信息光学中的傅里叶变换
- 格式:ppt
- 大小:986.00 KB
- 文档页数:29
傅里叶变换光学LT22012111(,)()()2D x y D x y R R =-+-(4)其中1R 、2R 是构成透镜的两个球面的曲率半径。
公式(4)对双凹、双凸、或凹凸透镜都成立。
引入焦距f ,其定义为:12111(1)()n f R R=-- (5)代入(3)得: 220(,)exp()exp[()]2k t x y jknD j xy f =-+(6)式(6)即是透镜位相调制的表达式,它表明复振幅(,)LU x y 通过透镜时,透镜各点都发生位相延迟。
从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。
第二项22exp[()]2k j xy f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。
而且与透镜的焦距有关。
当考虑透镜孔径后,有:22(,)exp[()](,)2kt x y jx y p x y f=-+(7)其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ⎧=⎨⎩ 孔径内其 它(8)2、透镜的傅里叶变换性质在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。
衍射图像的强度分布正比于衍射屏的功率谱分布。
一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。
如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。
为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。
图2 透镜的傅里叶变换性质设(,)E x y 、11E(,)x y 、11E (,)x y '、(,)ffE x y 分别表示衍射屏后、透镜输入平面、输出平面以及像方平面出光波场的复振幅分布。
(小波变换第三次作业)傅立叶变换在光学空间滤波仿真实验中的应用吕文华(天津大学精仪学院,1011202052)摘要:计算机模拟技术已经广泛应用在教学和科研中,在信息光学中引入MALAB语言,借助傅立叶变换,模拟出信息光学中的光学空间滤波仿真实验的结果,生动深刻的揭示光学现象的物理内涵,有助于深刻理解信息光学中的重要概念和光学信息处理的基本原理。
关键词:MATLAB; 信息光学;傅立叶变换,空间频率;空间滤波1.引言信息光学是近40年发展起来的一门新兴学科,它将数学中的傅里叶变换和通信中的线性系统理论引入光学,使光学和通信这两个不同的领域在信息学范畴内统一起来,光学工程师不再仅仅局限于用光强、振幅或透过率的空间分布来描述光学图像,也像电气工程师那样用空间频率的分布和变化来描述光学图像,从而为光学信息处理开辟了广阔的应用前景[1]。
与其他形态的信号处理相比,光学信息处理由于具有容量大、速度快、并行性及装置简单等优点,在二维图像信息存储、图像增强、特征识别、现代像质评价等许多方面有着重要的应用。
在过去半个世纪人们对于光学信号处理进行了广泛的研究,其基础为正透镜的傅里叶变换效应,该效应在光波传播的瞬间就完成了,处理速度与被处理信号的信息量(例如图形尺寸)无关,经典的应用包括低通、高通滤波、卷积、解卷积以及图形的相关识别。
空间滤波是最基本的光学信息处理操作之一,其基本原理是根据具体需要制作一个适当的空间滤波器,并将其放在光路中输入图像的频谱平面处,通过对输入图像的频谱进行调制,从而完成对输入图像的改造和处理。
在信息光学课程中,关于光学图像的空间频率的概念以及对光学图像的空间滤波问题的理解是重点,也是难点。
难以在短时间之内学会从空间频率的新观点去观看一幅光学图像,为了更容易接受并理解空间频率的概念和空间滤波的物理过程,结合近代光学实验,我们引入计算机仿真技术,在教学中应用MATLAB软件,在编程中体现空间滤波实验过程的数学描述方法,通过仿真得到了与光学实验完全吻合的结果,从而真正理解空间频率的概念以及空间滤波的实质。
第五章傅里叶变换光学与相因子分析方法5.1 衍射系统 波前变换◆引言现代光学的重大进展之一,是引入“光学变换”概念,由此发展而形成了光学领域的一个新分支——傅里叶变换光学,泛称为变换光学(transform optics),也简称为博里叶光学,它导致了光学信息处理技术的兴起.现代变换光学是以经典波动光学的基本原理为基础,是干涉、衍射理论的综合和提高,它与衍射、尤其与夫琅禾费衍射息息相关.对于熟悉经典波动光学的人们来说,由于他们有着较充分的概念储备和较充实的物理图像,因而具备更为有利的条件,去深刻而灵活地掌握现代变换光学. ◆衍射系统及其三个波前如图所示,一个衍射系统以衍射屏为界被分为前后两个空间.前场为照明空间,充满照明光波;后场为衍射空间,充满衍射光波.照明光波比较简单、常为球面波或平面波,这两种典型波的等幅面与等相面是重合的,属于均匀波,其波场中没有因光强起伏而出现的图样.衍射波较为复杂,它不是单纯的一列球面波或一列平面波,其等幅面与等相面—般地不重合,属于非均匀波,其波场中常有光强起伏而形成的衍射图样.在衍射系统的分析中,人们关注三个场分布:其中,入射场),(~1y x U 是照明光波到达衍射屏的波前函数;出射场),(~2y x U 是衍射屏的透射场或反射场,它是衍射空间初端的波前函数,它决定了整个衍射空间的光场分布;而衍射场),(~y x U ''是纵向特定位置的波前函数。
由此可见,整个衍射系统贯穿着波前变换:波前),(~),(~21y x U y x U →这是衍射屏的作用: 波前),(~),(~2y x U y x U ''→这是波的传播行为.由一个波前导出前方任意处的另一个波前,这是波衍射问题的基本提法,亦即波传播问 题的基本提法.标量波的传播规律己由惠更斯—菲涅耳—基尔霍夫理论(HFK 理论)给出.在 常见的傍轴情形下,其表达式为其积分核为ikre,这是一个球面波的相因子形式.换言之HFK 理论是—个关于衍射的球面波理论——衍射场是衍射屏上大量次波点源所发射的球面被的相干叠加.◆衍射屏函数及其三种类型我们已经同多种衍射屏有过交道,现在给山衍射屏函数的一般性定义,以定量地描述衍射屏的自身特征:),(12),(),(~),(~),(~y x i ey x t y x U y x U y x t ϕ== 即,屏函数(screen function)等于出射波前函数与入射波前函数之比.对于透射屏,t ~可称作复振幅透过率函数;对于反射屏,t ~可称作复振幅反射率函数.无疑,屏函数通常也是复函数,含模函数),(y x t 和辐角函数),(y x ϕ.唯象地看,实际上的衍射屏可分为三种类型,振幅型、相位型和相幅型.若),(y x ϕ为常数,仅有函数),(y x t ,则该衍射屏为振幅型,凡孔型衍射屏均系振幅型.若),(y x t 为常数,仅有函数),(y x ϕ,则该衍射屏为相位型,这在此之前似乎少见,其实,闪耀光栅不论其为透射的或反射的,均是一个相位型衍射屏,下一节即将研究的透镜相位衍射元件.当然,更为一般的情况是相幅型衍射屏,),(y x t 、),(y x ϕ皆为函数形式,即不仅出射场的振幅分布),(2y x A 有别于入射场的),(1y x A ,而且出射场的相位分布),(2y x ϕ也有别于入射场的),(1y x ϕ。