8-数据采样插补
- 格式:ppt
- 大小:382.50 KB
- 文档页数:17
插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补
脉冲增量插补和数据采样插补是实现插补的两种不同方法。
脉冲增量插补是将连续的运动轨迹离散化,以一定的脉冲数来表示,通过控制脉冲信号的频率和方向来控制机床的运动方向和速度。
而数据采样插补则是将预先生成的轨迹数据存储在内存中,通过对数据进行采样来得到机床的控制指令。
脉冲增量插补的特点是运算简单,系统响应速度较快,适合于高速运动控制;但由于其离散化的特点,可能会引入累积误差。
数据采样插补的特点是能够精确控制机床的运动轨迹,减小累积误差,但需要占用较大的内存空间。
逐点比较法是一种用于校正控制系统误差的方法。
其基本原理是通过对实际运动轨迹数据和预期轨迹数据进行逐点比较,根据比较结果来调整机床的控制指令,使实际运动轨迹尽可能地与预期轨迹一致。
逐点比较法的关键是选择合适的比较误差补偿算法,以实现高效准确的校正。
直线插补是指在机床坐标系下,按照直线轨迹进行插补运动。
直线插补的计算相对简单,只需要对坐标进行线性插值即可。
圆弧插补是指在机床坐标系下,按照圆弧轨迹进行插补运动。
圆弧插补的计算相对复杂,需要考虑起点、终点和半径等参数,通过数学运算得出插补指令。
总之,插补是机床运动控制的基础,脉冲增量插补和数据采样插补是两种常见的实现方式,逐点比较法是一种用于校正误差的方法,直线插补和圆弧插补则是两种常见的插补方式。
数据采样插补一、概述数据采样插补多用于进给速度要求较高的闭环掌握系统。
它与前面我们介绍的插补方法的最大不同就是前者计算机一般不包含在伺服掌握环内,计算机插补的结果是输出进给脉冲,伺服系统依据进给脉冲进给。
每进给一步(一个脉冲当量),计算机都要进行一次插补运算。
进给速度受计算机插补速度的限制,很难满意现代数控机床高速度的要求。
而后者计算机一般包含在伺服掌握环内。
数据采样插补用小段直线来靠近给定轨迹,插补输出的是下一个插补周期内各轴要运动的距离,不需要每走一个脉冲当量就插补一次,可达到很高的进给速度。
1. 数据采样插补的基本原理粗插补:采纳时间分割思想,依据进给速度F和插补周期T,将廓型曲线分割成一段段的轮廓步长L,L=FT,然后计算出每个插补周期的坐标增量。
精插补:依据位置反馈采样周期的大小,由伺服系统的硬件完成。
2. 插补周期和检测采样周期插补周期大于插补运算时间与完成其它实时任务时间之和,现代数控系统一般为2~4ms,有的已达到零点几毫秒。
插补周期应是位置反馈检测采样周期的整数倍。
3.插补精度分析直线插补时,轮廓步长L与被加工直线重合,没有插补误差。
圆弧插补时,轮廓步长L作为弦线或割线对圆弧进行靠近,存在半径误差。
二、数据采样法直线插补1.插补计算过程(1)插补预备主要是计算轮廓步长l=FT及其相应的坐标增量。
(2)插补计算实时计算出各插补周期中的插补点(动点)坐标值。
2.有用的插补算法(1)直线函数法插补预备:插补计算:2)进给速率数法(扩展DDA法)插补预备: 引入步长系数K则插补计算:三、数据采样法圆弧插补1. 直线函数法(弦线法)如图5-13所示,要加工圆心在原点O(0,0)、半径为R的第一象限顺圆弧,在顺圆弧上的B点是继A点之后的插补瞬时点,两点的坐标分别为A(Xi,Yi)、B(Xi+1,Yi+1),现求在一个插补周期T内X 轴和Y轴的进给量△X、△Y。
图中的弦AB是圆弧插补时每个插补周期内的进给步长l,AP是A点的圆弧切线,M是弦的中点。
第一章1. 什么叫机床的数字控制?什么是数控机床?机床的数字控制原理是什么?答:数字控制是一种借助数字、字符或其它符号对某一工作过程(如加工、测量、装配等)进行可编程控制的自动化方法。
数控机床是采用数字控制技术对机床的加工过程进行自动控制的一类机床。
是数控技术典型应用的例子。
数控机床在加工零件时,首先是根据零件加工图样进行工艺分析,确定加工方案、工艺参数和位移数据;其次是编制零件的数控加工程序,然后将数控程序输入到数控装置,再由数控装置控制机床主运动的变速、启停、进给运动方向、速度和位移的大小,以及其他诸如刀具选择交换、工件夹紧松开、路程和参数进行工作,从而加工出形状、尺寸与精度符合要求的零件。
2. 什么叫点位控制、直线控制和轮廓控制?答:点位控制是控制点到点的距离。
只是要求严格控制点到点之间的距离,而与所走的路径无关。
直线控制是不仅控制点到点的距离,还要控制这两点之间的移动速度和路线,使之沿坐标平行或成45°的方向运动。
也就是说同时控制的坐标只有一个。
轮廓加工控制是控制轮廓加工,实时控制位移和速度。
它的特点是能够对两个或两个以上的运动坐标的位移和速度同时进行连续地相关控制,使合成的平面或空间运动轨迹能满足轮廓曲线和曲面加工的要求。
控制过程中不仅对坐标的移动量进行控制,而且对各坐标的速度及它们之间比率都要行严格控制,以便加工出给定的轨迹。
3. 简述数控机床是如何分类的?答:按伺服系统的类型分:开环控制的数控机床、闭环控制的数控机床、半闭环控制的数控机床。
按工艺方法分:金属切削类数控机床、金属成型类及特种加工类数控机床。
按功能水平分:低档数控机床;中档数控机床;高档数控机床。
4.什么叫CNC?答:以计算机为核心的数控系统。
第二章1.数控程序和程序段的格式是什么?包括哪几类指令代码?答:从数控系统外部输入的,根据被加工零件的图纸及其技术要求、工艺要求等切削加工的必要信息,按数控系统所规定的指令和格式编制并直接用于加工的程序,就是数控加工程序,简称为数控程序。
数控系统插补的方法和原理数控机床上进行加工的各种工件,大部分由直线和圆弧构成。
因此,大多数数控装置都具有直线和圆弧的插补功能。
对于非圆弧曲线轮廓轨迹,可以用微小的直线段或圆弧段来拟合。
插补的任务就是要根据进给速度的要求,在轮廓起点和终点之间计算出若干中间掌握点的坐标值。
由于每个中间点计算的时间直接影响数控装置的掌握速度,而插补中间点的计算精度又影响整个数控系统的精度,所以插补算法对整个数控系统的性能至关重要,也就是说数控装置掌握软件的核心是插补。
插补的方法和原理许多,依据数控系统输出到伺服驱动装置的信号的不同,插补方法可归纳为脉冲增量插补和数据采样插补两种类型。
一、脉冲增量插补这类插补算法是以脉冲形式输出,每次插补运算一次,最多给每一轴一个进给脉冲。
把每次插补运算产生的指令脉冲输出到伺服系统,以驱动工作台运动。
一个脉冲产生的进给轴移动量叫脉冲当量,用δ表示。
脉冲当量是脉冲安排计算的基本单位,依据加工的精度选择,一般机床取δ=0.01mm,较为精密的机床取δ=1μm或0.1μm 。
插补误差不得大于一个脉冲当量。
这种方法掌握精度和进给速度低,主要运用于以步进电动机为驱动装置的开环掌握系统中。
二、数据采样插补数据采样插补又称时间标量插补或数字增量插补。
这类插补算法的特点是数控装置产生的不是单个脉冲,而是数字量。
插补运算分两步完成。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来拟合给定曲线,每一微小直线段的长度△L 都相等,且与给定进给速度有关。
粗插补时每一微小直线段的长度△L 与进给速度F和插补T周期有关,即△L=FT。
图1 数据采样插补其次步为精插补,它是在粗插补算出的每一微小直线上再作“数据点的密化”工作。
这一步相当于对直线的脉冲增量插补。
数据采样插补方法适用于闭环、半闭环的直流或沟通伺服电动机为驱动装置的位置采样掌握系统中。
数字化实训报告一数据采样差补简介所谓数据采样插补法,或称为时间分割法。
它尤其适合于闭环和半闭环以直流或交流电机为执行机构的位置采样控制系统。
这种方法是把加工一段直线或圆弧的整段时间细分为许多相等的时间间隔,称为单位时间间隔(或插补周期)。
每经过一个单位时间间隔就进行一次插补计算,算出在这一时间间隔内各坐标轴的进给量,边计算,边加工,直至加工终点。
与基准脉冲插补法不同,采用数据采样法插补时,在加工某一直线段或圆弧段的加工指令中必须给出加工进给速度F,先通过速度计算,将进给速度分割成单位时间间隔的插补进给量L(或称为轮廓步长),又称为一次插补进给量。
这类算法的核心问题是如何计算各坐标轴的增长数∆x和∆y(而不是单个脉冲),有了前一插补周期末的动点位置值和本次插补周期内的坐标增长段,就很容易计算出本插补周期末的动点命令位置坐标值。
对于直线插补来讲,插补所形成的轮廓步长子线段(即增长段)与给定的直线重合,不会造成轨迹误差。
而在圆弧插补中,因要用切线或弦线来逼近圆弧,因而不可避免地会带来轮廓误差。
其中切线近似具有较大的轮廓误差而不大采用,常用的是弦线逼近法。
有时,数据采样插补是分两步完成的,即粗插补和精插补。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来逼近给定曲线,粗插补在每个插补计算周期中计算一次。
第二步为精插补,它是在粗插补计算出的每一条微小直线段上再做“数据点的密化”工作,这一步相当于对直线的脉冲增量插补。
二直线插补直线插补的情况如右图所示。
要求刀具在XY 平面中作所示的直线运动。
在这一程序段中,每一小段的长度为L=KFT(K进给倍率,F进给速度,T插补周期)。
只要求出∆x和∆y即可。
tanα=X E Y Ecosα=1√1+(tanα)2∆X=L∗cosα∆Y=∆X∗tanα三顺圆圆弧插补3.1公式推导圆弧插补的情况如下。
顺圆弧AB为待加工曲线,可以依据几何知识推导出关系式:∆Y ∆X =X I+0.5∗L∗COSαY I−0.5∗L∗SINα无法求解出∆x和∆y,取α=45°.如此会引起的误差就是下一点可能不在圆弧上面,所以修正关系式为:∆X′=L*COS45X I2+Y I2=(X I+∆X)2+(Y I−∆Y)2AB3.2流程图3.3程序CLOSE&1#1->2500X#2->2500YOPEN PROG 28CLEARINC;增量模式P0=1;每个周期的步长P1=100;半径P2=0;x0P3=100;y0P4=100;x1P5=0;y1P11=0.7071;sin45,cos45P6=SQRT((P4-P2)*(P4-P2)+(P5-P3)*(P5-P3));始末点距离P7=INT(2*(ASIN(P6/2/P1))*P1/P0)+1;步数WHILE(P7>0);由步数控制循环P8=ATAN((P2+0.5*P0*P12)/(P3-0.5*P12*P0));计算新的角度P9=P0*COS(P8);dxP10=-(P2+0.5*P9)*P9/(P3-0.5*P9);dyP2=P2+P9;新的x0P3=P3+P10;新的y0X(P9);电机动作Y(P10)P7=P7-1;步数减一ENDWHILECLOSE四逆圆圆弧插补4.1公式推导圆弧插补的情况如下。
什么是插补一、插补的概念在数控机床中,刀具不能严格地按照要求加工的曲线运动,只能用折线轨迹逼近所要加工的曲线。
插补(interpolation)定义:机床数控系统依照一定方法确定刀具运动轨迹的过程。
也可以说,已知曲线上的某些数据,按照某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”。
数控装置向各坐标提供相互协调的进给脉冲,伺服系统根据进给脉冲驱动机床各坐标轴运动。
数控装置的关键问题:根据控制指令和数据进行脉冲数目分配的运算(即插补计算),产生机床各坐标的进给脉冲。
插补计算就是数控装置根据输入的基本数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。
插补的实质:在一个线段的起点和终点之间进行数据点的密化。
插补工作可由硬件逻辑电路或执行软件程序来完成,在CNC系统中,插补工作一般由软件完成,软件插补结构简单、灵活易变、可靠性好。
二、插补方法的分类目前普遍应用的两类插补方法为基准脉冲插补和数据采样插补。
1.基准脉冲插补(行程标量插补或脉冲增量插补)特点:每次插补结束,数控装置向每个运动坐标输出基准脉冲序列,每插补运算一次,最多给每一轴一个进给脉冲。
每个脉冲代表了最小位移,脉冲序列的频率代表了坐标运动速度,而脉冲的数量表示移动量。
每发出一个脉冲,工作台移动一个基本长度单位,也叫脉冲当量,脉冲当量是脉冲分配的基本单位。
该方法仅适用于一些中等精度或中等速度要求的计算机数控系统主要的脉冲增量插补方法:数字脉冲乘法器插补法逐点比较法数字积分法矢量判别法比较积分法最小偏差法目标点跟踪法单步追踪法直接函数法加密判别和双判别插补法2. 数字采样插补(数据增量插补)数据采样插补又称时间增量插补,这类算法插补结果输出的不是脉冲,而是标准二进制数。
根据程编进给速度,把轮廓曲线按插补周期将其分割为一系列微小直线段,然后将这些微小直线段对应的位置增量数据进行输出,以控制伺服系统实现坐标轴的进给。
机床数控技术课后答案第1章1.数控(NC)和计算机数控(CNC)的联系和区别是什么?答:数字控制(NC)简称数控,是指用数字化信号对控制对象进行控制的方法也称数控技术。
我们把以计算机系统作为数控装置构成的数控系统称为计算机数控系统(CNC)。
CNC系统的数字处理功能主要由软件实现,因而十分灵活,并可以处理数字逻辑电路难以处理的复杂信息,使数控系统的功能大大提高。
2.数控机床由哪几部分组成,各组成部分的功能是什么?答:(1)程序介质:用于记载机床加工零件的全部信息。
(2)数控装置:控制机床运动的中枢系统,它的基本任务是接受程序介质带来的信息,按照规定的控制算法进行插补运算,把它们转换为伺服系统能够接受的指令信号,然后将结果由输出装置送到各坐标的伺服系统。
(3)伺服系统:是数控系统的执行元件,它的基本功能是接受数控装置发来的指令脉冲信号,控制机床执行元件的进给速度、方向和位移量,以完成零件的自动加工。
(4)机床主体(主机):包括机床的主运动、进给运动部件。
执行部件和基础部件。
3.简述闭环数控系统的控制原理,它与开环数控系统有什么区别?答:控制原理:闭环控制数控机床是在机床移动部件上直接安装直线位移检测装置,直接对工作台的实际位移进行检测,将检测量到的实际位移值反馈到数控装置中,与输入的指令位移值进行比较,用差值对机床进行控制,使移动部件按照实际需要的位移量运动,最终实现移动部件的精确运动和定位。
区别:闭环控制系统有反馈装置,而开环没有。
4.选择数控机床的时候应该考虑哪几方面的问题?答:(1)机床的类别(车、铣、加工中心等)、规格(行程范围)、性能(加工材料)。
(2)数控机床的主轴功率、扭矩、转速范围,刀具以及刀具系统的配置情况。
(3)数控机床的定位精度和重复定位精度。
(4)零件的定位基准和装夹方式。
(5)机床坐标系和坐标轴的联动情况。
(6)控制系统的刀具参数设置,包括机床的对刀、刀具补偿以及ATC等相关的功能。
在CNC系统中较广泛采用的另一种插补计算方法即所谓数据采样插补法,或称为时间分割法。
它尤其适合于闭环和半闭环以直流或交流电机为执行机构的位置采样控制系统。
这种方法是把加工一段直线或圆弧的整段时间细分为许多相等的时间间隔,称为单位时间间隔(或插补周期)。
每经过一个单位时间间隔就进行一次插补计算,算出在这一时间间隔内各坐标轴的进给量,边计算,边加工,直至加工终点。
与基准脉冲插补法不同,采用数据采样法插补时,在加工某一直线段或圆弧段的加工指令中必须给出加工进给速度v,先通过速度计算,将进给速度分割成单位时间间隔的插补进给量(或称为轮廓步长),又称为一次插补进给量。
例如,在FANUC 7M系统中,取插补周期为8 ms,若v的单位取mm/min,f的单位取mμ/8 ms,则一次插补进给量可用下列数值方程计算:10008260100015vf v⨯⨯==⨯按上式计算出一次插补进给量f后,根据刀具运动轨迹与各坐标轴的几何关系,就可求出各轴在一个插补周期内的插补进给量,按时间间隔(如8 ms)以增量形式给各轴送出一个一个插补增量,通过驱动部分使机床完成预定轨迹的加工。
由上述分析可知,这类算法的核心问题是如何计算各坐标轴的增长数x∆或y∆(而不是单个脉冲),有了前一插补周期末的动点位置值和本次插补周期内的坐标增长段,就很容易计算出本插补周期末的动点命令位置坐标值。
对于直线插补来讲,插补所形成的轮廓步长子线段(即增长段)与给定的直线重合,不会造成轨迹误差。
而在圆弧插补中,因要用切线或弦线来逼近圆弧,因而不可避免地会带来轮廓误差。
其中切线近似具有较大的轮廓误差而不大采用,常用的是弦线逼近法。
有时,数据采样插补是分两步完成的,即粗插补和精插补。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来逼近给定曲线,粗插补在每个插补计算周期中计算一次。
第二步为精插补,它是在粗插补计算出的每一条微小直线段上再做“数据点的密化”工作,这一步相当于对直线的脉冲增量插补。
什么是插补一、插补的概念在数控机床中,刀具不能严格地根据要求加工的曲线运动,只能用折线轨迹靠近所要加工的曲线。
插补(interpolation)定义:机床数控系统依照肯定方法确定刀具运动轨迹的过程。
也可以说,已知曲线上的某些数据,根据某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”。
数控装置向各坐标供应相互协调的进给脉冲,伺服系统依据进给脉冲驱动机床各坐标轴运动。
数控装置的关键问题:依据掌握指令和数据进行脉冲数目安排的运算(即插补计算),产生气床各坐标的进给脉冲。
插补计算就是数控装置依据输入的基本数据,通过计算,把工件轮廓的外形描述出来,边计算边依据计算结果向各坐标发出进给脉冲,对应每个脉冲,机床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的外形。
插补的实质:在一个线段的起点和终点之间进行数据点的密化。
插补工作可由硬件规律电路或执行软件程序来完成,在CNC系统中,插补工作一般由软件完成,软件插补结构简洁、敏捷易变、牢靠性好。
二、插补方法的分类目前普遍应用的两类插补方法为基准脉冲插补和数据采样插补。
1.基准脉冲插补(行程标量插补或脉冲增量插补)特点:每次插补结束,数控装置向每个运动坐标输出基准脉冲序列,每插补运算一次,最多给每一轴一个进给脉冲。
每个脉冲代表了最小位移,脉冲序列的频率代表了坐标运动速度,而脉冲的数量表示移动量。
每发出一个脉冲,工作台移动一个基本长度单位,也叫脉冲当量,脉冲当量是脉冲安排的基本单位。
该方法仅适用于一些中等精度或中等速度要求的计算机数控系统主要的脉冲增量插补方法:数字脉冲乘法器插补法逐点比较法数字积分法矢量判别法比较积分法最小偏差法目标点跟踪法单步追踪法直接函数法加密判别和双判别插补法2. 数字采样插补(数据增量插补)数据采样插补又称时间增量插补,这类算法插补结果输出的不是脉冲,而是标准二进制数。
依据程编进给速度,把轮廓曲线按插补周期将其分割为一系列微小直线段,然后将这些微小直线段对应的位置增量数据进行输出,以掌握伺服系统实现坐标轴的进给。
偏差的处理程序有哪些方法偏差处理程序是在数据分析和研究中非常重要的一部分,它可以帮助我们识别和纠正数据中的偏差,从而提高研究结果的准确性和可靠性。
在现实生活中,偏差可能来自于多种因素,如测量误差、样本选择偏差、采样偏差等。
因此,偏差处理程序应具体针对不同的偏差来源进行分析和处理。
下面将介绍一些常见的偏差处理方法。
1. 测量偏差处理:测量偏差是指由于测量方法的不准确性或主观因素导致的数据误差。
为了处理测量偏差,可以采取以下方法:- 校准仪器:对于使用仪器测量的数据,及时进行仪器的校准和维护,从而保证测量结果的准确性。
- 多次重复测量:对于关键数据,可以进行多次重复测量,并计算平均值来减少单次测量的随机误差。
- 引入标准样本:使用已知浓度的标准样本进行测量,通过与标准样本的比对,可以评估测量误差,并进行修正。
2. 样本选择偏差处理:样本选择偏差是指样本的选择方式导致的数据偏差。
为了处理样本选择偏差,可以采取以下方法:- 随机抽样:通过随机抽样的方式来选择样本,以降低样本选择偏差。
随机抽样可以使样本对总体更具代表性。
- 分层抽样:将总体按照某些特征进行分层,然后从每个层次中随机抽取样本。
这样能保证每个层次都有足够数量的样本,从而降低样本选择偏差。
3. 采样偏差处理:采样偏差是指由于采样过程中的系统误差导致的数据偏差。
为了处理采样偏差,可以采取以下方法:- 增加样本容量:增加采样的样本容量可以减少采样偏差。
更多的样本可以更好地反映总体的特点。
- 使用合适的采样方法:对于特定的总体分布特征,使用合适的采样方法。
例如,对于呈现集聚现象的总体,可以采用系统抽样。
4. 缺失数据偏差处理:缺失数据偏差是指由于数据缺失导致的数据偏差。
为了处理缺失数据偏差,可以采取以下方法:- 数据插补:对于缺失的数据,可以使用合适的插补方法进行填补,以恢复数据的完整性。
常用的插补方法包括均值插补、最近邻插补等方法。
- 删除缺失数据:对于缺失数据较多或不能插补的情况,可以选择删除缺失数据。
数据采样插补原理数据采样插补是指在数据分析和处理过程中,由于数据缺失或不完整而需要进行填补的一种方法。
在实际应用中,我们常常会遇到一些数据缺失的情况,例如某些观测点没有数据记录,或者某些时间段没有数据。
这时候,我们就需要使用数据采样插补的方法来填补这些缺失的数据,以便进行后续的分析和处理。
数据采样是指从总体中抽取一部分样本数据进行分析和推断的过程。
在数据采样过程中,我们需要保证样本的代表性和可靠性,以尽可能准确地反映总体的特征。
常用的数据采样方法包括随机抽样、分层抽样、整群抽样等。
通过合理选择采样方法和样本数量,我们可以在一定程度上降低数据采样误差,提高数据分析的准确性和可靠性。
数据插补是指根据已有数据的特征和规律,推断和填充缺失的数据。
数据插补可以通过各种方法进行,常见的方法包括均值插补、中位数插补、回归插补、插值法等。
这些方法都是根据已有数据的特征和规律进行推断和填充,以尽可能准确地恢复缺失的数据。
数据插补的目的是保持数据集的完整性和一致性,使得后续的分析和处理可以顺利进行。
数据采样插补的原理是将数据采样和数据插补两个方法相结合,通过采样得到样本数据,然后根据已有数据的特征和规律进行插补,填补缺失的数据。
这样可以在保持数据集完整性和一致性的同时,尽可能准确地反映总体的特征。
数据采样插补的过程中,我们需要考虑样本的代表性和可靠性,以及插补方法的准确性和可行性,以确保插补结果的准确性和可靠性。
数据采样插补在实际应用中具有广泛的应用场景。
例如,在气象领域,由于观测站点的分布不均匀,某些地区的观测数据可能缺失。
为了分析和预测气象变化,我们需要对这些缺失的数据进行插补,以获得完整的数据集。
又如,在金融领域,由于某些交易记录的缺失或错误,我们需要对这些数据进行插补,以保持数据集的完整性和一致性,以便进行后续的分析和建模。
数据采样插补是一种常用的数据处理方法,它可以在数据缺失或不完整的情况下,通过采样和插补的方法,填补缺失的数据,以保持数据集的完整性和一致性。