x x x x . ∴8|3|2)3(2)32(2=-+-⋅--aa ab ,∴)6(322a a b -=. ∵20b ≥,∴06a <≤.6分设2()3(6)p a a a =-,则2()936p a a a '=-+. 由()0p a '>得40<<a ,由()0p a '<得4>a .即:函数()p a 在区间(0,4]上是增函数,在区间[4,6]上是减函数, ∴当4=a 时,()p a 有极大值为96,∴()p a 在]6,0(上的最大值是96, ∴b的最大值为64.9分(III ) 证明:∵21,x x 是方程0)('=x f 的两根,∴))((3)('21x x x x a x f --=.10分∵321a x x -=⋅,a x =2,∴311-=x . ∴|]1)(3)[31(||)31())(31(3||)(|--+=+--+=a x x a x a a x x a x g∵21x x x <<,即1.3x a -<<∴)133)(31(|)(|++-+=a x x a x g12分∴|()|g x )313)(31(3+-+-=a x x a a a a a x a 3143)2(3232+++--= 323143a a a ++≤12)23(2+=a a . 14分∴|()|g x 2(32)12a a +≤成立. (20)(共14分)解:(I) 令1,0x y ==()()()()1011f f f f ∴⋅=+ 5(1)2f =,()02f ∴=.1分 令0x =,∴(0)()()()f f y f y f y =+-即2()()()f y f y f y =+-∴()()f y f y =-,对任意的实数y 总成立。
海淀区高二年级第一学期期末练习数学(文科)2014.01学校 班级 姓名 成绩一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)抛物线22y x =的准线方程是 ( ) (A ) 12y =-(B )1y =- (C )12x =-(D )1x =-(2)若直线10x ay ++=与直线20x y +=平行,则实数a = ( ) (A )12-(B )2- (C )12(D )2 (320y +-=与圆224x y +=相交所得的弦的长为 ( ) (A ) (B ) (C (D (4)已知双曲线221x ay -=的两条渐近线方程为y =,那么此双曲线的虚轴长为( )(A ) (B )2 (C (D )1(5)已知函数()f x 的导函数为'()f x ,那么“0'()0f x =”是“0x 是函数()f x 的一个极值点”的 ( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件(6)已知命题:p 函数3()f x x =是增函数,命题:q x R $ ,1x的导数大于0,那么 ( ) (A )p q ∧是真命题 (B )p q ∨是假命题 (C )p ⌝是真命题 (D )q ⌝是真命题(7)函数2e 1x y x =-的部分图象为 ( )(B (C ) (D )(8)在平面直角坐标系xOy 中,已知集合{}2()001x,y y x ,x ≤≤≤≤且所表示的图形的面积为31,若集合},1),{(≤-=x y y x M }1),{(2+≥=x y y x N ,则N M 所表示的图形面积为( ) (A )31 (B )32 (C )1 (D )34二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上. (9)已知()cos f x x x =,则'()f x = .(10)过点(1,1)且与圆2220x x y -+=相切的直线的方程是 .(11)曲线2y ax b =+在1x =处的切线方程为41y x =-,则a =______,b =______.(12)已知抛物线C :24y x =,O 为坐标原点,F 为C 的焦点,P 是C 上一点. 若OPF ∆是等腰三角形,则PO = .(13)已知点12,F F 是双曲线C 的两个焦点,过点2F 的直线交双曲线C 的一支于,A B 两点,若1ABF ∆为等边三角形,则双曲线C 的离心率为 . (14)如图所示,在正方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F .给出下列四个结论:①存在点E ,使得11A C //平面1BED F ; ②存在点E ,使得1B D ⊥平面1BED F ;F ED 1C 1B 1A 1DCA③对于任意的点E ,平面11AC D ⊥平面1BED F ; ④对于任意的点E ,四棱锥11B BED F -的体积均不变. 其中,所有正确结论的序号是___________.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题共11分)已知函数321()43f x x ax =-+,且2x =是函数()f x 的一个极小值点. (Ⅰ)求实数a 的值;(Ⅱ)求)(x f 在区间[1,3]-上的最大值和最小值.(16)(本小题共11分)已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 交抛物线C 于点P ,Q . (Ⅰ)若3PF =(点P 在第一象限),求直线l 的方程;(Ⅱ)求证:OP OQ ⋅为定值(点O 为坐标原点).(17)(本小题共11分)已知椭圆M :22221(0)x y a b a b+=>>经过点(1,-,(0,1). (Ⅰ)求椭圆M 的方程;(Ⅱ)设椭圆M 的左、右焦点分别为12,F F ,过点2F 的直线交椭圆M 于, A B 两点,求1ABF ∆面积的最大值.(18)(本小题共11分)已知函数22()2ln (0)f x x a x a =->. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)记函数()f x 的最小值为M ,求证:1M ≤.海淀区高二年级第一学期期末练习数学(文科)参考答案及评分标准 2014.01一. 选择题:本大题共8小题,每小题4分,共32分.二.填空题:本大题共6小题,每小题4分,共24分.(9)cos sin x x x - (10)10y -= (11)2,1(12)32或1 (13 (14)①③④ 注:(11)题每空2分;(12)题少一个答案扣2分.三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分11分)解:(Ⅰ)2'()2f x x ax =-. ………………………2分2x =是函数()f x 的一个极小值点,∴'(2)0f =.即440a -=,解得1a =. ………………………4分 经检验,当1a =时,2x =是函数()f x 的一个极小值点.∴ 实数a 的值为1. ………………………5分(Ⅱ)由(Ⅰ)知,321()43f x x x =-+.2'()2(2)f x x x x x =-=-.令'()0f x =,得0x =或2x =. ………………………6分 当x 在[1,3]-上变化时,()'(),f x f x 的变化情况如下:………………………9分 当1x =-或2x =时,()f x 有最小值83; 当0x =或3x =时,()f x 有最大值4. ………………………11分(16)(本小题满分11分)解:(Ⅰ)设00(,)P x y ,由题意,00x >且00y >.点P 在抛物线C 上,且3PF =,∴点P 到准线1x =-的距离为3.∴013x +=,02x =. ………………………2分又 2004y x =,00y >,∴0y =∴P .(1,0)F , ………………………4分∴直线l 的方程为1)y x =-,即y =-………………………5分(Ⅱ)由题意可设直线l 的方程为:1x my =+.由21,4x my y x=+⎧⎨=⎩得214y my =+,即2440y my --=. ………………………7分显然216160m ∆=+>恒成立.设11(,)P x y ,22(,)Q x y ,则12124,4.y y m y y +=⎧⎨⋅=-⎩ ………………………9分∴1212OP OQ x x y y ⋅=+ 1212(1)(1)my my y y =+++21212(1)()1m y y m y y =++++ 224(1)41m m =-+++3=-.即3OP OQ ⋅=-为定值. ………………………11分(17)(本小题满分11分)解:(Ⅰ)由题意1b =,椭圆M 的方程为2221(1)x y a a+=>. ………………………1分将点(1,2--代入椭圆方程,得21112a +=,解得22a =. 所以 椭圆M 的方程为2212x y +=. ………………………3分 (Ⅱ)由题意可设直线AB 的方程为:1x my =+.由221,22x my x y =+⎧⎨+=⎩得22(2)210m y my ++-=. 显然 2244(2)0m m ∆=++>.设11(,)A x y ,22(,)B x y ,则1221222,21.2m y y m y y m -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩………………………7分因为 1ABF ∆的面积12121||(||||)2S F F y y =+,其中120y y <. 所以 12121||||2S F F y y =-.又22121212()()4y y y y y y -=+-22221422m m m --⎛⎫⎛⎫=- ⎪ ⎪++⎝⎭⎝⎭22288(2)m m +=+, 12(1,0),(1,0)F F -. ………………………9分∴2212()S y y =-2222211118[]8()222(2)22m m m =-=--+≤+++.当0m =时,上式中等号成立.即当0m =时,1ABF ∆ ………………………11分(18)(本小题满分11分) 解:(Ⅰ)22()2ln (0)f x x a x a =->的定义域为(0,)+∞.22'()2a f x x x =-2222x a x -=2()()x a x a x+-=. ………………………2分 令'()0f x =,解得x a =或x a =-(舍).当x 在(0,)+∞内变化时,()'(),f x f x 的变化情况如下:由上表知,()f x 的单调递增区间为(,)a +∞;()f x 的单调递减区间为(0,)a .………………………5分(Ⅱ)由(Ⅰ)知,()f x 的最小值222ln M a a a =-. ………………………6分 令22()2ln (0)g x x x x x =->,则'()24ln 24ln g x x x x x x x =--=-.令'()0g x =,解得1x =. ………………………8分 当x 在(0,)+∞内变化时,()'(),g x g x 的变化情况如下:所以 函数()g x 的最大值为1,即()1g x ≤.因为0a >,所以 222ln 1M a a a =-≤. ………………………11分注:对于其它正确解法,相应给分.。
专题8:排列、组合、二项式定理1.(2012年海淀一模理6)从甲、乙等5个人中选出3人排成一列,则甲不在排头的排法种数是( )A .12B .24C .36D .482.(2012年东城一模理5)某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起, 那么不同的停放方法的种数为( )A .16B .18C .24D .323.(2012年丰台一模理6)学校组织高一年级4个班外出春游,每个班从指定的甲、乙、 丙、丁四个景区中任选一个游览,则恰有两个班选择了甲景区的选法共有( )种A.2243∙AB.2324A A ∙C.2243∙CD.2324A C ∙4.(2012年朝阳一模理5)有10件不同的电子产品,其中有2件产品运行不稳定.技术人员对它们进行一一测试,直到2件不稳定的产品全部找出后测试结束,则恰好3次就结束测试的方法种数是( )A. 16B. 24C. 32D. 48 5.(2012年房山一模12)如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有 种.6.(2012年密云一模理5)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.14B.24C.28D.48 7.(2012年西城一模理10)6(2)x -的展开式中,3x 的系数是_____.(用数字作答)8.(2012年丰台一模理3) 62的二项展开式中,常数项是( ) A.10 B.15 C.20 D.30 9.(2012年石景山一模理6)若21()n x x -展开式中的所有二项式系数和为512,则该展开式中的常数项为( )A.84-B.84C.36-D.3610.(2012年丰台二模理13)从5名学生中任选4名分别参加数学、物理、化学、生物四科竞赛,且每科竞赛只有1人参加,若甲不参加生物竞赛,则不同的选择方案共有 种.11.(2012年昌平二模理6)某电视台曾在某时间段连续播放5个不同的商业广告,现在要在该时间段新增播一个商业广告与两个不同的公益宣传广告,且要求两个公益宣传广告既不能连续播放也不能在首尾播放,则在不改变原有5个不同的商业广告的相对播放顺序的前提下,不同的播放顺序共有( )A. 60种B. 120种C. 144种D. 300种12.(2012年东城二模理3)41(2)x x-的展开式中的常数项为( )A .24- B.6- C.6 D.2413.(2012年海淀二模理10)已知1021012311(1)x a a x a x a x +=++++ . 若数列k a a a a ,...,,,321),111(Z k k ∈≤≤是一个单调递增数列,则k 的最大值是 .14.(2012年朝阳二模理9)二项式25(ax展开式中的常数项为5,则实数a =_______.15.(2013届北京海滨一模理科)一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有( )A .12种B .15种C .17种D .19种16.(2013届北京市延庆县一模数学理)现有12件商品摆放在货架上,摆成上层4件下层8件,现要从下层8件中取2件调整到上层,若其他商品的相对顺序不变,则不同调整方法的种数是( )A .420B .560C .840D .2016017.(2013届门头沟区一模理科)有4名优秀学生A . B . C .D 全部被保送到甲、乙、丙3所学校,每所学校至少去一名,且A 生不去甲校,则不同的保送方案有( )(A) 24种 (B) 30种 (C) 36种 (D) 48种18.(2013届北京西城区一模理科)从甲、乙等5名志愿者中选出4名,分别从事A ,B ,C ,D 四项不同的工作,每人承担一项.若甲、乙二人均不能从事A 工作,则不同的工作分配方案共有( )A .60种B .72种C .84种D .96种19.(北京市顺义区2013届高三第一次统练数学理科试卷(解析))从0,1中选一个数字,从2,4,6中选两个数字,组成无重复数字的三位数,其中偶数的个数为( )A .36B .30C .24D .1220.(北京市昌平区2013届高三上学期期末考试数学理试题 )在高三(1)班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连续出场,且女生甲不能排在第一个,那么出场顺序的排法种数为( )A .24B .36C .48D .6021.(北京市朝阳区2013届高三上学期期末考试数学理试题 )某中学从4名男生和3名女生中推荐4人参加社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .140种B .120种C .35种D .34种22.(北京市海淀区2013届高三上学期期末考试数学理试题 )用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为( )A .144B .120C .108D .7223.(北京市石景山区2013届高三上学期期末考试数学理试题 )若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有( )A .60种B .63种C .65种D .66种24.(2013届东城区一模理科)有甲、乙、丙在内的6个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有 种.25.(2013届房山区一模理科数学)在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能在第一或最后一步实施,程序B 和C 在实施时必须相邻,则实验顺序的编排方法共有 种.(用数字作答)26.(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )有6名同学参加两项课外活动,每位同学必须参加一项活动且不能同时参加两项,每项活动最多安排4人,则不同的安排方法有________种.(用数字作答)27.(北京市东城区普通校2013届高三3月联考数学(理)试题 )由1、2、3、4、5组成的无重复数字的五位数中奇数有 个.28.(北京市房山区2013届高三上学期期末考试数学理试题 )5)1(+x 的展开式中x 的系数是 .(用数字作答)29.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )在261(3)x x+的展开式中,常数项为______.(用数字作答)30.(北京市东城区普通校2013届高三3月联考数学(理)试题 )在6)11(x +的展开式中,含1x项的系数是________.(用数字作答) 31.(2013届东城区一模理科)262()x x +的展开式中3x 的系数是 . 32.(2013届北京大兴区一模理科)设5260126(1)(12)-+=+++鬃?x x a a x a x a x ,则2a = 。
2022-2023学年北京市海淀区高二(上)期末数学试卷1. 在复平面内,复数(2−i)(1+3i)对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. 经过点P(−1,0)且倾斜角为60∘的直线的方程是( )A. √3x −y −1=0B. √3x −y +√3=0C. √3x −y −√3=0D. x −√3y +1=0 3. 已知直线l 经过点A(1,1,2),B(0,1,0),平面α的一个法向量为n ⃗ =(−2,0,−4),则( )A. l//αB. l ⊥αC. l ⊂αD. l 与α相交,但不垂直4. 已知抛物线y 2=ax 上的点M(12,y 0)到其焦点的距离是1,那么实数a 的值为( ) A. 14B. 12C. 1D. 25. 在平行六面体ABCD −A 1B 1C 1D 1中,点M 满足2AM ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ .若A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ⃗ ,A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ⃗ ,A 1A ⃗⃗⃗⃗⃗⃗⃗ =c ⃗ ,则下列向量中与B 1M ⃗⃗⃗⃗⃗⃗⃗⃗ 相等的是( )A. 12a ⃗ −12b ⃗ +c ⃗B. 12a ⃗ +12b ⃗ +c ⃗C. −12a ⃗ +12b ⃗ +c ⃗ D. −12a ⃗ −12b ⃗ +c ⃗ 6. 已知直线l :y =kx +b ,⊙O :x 2+y 2=1,则“|b|<1”是“直线l 与⊙O 相交”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件7. 在正方体ABCD −A 1B 1C 1D 1中,直线l 是底面ABCD 所在平面内的一条动直线,记直线A 1C与直线l 所成的角为α,则sinα的最小值是( )A. √33 B. 12C. √22D. √638. 已知A ,B(异于坐标原点)是圆(x −2)2+(y −1)2=5与坐标轴的两个交点,则下列点M中,使得△MAB 为钝角三角形的是( )A. M(0,0)B. M(4,3√22) C. M(2,1−√5) D. M(1,2√2)9. “天问一号”是执行中国首次火星探测任务的探测器,该名称源于屈原长诗《天问》,寓意探求科学真理征途漫漫,追求科技创新永无止境.图(1)是“天问一号”探测器环绕火星的椭圆轨道示意图,火星的球心是椭圆的一个焦点.过椭圆上的点P 向火星被椭圆轨道平面截得的大圆作两条切线PM ,PN ,则∠MPN 就是“天问一号”在点P 时对火星的观测角.图(2)所示的Q,R,S,T四个点处,对火星的观测角最大的是( )A. QB. RC. SD. T10. 如图,在棱长为1的正方体ABCD−A1B1C1D1中,M,N分别为BD1,B1C1的中点,P为正方体ABCD−A1B1C1D1表面上的动点.下列叙述正确的是( )A. 当点P在侧面AA1D1D上运动时,直线CN与平面BMP所成角的最大值为π2B. 当点P为棱A1B1的中点时,CN//平面BMPC. 当点P在棱BB1上时,点P到平面CNM的距离的最小值为√66D. 当点P∉NC时,满足MP⊥平面NCP的点P共有2个11. 若复数z满足(1+i)⋅z=i3,则|z|=______.12. 已知直线l1:ax−y+2=0,直线l2:x−(a+1)y−1=0.若l1⊥l2,则实数a=______.13. 已知双曲线x2a2−y2b2=1的渐近线为y=±√2x,则该双曲线的离心率为______.14. 已知椭圆M:x2a2+y2b2=1(a>b>0)的左、右焦点分别是F1,F2,A(0,b),且△AF1F2是面积为√3的正三角形.过F1垂直于AF2的直线交椭圆M于B,C两点,则△ABC的周长为______.15. 古希腊数学家阿波罗尼斯在其著作《圆锥曲线论》中,系统地阐述了圆锥曲面的定义和利用圆锥曲面生成圆锥曲线的方法,并探究了许多圆锥曲线的性质.其研究的问题之一是“三线轨迹”问题:给定三条直线,若动点到其中两条直线的距离的乘积与到第三条直线距离的平方之比等于常数,求该点的轨迹.小明打算使用解析几何的方法重新研究此问题,他先将问题特殊化如下:给定三条直线l1:y=12x+12,l2:y=−12x−12,l3:x=1,动点P到直线l1,l2和l3的距离分别为d1,d2和d3,且满足d1d2d32=15,记动点P的轨迹为曲线C.给出下列四个结论:①曲线C关于x轴对称;②曲线C上的点到坐标原点的距离的最小值为√22;③平面内存在两个定点,曲线C上有无数个点P到这两个定点的距离之差为√2;④d1+d2的最小值为2√55.其中所有正确结论的序号是______.16. 已知直线l1:y=1与直线l2:y=kx−2交于点A,点A关于坐标原点的对称点为C,点B在直线l1上,点D在直线l2上.(Ⅰ)当k=1时,求C点的坐标;(Ⅰ)当四边形ABCD为菱形时,求k的值.17. 已知曲线M上的任意一点到点(1,0)的距离比它到直线x=−2的距离小1.(Ⅰ)求曲线M的方程;(Ⅰ)设点E(0,1),若过点A(2,1)的直线与曲线M交于B、C两点,求△EBC的面积的最小值.18. 如图,在四棱锥P−ABCD中,四边形ABCD是平行四边形,点F为PD的中点.(Ⅰ)已知点G为线段BC的中点,求证:CF//平面PAG;(Ⅰ)若PA=AB=2,直线PC与平面ABCD所成的角为30∘,再从条件①、条件②、条件③这三个条件中选择几个作为已知,使四棱锥P−ABCD唯一确定,求:(i)直线CD到平面ABF的距离;(ii)二面角B−AF−C的余弦值.条件①:PA⊥平面ABCD;条件②:AD=2√2;条件③:平面PAB⊥平面PAD.19. 已知椭圆E:x2a2+y2b2=1(a>b>0)的焦距为2,长轴长为4.(Ⅰ)求椭圆E的方程;(Ⅰ)过点M(−3,0)且与x轴不重合的直线l与椭圆E交于不同的两点B,C,点B关于x轴的对称点为B′.问:平面内是否存在定点P,使得B′恒在直线PC上?若存在,求出点P的坐标;若不存在,说明理由.答案和解析1.【答案】A【解析】解:(2−i)(1+3i)=2+3+6i −i =5+5i , 则复数(2−i)(1+3i)对应的点(5,5)位于第一象限. 故选:A.根据已知条件,结合复数的四则运算,以及复数的几何意义,即可求解. 本题主要考查复数的四则运算,以及复数的几何意义,属于基础题.2.【答案】B【解析】解:倾斜角为60∘的直线的方程的斜率k =tan60∘=√3,∴经过点P(−1,0)且倾斜角为60∘的直线的方程是y −0=√3(x +1),即为√3x −y +√3=0. 故选:B.根据点斜式方程和一般式方程即可求出.本题考查了点斜式方程和一般式方程,属于基础题.3.【答案】B【解析】解:根据题意,A(1,1,2),B(0,1,0),则AB ⃗⃗⃗⃗⃗ =(−1,0,−2), 而平面α的一个法向量为n ⃗ =(−2,0,−4),则有n ⃗ =2AB ⃗⃗⃗⃗⃗ , 即n ⃗ //AB ⃗⃗⃗⃗⃗ ,必有l ⊥α, 故选:B.根据题意,求出AB ⃗⃗⃗⃗⃗ 的坐标,分析可得n ⃗ //AB ⃗⃗⃗⃗⃗ ,由平面法向量的定义分析可得答案. 本题考查空间向量的应用,涉及向量平行的判断方法,属于基础题.4.【答案】D【解析】解:由抛物线方程知:抛物线焦点为F(a4,0)(a >0),准线为x =−a4, 由抛物线定义知:|MF|=12+a 4=1,解得:a =2, 故选:D.利用抛物线焦半径公式可直接构造方程求得结果. 本题主要考查抛物线的性质,属于中档题.5.【答案】C【解析】解:平行六面体ABCD −A 1B 1C 1D 1中,点M 满足2AM ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ .若A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ⃗ ,A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ⃗ ,A 1A ⃗⃗⃗⃗⃗⃗⃗ =c ⃗ , 所以B 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =B 1B ⃗⃗⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =c ⃗ +12(−a ⃗ +b ⃗ )=−12a ⃗ +12b ⃗ +c ⃗ .故选:C.直接利用向量的线性运算求出结果.本题考查的知识要点:向量的线性运算,主要考查学生的理解能力和计算能力,属于基础题和易错题.6.【答案】A【解析】解:⊙O :x 2+y 2=1, 则⊙O 的圆心为(0,0),半径为1, 圆心到直线l 的距离为|b|√k 2+1,当|b|<1时,|b|√k 2+1<1,故直线l 与⊙O 相交,充分性成立,当直线l 与⊙O 相交,则|b|√k 2+1<1,即|b|<√k 2+1,必要性不成立,故“|b|<1”是“直线l 与⊙O 相交”的充分而不必要条件,故A 正确. 故选:A.根据已知条件,结合点到直线的距离公式,即可求解.本题主要考查直线与圆的位置关系,考查转化能力,属于中档题.7.【答案】A【解析】解:如图,过C 作l 的平行线,过A 1作该平行线的垂线,垂足为P ,则∠A 1CP =α,∴sinα=|A 1P||A 1C|,设正方体的棱长为1,则|A 1C|=√3,|A 1P|≥|A 1A|=1, ∴sinα=|A 1P||A 1C|≥√3=√33,当且仅当P 与A 重合时,取得等号,∴sinα的最小值为√33.故选:A.过点C作l的平行线,过A1作该平行线的垂线,垂足为P,则∠A1CP=α,则sinα=|A1P||A1C|,根据|A1P|≥|A1A|可求出结果.本题考查正方体结构特征、异面直线所成角的定义及正弦值求法等基础知识,考查运算求解能力,是中档题.8.【答案】D【解析】解:对于圆(x−2)2+(y−1)2=5,令x=0,解得y=0,2;令y=0,解得x=0,4.不妨取A(4,0),B(0,2),可得直线AB的方程:x4+y2=1,即x+2y−4=0.圆心C(2,1)满足直线BA的方程,下列点M中,使得△MAB为钝角三角形,则点M必须在⊙C的内部.经过验证(0,0),(2,1−√5)在⊙C上,点(4,3√22)在⊙C的外部,只有点M(1,2√2)在圆的内部,故选:D.对于圆(x−2)2+(y−1)2=5,可得A(4,0),B(0,2),可得直线AB的方程x+2y−4=0.圆心C(2,1)满足直线BA的方程,下列点M中,使得△MAB为钝角三角形,点M必须在⊙C的内部,经过验证进而得出结论.本题考查了点及其直线与圆的位置关系、钝角三角形、转化方法,考查了推理能力与计算能力,属于中档题.9.【答案】A【解析】解:设火星半径为R,椭圆左焦点为F1,连接PF1,则∠MPN=2∠MPF1,因为sin∠MPF 1=RPF 1,所以PF 1越小,∠MPF 1越大,∠MPN 越大, 所以当点P 位于条件中点Q 处,对火星的观测角最大. 故选:A.连接点P 和椭圆的左焦点,由对称性和椭圆上点到焦点距离的特征得点P 位于条件中点Q 处,对火星的观测角最大.本题考查了椭圆的几何性质,属于中档题.10.【答案】C【解析】解:由于线面角的最大值为π2,因为NC 与MB 不可能垂直,故直线CN 与平面BMP 所成角的最大值达不到π2,故选项A 错误; 取DC 的中点为H ,A 1B 1的中点为P ,连接A 1C 1,B 1D 1相交于点O ,连接OH ,ON ,因为ON//HC 且ON =HC ,所以四边形ONCH 时平行四边形, 故OH//NC ,因为H ∈平面HBPD 1,OH ⊄平面HBPD 1,故CN 不能与平面BMP 平行,故B 错误; 因为V P−CNM =V M−PNC ,M 到平面PNC 的距离为12,故当点P 运动到点B 1时,△PNC 取最小值为12×12×1=14, 故V P−CNM =V M−PNC =13S △PNC ×12=124=13S △CNM ⋅ℎ,因为MC =√32,MN =√22,NC =√52,S △CNM =12×√32×√22=√68,故ℎ=√66,故C 正确;当点P ∉NC 时,满足MP ⊥平面NCP 的点P 共有1个,点当P 为平面BCC 1B 1的中心时满足,故D 错误. 故选:C.NC 与MB 不可能垂直,故选项A 错误;平移NC 与平面相交于一点H ,故选项B 错误;利用体积相等即可求出点P 到平面CNM 的距离的最小值为√66判断选项C ,当点P ∉NC 时,满足MP ⊥平面NCP 的点P 共有1个,当点P 为平面BCC 1B 1的中心时满足,故判断选项D.本题主要考查直线与平面所成的角,直线与平面的平行,直线与平面的垂直,点到平面的距离的求法,考查逻辑推理能力与运算求解能力,属于中档题.11.【答案】√22【解析】解:∵(1+i)⋅z=i3,∴(1+i)z=−i,即z=−i1+i =−i(1−i)(1+i)(1−i)=−12−12i,∴|z|=√(−12)2+(−12)2=√22.故答案为:√22.根据已知条件你,结合复数的四则运算,以及复数模公式,即可求解.本题主要考查复数的四则运算,以及复数模公式,属于基础题.12.【答案】−12【解析】解:∵直线l1:ax−y+2=0,直线l2:x−(a+1)y−1=0,且l1⊥l2,∴1×a+1×(a+1)=0,∴a=−12,故答案为:−12.直线的垂直关系可得a的方程,解方程可得a值.本题考查直线的一般式方程和垂直关系,属基础题.13.【答案】√3【解析】解:已知双曲线x 2a2−y2b2=1的渐近线为y=±bax,又双曲线x 2a2−y2b2=1的渐近线为y=±√2x,则ba=√2,则c 2−a2a2=2,即c 2a2=3,即ca=√3,即该双曲线的离心率为√3,故答案为:√3.由双曲线的性质,结合双曲线离心率的求法求解即可.本题考查了双曲线的性质,属基础题.14.【答案】8【解析】解:如图,设|OF2|=c,则a2=b2+c2,因△AF1F2面积为√3,且其为正三角形,又|OA|=b,则{b=√3c12⋅2c⋅b=√3⇒{b=√3c=1,则a=2,又直线BC过F1,与AF2垂直,△AF1F2为正三角形,则直线BC为AF2中垂线,则|AB|=|BF2|,|AC|=|CF2|,又|BC|=|BF1|+|F1C|,故△ABC的周长C=|BF2|+|BF1|+|F1C|+|F2C|,又C,B在椭圆上,则由椭圆定义有C=4a=8.故答案为:8.由△AF1F2面积为√3,且其为正三角形,可得a,然后由中垂线性质结合椭圆定义可得答案.本题考查了椭圆的性质,属于中档题.15.【答案】①③④【解析】解:直线l1的方程为x−2y+1=0,直线l2的方程为x+2y+1=0,设点P(x,y),x≠1,则d1=√5,d2=√5,d3=|x−1|,所以d1d2d32=|x−2y+1|⋅|x+2y+1|5(x−1)2=15,化简可得|(x+1)2−4y2|=(x−1)2,对于①,在曲线C上任取一点P(x,y),则点P关于x轴的对称点为P(x,−y),所以|(x+1)2−4(−y)2|=|(x+1)2−4y2|=(x−1)2,故点P在曲线C上,故①对;对于②,设点P(x,y),当(x+1)2≥4y2时,则曲线C的方程可化为(x+1)2−4y2=(x−1)2,可得y2=x,设坐标原点为O,则|OP|=√x2+y2==√x2+x≥0,且原点坐标满足方程|(x +1)2−4y 2|=(x −1)2,此时d 1d 2d 32=15有意义,故②错;对于③,当(x +1)2<4y 2,则曲线C 的方程可化为4y 2−(x +l)2=(x −1)2, 整理可得y 212−x 2=1,取双曲线y 212−x 2=1的焦点F 1(0,−√62),F 2(0,√62),根据双曲线的定义可知,曲线C 上有无数个点P ,使得||PF 1|−|PF 2||=2√12=√2,故③对; 对于④,当点P 在抛物线y 2=x 上,且x ≠1时, d 1+d 2=√5=22√5=2√5≥2√55,当且仅当y =0时,等号成立,当点P 在双曲线y 212−x 2=1的上支时,则y ≥√22,且y =√12(x 2+1)且x ≠1,此时d 1+d 2=√5=|x−√2(x 2+1)+1|+|x+√2(x 2+1)+1|√5,因为(√2(x 2+1))2−(x +l)2=(x −1)2>0, 所以√2(x 2+1)>x +1且√2(x 2+1)>−(x +1), 故d 1+d 2=|x−√2(x 2+1)+1|+|x+√2(x 2+1)+1|√5=√2(x 2+1)−(x+1)+√2(x 2+1)+(x+1)√5=2√2(x 2+1)√5≥√2√5=2√105, 当且仅当x =0时,等号成立; 当点P 在y 212−x 2=1的下支时,同理可求得d 1+d 2的最小值为2√105,综上所述,d 1+d 2的最小值为2√55,故④对. 故答案为:①③④.设点P(x,y),求出点P 的轨迹方程,根据曲线对称性的定义可判断①;化简曲线C 的方程,利用两点间的距离公式结合二次函数的基本性质可判断②;化简曲线C 的方程,根据双曲线的定义可判断③;对点P 的位置进行分类讨论,利用二次函数的基本性质可求得d 1+d 2的最小值可判断④. 本题主要考查曲线有关几何性质的应用,解题的关键在于根据题中的几何关系求出曲线的方程,并对曲线的方程进行化简,进而通过曲线的方程对曲线的几何性质进行分析求解,考查运算求解能力与逻辑推理能力,属于难题.16.【答案】解:(Ⅰ)当k =1时,直线l 2:y =x −2,又直线l 1:y =1,∴可得A 为(3,1),∴C 为(−3,−1); (Ⅰ)联立{y =1y =kx −2,可得A(3k ,1),设D(t,kt −2),又四边形ABCD 为菱形,∴B(−t,2−kt),且k OA ⋅k OD =−1,又B 在直线l 1:y =1上,∴{2−kt =113k⋅kt−2t=−1,解得k =±√3, ∴k 的值为±√3.【解析】(Ⅰ)求出A 点坐标,从而可得C 点坐标; (Ⅰ)根据菱形的性质,建立方程即可求解.本题考查直线,点的对称性问题,菱形的性质,方程思想,属中档题.17.【答案】解:(Ⅰ)曲线M 上的任意一点P 到点(1,0)的距离比它到直线x =−2的距离小1,所以P 到点(1,0)的距离等于它到直线x =−1的距离,根据抛物线的定义可知, M 为抛物线,且焦点为(1,0),故p =2, 故M 的方程为:y 2=4x ; (Ⅰ)由题意设B(x 1,y 1),C(x 2,y 2),且BC 所在直线为x −2=m(y −1),代入y 2=4x 整理得: y 2−4my +4m −8=0,易知Δ>0, 且y 1+y 2=4m ,y 1y 2=4m −8,故|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=4√m 2−m +2=4√(m −12)2+74≥2√7,当m =12时取等号,故S △EBC =12|AE||y 1−y 2|≥12×2×2√7=2√7, 故当m =12时,△EBC 的面积的最小值为2√7.【解析】(Ⅰ)根据抛物线的定义,求出曲线M 的方程;(Ⅰ)把直线B(x 1,y 1),C(x 2,y 2)的方程设成x −2=m(y −1),代入曲线M 的方程消去x ,然后将|y 1−y 2|表示为m 的函数,求其最小值即可.本题利用抛物线的定义求其标准方程,以及直线与抛物线的位置关系,属于中档题.18.【答案】解:(Ⅰ)证明:∵四边形ABCD 是平行四边形,点F为PD 的中点,∴取PA 的中点E ,连接EF ,EG ,则易得EF//GC ,且EF =GC , ∴四边形EFCG 为平行四边形,∴CF//GE ,又CF ⊄平面PAG ,GE ⊂平面PAG , ∴CF//平面PAG ;(Ⅰ)根据题意可得:选条件①,②或选条件①,③才能使四棱锥P −ABCD 唯一确定, 当选条件①,②时,则PA ⊥平面ABCD ,AD =BC =2√2, 又PA =AB =2,且直线PC 与平面ABCD 所成的角为∠PCA =30∘, ∴AC =√3PA =2√3,∴AB 2+BC 2=AC 2,∴AB ⊥BC ,∴底面平行四边形ABCD 为矩形,当选条件①,③时,则PA ⊥平面ABCD ,平面PAB ⊥平面PAD , ∴∠BAD =90∘,又PA =AB =2,且直线PC 与平面ABCD 所成的角为∠PCA =30∘, ∴AC =√3PA =2√3,∴BC =√12−4=2√2, 故选条件①,②或选条件①,③确定的四棱锥P −ABCD 相同,∴建系如图,则A(0,0,0),B(2,0,0),C(2,2√2,0),D(0,2√2,0),F(0,√2,1),∴AD ⃗⃗⃗⃗⃗⃗ =(0,2√2,0),AF ⃗⃗⃗⃗⃗ =(0,√2,1),AB ⃗⃗⃗⃗⃗ =(2,0,0),AC ⃗⃗⃗⃗⃗ =(2,2√2,0),(i)∵CD//BA ,CD ⊄平面ABF ,BA ⊂平面ABF , ∴CD//平面ABF ,∴直线CD 到平面ABF 的距离等于D 到平面ABF 的距离, 又AD ⃗⃗⃗⃗⃗⃗ =(0,2√2,0),设平面ABF 的法向量为m ⃗⃗⃗ =(x,y,z), 则{m ⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ =√2y +z =0m ⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =2x =0,取m ⃗⃗⃗ =(0,1,−√2),∴D 到平面ABF 的距离d =|AD⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ ||m⃗⃗⃗ |=2√2√3=2√63; (ii)设平面AFC 的法向量为n ⃗ =(a,b,c),则{n ⃗ ⋅AF ⃗⃗⃗⃗⃗ =√2b +c =0n ⃗ ⋅AC ⃗⃗⃗⃗⃗ =2a +2√2b =0,取n ⃗ =(√2,−1,√2),又由(i)知平面ABF 的法向量m ⃗⃗⃗ =(0,1,−√2),设二面角B −AF −C 的平面角为θ,由图可知θ为锐角, ∴cosθ=|cos <m ⃗⃗⃗ ,n ⃗ >|=|m⃗⃗⃗ ⋅n ⃗ ||m ⃗⃗⃗ ||n ⃗ |=3√5×√3=√155,故二面角B −AF −C 的余弦值为√155.【解析】(Ⅰ)根据线面平行的判定定理即可证明;(Ⅰ)选条件①,②或选条件①,③都可以确定四棱锥P −ABCD ,再利用向量法即可分别求解(i)与(ii).本题考查线面平行的判定定理,向量法求解点面距问题,向量法求解二面角问题,属中档题.19.【答案】解:(Ⅰ)∵椭圆E :x 2a 2+y 2b2=1(a >b >0)的焦距为2,长轴长为4,∴c =1,a =2,∴b 2=4−1=3,∴椭圆E 的方程为x 24+y 23=1;(Ⅰ)存在定点P(−43,0),使得B′恒在直线PC 上,理由如下:设直线l :x =my −3,设B(x 1,y 1),C(x 2,y 2),B′(x 1,−y 1), ∴PC⃗⃗⃗⃗⃗ =(x 2+43,y 2),PB′⃗⃗⃗⃗⃗⃗ =(x 1+43,−y 1),由{x 24+y 23=1x =my −3,得(3m 2+4)y 2−18my +15=0,∴Δ=8(3m 2−5)>0,y 1+y 2=18m3m 2+4,y 1y 2=153m 2+4, ∵x 1=my 1−3,x 2=my 2−3,∴(x 2+43)y 1+(x 1+43)y 2=2my 1y 2−53(y 1+y 2)=2m ×153m 2+4−53×18m3m 2+4=0,∴PC ⃗⃗⃗⃗⃗ //PB′⃗⃗⃗⃗⃗⃗ ,∴B′,P ,C 三点共线.【解析】(Ⅰ)由已知易得c ,a ,进而可求椭圆E 的方程;(Ⅰ)存在定点P(−43,0),使得B′恒在直线PC 上,设直线l :x =my −3,设B(x 1,y 1),C(x 2,y 2),B′(x 1,−y 1),可得PC ⃗⃗⃗⃗⃗ =(x 2+43,y 2),PB′⃗⃗⃗⃗⃗⃗ =(x 1+43,−y 1),可证PC ⃗⃗⃗⃗⃗ //PB′⃗⃗⃗⃗⃗⃗ ,从而可得B′,P ,C 三点共线.本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,属中档题.。
北京市海淀区2014届高三上学期期末考试理科数学试题2014.01本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.复数i(i 1)+等于A. 1i +B. 1i --C. 1i -D. 1i -+ 2.设非零实数,a b 满足a b <,则下列不等式中一定成立的是 A.11a b> B. 2ab b < C. 0a b +> D. 0a b -< 3.下列极坐标方程表示圆的是A. 1ρ=B. 2πθ=C. sin 1ρθ=D. (sin cos )1ρθθ+= 4.阅读如右图所示的程序框图,如果输入的n 的值为6,那么运行相应程序,输出的n 的值为A. 3B. 5C. 10D. 16 5. 322x x ⎛⎫-⎪⎝⎭的展开式中的常数项为 A. 12 B. 12- C.6 D. 6-6.若实数,x y 满足条件20,0,3,x y x y y +-≥⎧⎪-≤⎨⎪≤⎩则34z x y =-的最大值是 A.13- B. 3- C.1- D.7.已知椭圆C 22143x y +=的左、右焦点分别为12,F F ,椭圆C 上点A 满足212AF F F ⊥. 若点P 是椭圆C 上的动点,则12F P F A ⋅的最大值为A.B. 233C. 94D. 154开始结束输入n 输出ni =0n 是奇数n =3n +1i<3i =i +12n n =是否8.如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有A.50种B.51种C.140种D.141种二、填空题本大题共6小题,每小题5分,共30分。
海淀区高二年级第一学期期末练习数学(理科)2014.01学校 班级 姓名 成绩一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)抛物线22y x =的准线方程是 ( ) (A ) 12x =(B )12y = (C )12x =- (D )12y =-(2)若直线10x ay ++=与直线20x y +=平行,则实数a = ( )(A )12-(B )2- (C )12(D )2 (3)在四面体O ABC -中,点P 为棱BC 的中点. 设OA = a , OB = b ,OC = c ,那么向量AP用基底{,,}a b c 可表示为( )(A )111222-+a +b c(B )1122-+a +b c (C )1122+a +b c(D )111222+a +b c(4)已知直线l ,平面α.则“l α^”是“$直线m αÌ,l m ^”的 ( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件(5)若方程22(2)1mx m y +-=表示焦点在x 轴上的椭圆,则实数m 的取值范围是( ) (A )(1,)+∞ (B )(0,2)(C )(1,2)(D )(0,1)(6)已知命题:p 椭圆的离心率(0,1)e ∈,命题:q 与抛物线只有一个公共点的直线是此抛物线的切线,那么 ( ) (A )p q ∧是真命题 (B )()p q ∧⌝是真命题OABCP(C )()p q ⌝∨是真命题 (D )p q ∨是假命题(7)若焦距为4的双曲线的两条渐近线互相垂直,则此双曲线的实轴长为 ( ) (A )(B ) 4 (C )(D ) 2 (8)如图所示,在正方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F .则下列命题中假命题...是 ( )(A )存在点E ,使得11A C //平面1BED F(B )存在点E ,使得1B D ⊥平面1BED F (C )对于任意的点E ,平面11AC D ⊥平面1BED F (D )对于任意的点E ,四棱锥11B BED F -的体积均不变二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.(9)在空间直角坐标系中,已知(2,1,3)=-a ,(4,2,)x =-b .若^a b ,则x = . (10)过点(1,1)且与圆2220x x y -+=相切的直线方程是 .(11)已知抛物线C :24y x =,O 为坐标原点,F 为C 的焦点,P 是C 上一点. 若OPF ∆是等腰三角形,则PO = .(12)已知点12,F F 是双曲线C 的两个焦点,过点2F 的直线交双曲线C 的一支于,A B 两点,若1ABF ∆为等边三角形,则双曲线C的离心率为 .(13)如图所示,已知点P 是正方体1111ABCD A B C D -的棱11A D 上的一个动点,设异面直线AB 与CP 所成的角为α,则cos α的最小值是 .1A F ED 1C 1B 1A 1DCBA(14)曲线C 是平面内与定点(2,0)F 和定直线2x =-的距离的积等于4的点的轨迹.给出下列四个结论:①曲线C 过坐标原点; ②曲线C 关于x 轴对称; ③曲线C 与y 轴有3个交点;④若点M 在曲线C 上,则MF的最小值为1). 其中,所有正确结论的序号是___________.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题共10分)在平面直角坐标系xOy 中,已知点 (4 0)A ,,动点M 在y 轴上的正射影为点N ,且满足直线MO NA ⊥.(Ⅰ)求动点M 的轨迹C 的方程; (Ⅱ)当π6MOA ∠=时,求直线NA 的方程.(16)(本小题共11分)已知椭圆C :22312x y +=,直线20x y --=交椭圆C 于,A B 两点. (Ⅰ)求椭圆C 的焦点坐标及长轴长; (Ⅱ)求以线段AB 为直径的圆的方程.(17)(本小题共11分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PB BC ⊥,PD DC ⊥,且PC =(Ⅰ)求证:PA ⊥平面ABCD ;(Ⅱ)求二面角B PD C --的余弦值;(Ⅲ)棱PD 上是否存在一点E ,使直线EC 与平面BCD 所成的角是30 ?若存在,求PE 的长;若不存在,请说明理由.ABC DP(18)(本小题共12分)已知椭圆M :22221(0)x y a b a b +=>>经过如下五个点中的三个点:1(1,2P --,2(0,1)P ,31(2P ,4P ,5(1,1)P . (Ⅰ)求椭圆M 的方程;(Ⅱ)设点A 为椭圆M 的左顶点,, B C 为椭圆M 上不同于点A 的两点,若原点在ABC ∆的外部,且ABC ∆为直角三角形,求ABC ∆面积的最大值.海淀区高二年级第一学期期末练习数学(理科)参考答案及评分标准 2014.01一. 选择题:本大题共8小题,每小题4分,共32分.二.填空题:本大题共6小题,每小题4分,共24分. (9)103 (10)10y -= (11)32或1(12(13)3(14)①②④ 注:(11)题少一个答案扣2分.三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分10分)解:(Ⅰ)设(,)M x y ,则(0,)N y ,(,)OM x y = ,(4,)NA y =- .……………………2分因为 直线MO NA ⊥,所以 240OM NA x y ⋅=-= ,即24y x =. ………………………4分所以 动点M 的轨迹C 的方程为24y x =(0x ≠). ………………………5分 (Ⅱ)当π6MOA ∠=时,因为 MO NA ⊥,所以 π3NAO ∠=. 所以 直线AN 的倾斜角为π3或2π3.当直线AN 的倾斜角为π3时,直线NA 0y --=; ……………8分当直线AN 的倾斜角为2π3时,直线NA 0y +-=. …………10分(16)(本小题满分11分)解:(Ⅰ)原方程等价于221412x y +=.由方程可知:212a =,24b =,2228c a b =-=,c =……………………3分 所以 椭圆C的焦点坐标为(0,,(0,-,长轴长2a为……………5分(Ⅱ)由2231220x y x y ⎧+=⎨--=⎩,,可得:220x x --=.解得:2x =或1x =-.所以 点,A B 的坐标分别为(2,0),(1,3)--. ………………………7分 所以 ,A B 中点坐标为13(,)22-,||AB ==……………9分所以 以线段AB 为直径的圆的圆心坐标为13(,)22-,半径为2. 所以 以线段AB 为直径的圆的方程为22139()()222x y -++=. …………………11分(17)(本小题满分11分)(Ⅰ)证明:在正方形ABCD 中,CD AD ⊥.因为CD PD ⊥,AD PD D = ,所以 CD ⊥平面PAD . ………………………1分 因为 PA ⊂平面PAD ,所以 CD PA ⊥. ………………………2分 同理,BC PA ⊥. 因为 BC CD C = ,所以 PA ⊥平面ABCD . ………………………3分 (Ⅱ)解:连接AC ,由(Ⅰ)知PA ⊥平面ABCD .因为 AC ⊂平面ABCD ,所以 PA AC ⊥. ………………………4分 因为PC =AC =所以 1PA =.分别以AD ,AB ,AP 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示. 由题意可得:(0,1,0)B ,(1,0,0)D ,(1,1,0)C ,(0,0,1)P .所以 (0,1,0)DC = ,(1,0,1)DP =- ,(1,1,0)BD =- ,(0,1,1)BP =-.设平面PDC 的一个法向量(,,)x y z =n ,则00DC DP ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即0,0.y x z =⎧⎨-+=⎩令1x =,得1z =. 所以 (1,0,1)=n .同理可求:平面PDB 的一个法向量(1,1,1)=m . ………………………6分 所以cos ,3⋅<>===n m n m |n ||m |.所以 二面角B PD C --. ………………………8分 (Ⅲ)存在.理由如下:若棱PD 上存在点E 满足条件,设(,0,)PE PD λλλ==-,[0,1]λ∈.所以 (1,1,1)(,0,)(1,1,1)EC PC PE λλλλ=-=---=--.…………………9分因为 平面BCD 的一个法向量为(0,0,1)AP =.所以|cos ,|EC APEC AP EC AP⋅<>==令1sin 30,2==解得:12λ=±经检验1[0,1]2λ=-. 所以 棱PD 上存在点E ,使直线EC 与平面BCD 所成的角是30 ,此时PE 的长为1. ………………………11分(18)(本小题满分12分)解:(Ⅰ)由22222222222222221(1)1112a b a b a b a b ⎛⎛⎫ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭+<+=+<+知,31(,22P 和5(1,1)P 不在椭圆M 上,即椭圆M经过1(1,2P --,2(0,1)P,4(1,2P . 于是222,1a b ==.所以 椭圆M 的方程为:2212x y +=. ………………………2分 (Ⅱ)①当90A ∠=︒时,设直线:BC x ty m =+,由2222,,x y x ty m ⎧+=⎨=+⎩得222(2)2(2)0t y tmy m +++-=.设1122(,),(,)B x y C x y ,则2216880m t ∆=-+>,12221222,22. 2tm y y t m y y t ⎧+=-⎪⎪+⎨-⎪=⎪+⎩所以AB AC k k ===1==-.于是3m =-,此时21616809t ∆=-+>,所以直线:3BC x ty =-. 因为12216902y y t =-<+,故线段BC 与x轴相交于(3M -,即原点在线段AM 的延长线上,即原点在ABC ∆的外部,符合题设. ………………………6分所以12121|||||2ABC S AM y y y y ∆=⋅-=-====89. 当0t =时取到最大值89. ………………………9分 ②当90A ∠≠︒时,不妨设90B ∠=︒.设直线:0)AB x ty t =-≠,由2222,x y x ty ⎧+=⎪⎨=-⎪⎩得22(2)0t y +-=.所以 0y =或22y t =+.所以222()22B t t -++,由AB BC ⊥,可得直线32:2BC y tx t =-++.由223222,,2x y y tx t ⎧+=⎪⎨=-+⎪+⎩得22222328(1)(2)(21)02t t t t y y t +++--=+.所以 222228(1)0(2)(21)B C t t y y t t +=-<++. 所以 线段BC 与x轴相交于22(,0)2N t +. 显然原点在线段AN 上,即原点在ABC ∆的内部,不符合题设. 综上所述,所求的ABC ∆面积的最大值为89. ……………………12分注:对于其它正确解法,相应给分.。