2017中考数学复习:四边形考点信息_考点解析
- 格式:docx
- 大小:11.31 KB
- 文档页数:2
九年级四边形知识点归纳总结在九年级的几何学中,四边形是一个十分重要的概念。
它是由四条直线段组成的平面图形,具有一些独特的性质和特点。
在本文中,我们将对九年级四边形的知识点进行归纳总结,以帮助同学们更好地理解和掌握这一内容。
四边形的定义是由四条线段组成的平面图形,它有四个顶点和四条边。
我们可以从定义中看出,四边形是一个具有几何形状的图形,同时它也是一个闭合的图形,因为它的所有边都相连接,形成一个封闭的形状。
在四边形的分类中,我们首先需要了解梯形和平行四边形这两种形状。
梯形有两条并行边,其它两边不一定平行。
平行四边形则是四边形的一种特殊情况,它具有四条边都是平行的特点。
除此之外,还有矩形、正方形和菱形这几种特殊的四边形形状。
矩形是一种具有四个直角的四边形。
它的特点是对角线相等且相交于中点,同时它的所有边都平行。
矩形经常出现在我们日常生活中的物体上,比如书桌、窗户等等。
正方形是一种特殊的矩形,它的所有边都相等,对角线相等且相交于90度角。
菱形也是一种特殊的四边形。
它的特点是所有边都相等,且对角线相交于90度角。
菱形可以看作是两个相交的直角三角形组成的,因此它具有一些与直角三角形相似的性质。
菱形也经常出现在我们的生活中,比如扑克牌、断桥残雪图案等等。
在四边形的性质中,我们还需要了解它的角度和边长之间的关系。
首先是梯形的角度性质。
梯形的两个底角(与底边相对的两个内角)之和等于180度,而顶角(与顶边相对的内角)之和等于180度。
这是因为梯形的两个底边是平行的,顶角与底角之和等于180度。
平行四边形的角度性质较为简单。
它内部的对边对应角相等,而对角则互补。
这是因为平行四边形具有一对对边是平行的特点,因此对边对应角相等。
同时平行四边形的对角形成的角度之和也等于180度。
矩形和正方形的角度性质与梯形和平行四边形有些类似。
它们的两个对角线上的角都是90度,对角线相等且相交于中点。
因为矩形和正方形都是特殊的平行四边形,所以它们具有平行四边形的一些性质。
考点14 四边形一、多边形1.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为()32n n-.2.多边形的内角和、外角和(1)内角和:n边形内角和公式为(n–2)·180°;(2)外角和:任意多边形的外角和为360°. 3.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn-⋅,每一个外角为360n︒.(3)正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.二、平行四边形的性质1.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“”表示.2.平行四边形的性质(1)边:两组对边分别平行且相等.(2)角:对角相等,邻角互补.(3)对角线:互相平分.(4)对称性:中心对称但不是轴对称.3.注意:利用平行四边形的性质解题时一些常用到的结论和方法:(1)平行四边形相邻两边之和等于周长的一半.(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.4.平行四边形中的几个解题模型(1)如图①,AE平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABE为等腰三角形,即AB=BE.(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.(3)如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S△ABE+S△CDE.(4)如图④,根据平行四边形的面积的求法,可得AE·BC=AF·CD.三、平行四边形的判定(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.(2)方法二:两组对边分别相等的四边形是平行四边形.(3)方法三:有一组对边平行且相等的四边形是平行四边形.(4)方法四:对角线互相平分的四边形是平行四边形.(5)方法五:两组对角分别相等的四边形是平行四边形.四、特殊平行四边形的性质与判定1.矩形的性质与判定(1)矩形的性质:①四个角都是直角;②对角线相等且互相平分;③面积=长×宽=2S△ABD=4S△AOB.(如图)(2)矩形的判定:①定义法:有一个角是直角的平行四边形;②有三个角是直角;③对角线相等的平行四边形.2.菱形的性质与判定(1)菱形的性质:①四边相等;②对角线互相垂直、平分,一条对角线平分一组对角;③面积=底×高=对角线乘积的一半.(2)菱形的判定:①定义法:有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等的四边形.3.正方形的性质与判定(1)正方形的性质:①四条边都相等,四个角都是直角;②对角线相等且互相垂直平分;③面积=边长×边长=2S△ABD=4S△AOB.(2)正方形的判定:①定义法:有一个角是直角,且有一组邻边相等的平行四边形;②一组邻边相等的矩形;③一个角是直角的菱形;④对角线相等且互相垂直、平分.4.联系①两组对边分别平行;②相邻两边相等;③有一个角是直角;④有一个角是直角;⑤相邻两边相等;⑥有一个角是直角,相邻两边相等;⑦四边相等;⑧有三个角都是直角.5.中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一多边形多边形内角和:n边形内角和公式为(n–2)·180°;多边形外角和:任意多边形的外角和为360°;正多边形是各边相等,各角也相等的多边形.典例1 一个多边形的内角和为900°,则这个多边形是A.六边形B.七边形C.八边形D.九边形【答案】B典例2 如果一个多边形的每一个外角都是60°,那么这个多边形是A.四边形B.五边形C.六边形D.八边形【答案】C【解析】多边形外角和为360°,此多边形外角个数为:360°÷60°=6,所以此多边形是六边形.故选C.【名师点睛】计算正多边形的边数,可以用外角和除以每个外角的度数得到.1.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是A.17 B.16 C.15 D.16或15或172.如果一个多边形的每一个内角都是108°,那么这个多边形是A.四边形B.五边形C.六边形D.七边形考向二平行四边形的性质与判定1.平行四边形的对边相等、对角相等、对角线互相平分.平行四边形的性质为我们证明线段平行或相等,角相等提供了新的理论依据.2.平行四边形的判定方法有五种,在选择判定方法时应根据具体条件而定.对于平行四边形的判定方法,应从边、角及对角线三个角度出发,而对于边又应考虑边的位置关系及数量关系两方面.典例3 在ABCD中,∠A∶∠B∶∠C∶∠D的值可能是A.3∶4∶3∶4 B.5∶2∶2∶5C.2∶3∶4∶5 D.3∶3∶4∶4【答案】A【解析】∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴在ABCD中,∠A∶∠B∶∠C∶∠D 的值可能是:3∶4∶3∶4.故选A.【名师点睛】本题考查了平行四边形的性质.熟记平行四边形的对角相等是解决问题的关键.典例4在下列条件中,不能判定四边形为平行四边形的是A.对角线互相平分B.一组对边平行且相等C.两组对边分别平行D.一组对边平行,另一组对边相等【答案】D3.平行四边形的周长为24,相邻两边的差为2,则平行四边形的各边长为.A.4,4,8,8 B.5,5,7,7C.5.5,5.5,6.5,6.5 D.3,3,9,94.小玲的爸爸在制作平行四边形框架时,采用了一种方法:如图所示,将两根木条AC,BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形考向三矩形的性质与判定1.矩形除了具有平行四边形的一切性质外,还具有自己单独的性质,即:矩形的四个角都是直角;矩形的对角线相等.2.利用矩形的性质可以推出直角三角形斜边中线的性质,即在直角三角形中,斜边上的中线等于斜边的一半.3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.典例5 如图,四边形ABCD的对角线AC、BD相交于点O,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是A.AB=CD,AC=BD B.OA=OC,OB=ODC.AC⊥BD,AC=BD D.AB∥CD,AD=BC【答案】B【名师点睛】本题考查矩形的判定方法、熟练掌握矩形的判定方法是解决问题的关键,记住对角线相等的平行四边形是矩形,有一个角是90度的平行四边形是矩形,有三个角是90度的四边形是矩形.此类题属于中考常考题型.典例6 如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是A.1 cm B.2 cmC.3 cm D.4 cm【答案】C【解析】∵四边形ABCD是矩形,∴OA=OC=OB=OD=3 cm,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3 cm,故选C.【名师点睛】本题考查了矩形的性质,等边三角形的判定和性质,熟记各性质并判断出△AOB是等边三角形是解题的关键.5.能判断四边形是矩形的条件是A.两条对角线互相平分B.两条对角线相等C.两条对角线互相平分且相等D.两条对角线互相垂直6.如图,已知在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,若∠DAE∶∠BAE=3∶1,则∠EAC的度数是A.18°B.36°C.45°D.72°考向四菱形的性质与判定1.菱形除了具有平行四边形的一切性质外,具有自己单独的性质,即:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角.2.菱形的判定:四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形.典例7菱形具有而平行四边形不具有的性质是A.两组对边分别平行B.两组对边分别相等C.一组邻边相等D.对角线互相平分【答案】C【解析】根据菱形的性质及平行四边形的性质进行比较,可发现A,B,D两者均具有,而C只有菱形具有平行四边形不具有,故选C.【名师点睛】有一组邻边相等的平行四边形是菱形.典例8如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件_____________,使四边形ABCD成为菱形.(只需添加一个即可)【答案】BO=DO(答案不唯一)【解析】四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD互相平分(对角线互相垂直且平分的四边形是菱形).故答案为:BO=DO(答案不唯一).7.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为A.45°,135°B.60°,120°C.90°,90°D.30°,150°8.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.考向五正方形的性质与判定1.正方形的性质=矩形的性质+菱形的性质.2.正方形的判定:以矩形和菱形的判定为基础,可以引申出更多正方形的判定方法,如对角线互相垂直平分且相等的四边形是正方形.证明四边形是正方形的一般步骤是先证出四边形是矩形或菱形,再根据相应判定方法证明四边形是正方形.典例9如图,正方形ABCD中,E是BD上一点,BE=BC,则∠BEC的度数是A.45°B.60°C.67.5°D.82.5°【答案】C【解析】利用正方形的性质,可知∠CBE=45°,再根据等腰三角形的性质即可得出答案.∵四边形ABCD是正方形,∴∠CBD=45°,∵BC=BE,∴∠BEC=∠BCE=12×(180°−45°)=67.5°.故选C.典例10下列命题正确的是A.对角线互相垂直平分且相等的四边形是正方形B.对角线相等的四边形是矩形C.一组对边相等,另一组对边平行的四边形是平行四边形D.对角线互相垂直的四边形是菱形【答案】A【名师点睛】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的判定,此题难度不大.9.如图,已知正方形ABCD的边长为53,E为BC边上的一点,∠EBC=30°,则BE的长为A.5B.25C.5 D.1010.如图,要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明A.AB=AD且AC⊥BD B.AB=AD且AC=BDC.∠A=∠B且AC=BD D.AC和BD互相垂直平分考向六中点四边形1.中点四边形一定是平行四边形;2.中点四边形的面积等于原四边形面积的一半.典例11如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,故C正确;D.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF=FG=GH=HE,则四边形EFGH为菱形,故D错误;故选D.11.顺次连接下列四边形的四边中点所得图形一定是菱形的是A.平行四边形B.菱形C.矩形D.梯形12.如图,我们把依次连接任意四边形ABCD各边中点所得四边形EFGH叫中点四边形.若四边形ABCD 的面积记为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是A.S1=3S2B.2S1=3S2C.S1=2S2D.3S1=4S21.下面四个图形中,是多边形的是2.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是A.7 B.10 C.35 D.703.n边形的边数增加一倍,它的内角和增加A.180°B.360°C.(n–2)·180°D.n180°4.七边形的外角和等于A.180ºB.360ºC.540ºD.720º5.在平行四边形ABCD中,∠A的平分线交DC于E,若∠DEA=30°,则∠B=A.100°B.120°C.135°D.150°6.如图所示,在ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有_____个平行四边形.7.如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE=650,则∠AEB=____________.8.如图,正方形ABCD的面积为5,正方形BEFG面积为4,那么△GCE的面积是________.9.如图,在ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.学科!网10.如图,E,F,G,H分别是边AB,BC,CD,DA的中点.(1)判断四边形EFGH的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形.11.如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线CA平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.1.(2017•铜仁市)一个多边形的每个内角都等于144°,则这个多边形的边数是A.8 B.9C.10 D.112.(2017•黑龙江)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是A.22 B.20C.22或20 D.183.(2017•聊城)如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是A.AB=AC B.AD=BDC.BE⊥AC D.BE平分∠ABC4.(2017•西宁)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为A.5 B.4 C.342D.345.(2017•扬州)在平行四边形ABCD中,∠B+∠D=200°,则∠A=__________.6.(2017•青海)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1–∠2=__________.7.(2017•邵阳)如图所示的正六边形ABCDEF,连接FD,则∠FDC的大小为__________.8.(2017•抚顺)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=3时,线段BC的长为__________.9.(2017•襄阳)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.10.(2017•安顺)如图,DB∥AC,且DB=12AC,E是AC的中点.(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则需给△ABC添加什么条件,为什么?3.【答案】B【解析】平行四边形的对边相等,所以两邻边的和为周长的一半.周长为24,则两邻边的和为12.又因为相邻的两边相差2,则可计算出较长的一边长为7,较短的一边长为5.故选B.变式拓展4.【答案】A【解析】对角线互相平分的四边形是平行四边形.故选A . 5.【答案】C【解析】A 、对角线互相平分的四边形是平行四边形,不一定是矩形,故错误; B 、等腰梯形的对角线也相等,故错误;C 、对角线互相平分且相等的四边形是矩形,故正确;D 、对角线互相垂直的四边形不一定是矩形,故错误, 故选C .7.【答案】B【解析】如图,由题意知AB =BC =AC ,∵AB =BC =AC ,∴△ABC 为等边三角形,即60B ∠=︒,根据平行四边形的性质,18060120.BAD ∠=-=︒︒︒故选B .8.【解析】∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形, ∴∠FAD =∠EDA ,∵AD 是∠BAC 的平分线,∴∠EAD =∠FAD ,∴∠EAD =∠EDA , ∴AE =ED ,∴四边形AEDF 是菱形. 9.【答案】D 【解析】设,CE x =30EBC ∠=︒,2,BE x ∴=根据勾股定理,22353,BC BE CE x =-==5,x ∴=210.BE x ∴==故选D .11.【答案】C【解析】∵顺次连接任意四边形的四边中点所得图形一定是平行四边形, 当对角线相等时,所得图形一定是菱形,故选C . 12.【答案】C【解析】如图,设AC 与EH 、FG 分别交于点N 、P ,BD 与EF 、HG 分别交于点K 、Q , ∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC , 同理可证EH ∥BD ,∴△EBK ∽△ABM ,△AEN ∽△EBK ,∴EBK ABM S S △△=14,S △AEN =S △EBK ,∴EKMN ABM S S 四边形△=12,同理可得KFPM BCM S S 四边形△=12, QGPM DCM S S 四边形△=12,HQMN DAM S S 四边形△=12,∴EFGH ABCD S S 四边形四边形=12,∵四边形ABCD 的面积记为S 1,中点四边形EFGH 的面积记为S 2,则S 1与S 2的数量关系是S 1=2S 2.故选C .1.【答案】D【解析】根据多边形的定义:平面内不在一条直线上的线段首尾顺次相接组成的图形叫多边形,得:D 是考点冲关多边形.故选D.2.【答案】C【解析】∵一个正n边形的每个内角为144°,∴144n=180×(n–2),解得:n=10,这个正n边形的所有对角线的条数是:(3)10722n n-⨯==35,故选C.6.【答案】4【解析】∵在ABCD中,E,F分别为AB,DC的中点,∴DF=CF=AE=EB,AB∥CD,∴四边形AEFD,CFEB,DFBE是平行四边形,再加上ABCD本身,共有4个平行四边形.故答案为4.7.【答案】50°【解析】如图所示,由矩形ABCD可得AD∥BC,∴∠1=∠BFE=65°,由翻折得∠2=∠1=65°,∴∠AEB=180°–∠1–∠2=180°–65°–65°=50°.故答案为:50°.852【解析】∵正方形ABCD的面积为5,正方形BEFG面积为4,∴正方形ABCD5BEFG的边长为2,∴CE52,△GCE的面积=12 CE•BG=12×(5–2)×2=5–2.故答案为:5–2.9.【解析】(1)∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴ABCD是矩形;(2)∵四边形ABCD是矩形,∴BD=AC=10.10.【解析】(1)在△ABC中,E、F分别是边AB、BC中点,所以EF∥AC,且EF=12AC,同理有GH∥AC,且GH=12AC,∴EF∥GH且EF=GH,故四边形EFGH是平行四边形.11.【解析】(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠FAC=∠ECA,在△AOF和△COE中,FAC ECAOA OCAOF COE∠∠⎧⎪⎨⎪∠∠⎩===,∴△AOF≌△COE(ASA),∴OE=OF,∴四边形AECF是平行四边形,∵AF=CF,∴四边形AECF是菱形;(2)设CF=x,则AF=x,BF=8–x,∵四边形ABCD是矩形,∴∠B=90°,∴BF2+AB2=AF2,∴(8–x)2+42=x2,解得:x=5,即EC=5,∴S菱形AECF=FC•AB=5×4=20.1.【答案】C【解析】180°–144°=36°,360°÷36°=10,则这个多边形的边数是10.故选C.2.【答案】C【解析】如图,在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2×(3+3+4)=20.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2×(4+4+3)=22.故选C.4.【答案】D【解析】∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴DC=6,∵AD=BC=10,∴AC22AD CD34∴BO=12AC34D.5.【答案】80°【解析】∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°–∠B=180°–100°=80°,故答案为:80°.6.【答案】24°直通中考【解析】正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5–2)×180°÷5=108°,正六边形的每个内角是:(6–2)×180°÷6=120°,则∠3+∠1–∠2=(90°–60°)+(120°–108°)–(108°–90°)=24°.故答案为:24°.7.【答案】90°【解析】∵在正六边形ABCDEF中,∠E=∠EDC=120°,∵EF=DE,∴∠EDF=∠EFD=30°,∴∠FDC=90°,故答案为:90°.8.【答案】3【解析】由条件可知AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴BC=AD=3.故答案为3.9.【解析】(1)∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=12BD=3,∵∠ADB=30°,∴cos∠ADB=3ODAD,∴AD=3=23.10.【解析】(1)∵E是AC中点,∴EC=12AC.∵DB=12AC,∴DB=E C.又∵DB∥AC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.理由:∵DB∥AE,DB=AE,∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴ADBE是矩形.。
2017 中考数学考点梳理:四边形2017中考数学考点梳理:四边形一、多边形1、多边形:由一些线段首尾按序连接构成的图形,叫做多边形。
2、多边形的边:构成多边形的各条线段叫做多边形的边。
3、多边形的极点:多边形每相邻两边的公共端点叫做多边形的极点。
4、多边形的对角线:连接多边形不相邻的两个极点的线段叫做多边形的对角线。
5、多边形的周长:多边形各边的长度和叫做多边形的周长。
6、凸多边形:把多边形的任何一条边向双方延伸,如果多边形的其余各边都在延伸线所得直线的问旁,这样的多边形叫凸多边形。
说明:一个多边形起码要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。
此后所说的多边形,假如不特别申明,都是指凸多边形。
7、多边形的角:多边形相邻两边所构成的角叫做多边形的内角,简称多边形的角。
8、多边形的外角:多边形的角的一边与另一边的反向延伸线所构成的角叫做多边形的外角。
注意:多边形的外角也就是与它有公共极点的内角的邻补角。
9、n 边形的对角线共有条。
说明:利用上述公式,能够由一个多边形的边数计算出它的对角线的条数,也能够由一个多边形的对角线的条数求出它的边数。
10、多边形内角和定理: n 边形内角和等于( n- 2)180°。
11、多边形内角和定理的推论:n 边形的外角和等于360°。
说明:多边形的外角和是一个常数(与边数没关),利用它解决相关计算题比利用多边形内角和公式及对角线求法公式简单。
不论用哪个公式解决相关计算,都要与解方程联系起来,掌握计算方法。
二、平行四边形1、平行四边形:两组对边分别平行的四边形叫做平行四边形。
2、平行四边形性质定理 1:平行四边形的对角相等。
3、平行四边形性质定理 2:平行四边形的对边相等。
4、平行四边形性质定理 2 推论:夹在平行线间的平行线段相等。
5、平行四边形性质定理 3:平行四边形的对角线相互平分。
6、平行四边形判断定理 1:一组对边平行且相等的四边形是平行四边形。
中考知识点四边形的性质四边形是中学数学中的一个重要概念,它是由四条线段组成的图形。
在中考中,对于四边形的性质要求比较高,学生需要熟练掌握四边形的定义、分类、对角线性质、角性质和边性质等知识点。
下面将就四边形的性质进行详细讲解。
一、四边形的定义四边形是由四条线段组成的几何图形,其中任意两条线段的交点不在其他两条线段上。
四边形的四个顶点依次连接成的四条边分别是相邻边,四边形的两条不相交的边称为对边。
二、四边形的分类根据四边形的性质和特点,可以将四边形分为以下几类:1. 平行四边形:具有两对对边相互平行的四边形。
2. 矩形:具有四个内角都是直角的四边形。
3. 正方形:具有四条边相等且内角都是直角的四边形。
4. 菱形:具有四条边相等的四边形。
5. 长方形:具有相对的两个对边相等且内角都是直角的四边形。
6. 一般四边形:除了以上几种特殊四边形之外,其余四边形都属于一般四边形。
三、对角线性质四边形的对角线是指连接四边形的非相邻顶点所形成的线段。
四边形的对角线有以下性质:1. 平行四边形的对角线互相等长。
2. 矩形的对角线相互等长。
3. 正方形的对角线相互等长且互相垂直。
4. 菱形的对角线相互垂直且互相平分。
5. 长方形的对角线相互垂直且互相等长。
四、角性质四边形的角也是研究四边形性质的重要内容,不同类型的四边形具有不同的角性质。
1. 平行四边形的对边角相等。
2. 矩形的内角都是直角,外角都是直角的补角。
3. 正方形的内角都是直角,外角都是直角的补角,且内角都是45度。
4. 菱形的内角相互等于,外角相互等于,且内角都是60度。
5. 长方形的内角都是直角,外角都是直角的补角。
五、边性质四边形的边也有一些特殊性质值得注意:1. 平行四边形的对边相等。
2. 矩形的对边相等。
3. 正方形的四条边相等。
4. 菱形的四条边相等。
5. 长方形的对边相等。
综上所述,四边形是由四条线段组成的几何图形。
根据四边形的性质和特点,可以将其分为不同的种类:平行四边形、矩形、正方形、菱形和长方形。
中考数学总复习知识点总结四边形四边形是指具有四条边的几何图形,在数学中有着重要的地位。
下面是中考数学总复习知识点总结四边形的内容。
一、基本定义和性质1.四边形的定义:具有四个顶点、四条边和四个内角的几何图形称为四边形。
2.四边形的分类:a.顶点关系分类:凸四边形和凹四边形;b.边长关系分类:等边四边形、等腰四边形和普通四边形;c.内角关系分类:矩形、正方形、平行四边形、菱形、梯形等。
3.四边形的性质:a.任意一条对角线将四边形分成两个三角形;b.对角线互相平分;c.相对边平行;d.相对角和为180度。
二、特殊四边形1.平行四边形:a.定义:对边平行的四边形;b.性质:i.对边相等;ii. 相邻内角互补;iii. 对角相等。
c.定理:1)如果一条对角线把平行四边形分成两个等腰三角形,则这条对角线是平行四边形的对称轴;2)如果一个四边形的对角线互相平分,则这个四边形是平行四边形。
2.矩形:a.定义:对边平行且四个内角都是直角的四边形;b.性质:i.两对对边相等;ii. 对角线相等;iii. 相邻内角互补;iv. 对角线互相平分。
3.菱形:a.定义:四个边都相等的平行四边形;b.性质:i.相邻内角互补;ii. 对角线互相垂直;iii. 对角线平分相应的内角。
4.正方形:a.定义:对边相等且四个内角都是直角的矩形;b.性质:i.两对对边相等;ii. 对角线相等;iii. 对角线互相垂直;iv. 对角线平分相应的内角。
5.等腰梯形:a.定义:有两对对边平行且有两条边相等的梯形;b.性质:i.上底和下底平分相应的内、外角;ii. 对角线等分梯形的积。
三、四边形的面积和周长1.面积:a.矩形的面积等于长度乘以宽度;b.平行四边形的面积等于底边长乘以高;c.三角形的面积等于底边长乘以高的一半;d.梯形的面积等于上底和下底的平均值乘以高;e.菱形的面积等于对角线的乘积的一半;f.正方形的面积等于一条边长的平方。
2.周长:a.四边形的周长等于四条边的长度之和;b.正方形的周长等于边长的四倍。
中考数学总复习知识点总结四边形本文将围绕中考数学总复习知识点总结四边形展开,主要包括四边形的性质、特殊四边形、四边形的周长和面积等方面的内容。
希望可以帮助中考学生对这一知识点进行系统性的复习,提高复习效果。
四边形的性质:1.四边形是由四条线段围成的图形,共有四个顶点和四条边。
2.顺序连接四个顶点得到四边形的周界。
3.四边形的内角和为360度。
4.一个四边形的对角线是连接两个非相邻顶点的线段。
5.对角线分割四边形成为两个三角形。
6.对角线相交于一点且互相平分。
特殊四边形:1.矩形:四个顶点都是直角,对角线长度相等。
2.正方形:四个顶点都是直角,对边相等。
3.平行四边形:对边平行。
4.菱形:四个顶点都相等,对边平行。
5.梯形:有两条平行边。
6.等腰梯形:有两条平行边,两个非平行边长度相等。
4.三角形:只有三个顶点。
四边形的周长和面积:1.周长:计算四边形周长的方法是将四条边的长度相加。
如果已知四边形的其中一方向边的长度,可以根据其性质计算其他边的长度再相加。
2.面积:计算四边形面积的方法因四边形的类型不同而不同。
矩形的面积可以通过长度和宽度的乘积得到。
正方形的面积可以直接通过边长的平方得到。
平行四边形的面积可以通过底边的长度和高的长度的乘积得到。
菱形的面积可以通过对角线的长度乘积的一半得到。
梯形的面积可以通过上底和下底的和乘以高再除以2得到。
等腰梯形的面积可以通过上底和下底的和乘以高再除以2得到。
三角形的面积可以通过底边的长度和高的长度的乘积再除以2得到。
为了更好地掌握四边形的知识点,建议中考学生进行以下练习:1.根据已知的四边形性质,判断下列说法是否正确:(1)一个四边形的对角线是连接两个相邻顶点的线段。
(2)一个四边形的内角和为180度。
(3)对角线相交于一点且互相垂直。
(4)矩形是一种特殊的梯形。
(5)等腰梯形的面积可以通过上底和下底的差再乘以高得到。
2.计算下列四边形的周长和面积:(1) 长方形,长为6cm,宽为4cm。
四边形知识点总结一、四边形概念四边形是一个平面图形,它有四条边和四个顶点。
四边形是几何学中的一个基本概念,也是我们日常生活中经常遇到的图形。
四边形可以根据其性质和特征分为多种不同的类型,我们可以通过这些性质和特征来研究和分析四边形图形的性质和关系。
二、四边形的分类1. 矩形矩形是一种特殊的四边形,它的对边相等且平行,且每个角都是直角。
矩形是一个非常常见的图形,它有着许多特殊的性质和特征,比如对角线相等,对边平行等。
2. 平行四边形平行四边形是一种四边形,它的对边两两平行。
平行四边形具有许多特殊的性质,比如对角线相等,对边平行等。
3. 梯形梯形是一种至少有一对对边平行的四边形,它有两条并不相等的对边。
梯形也是一种常见的图形,它有着许多特殊的性质,比如对角线平行等。
4. 菱形菱形是一种特殊的平行四边形,它的四边都相等,且对角相等。
菱形具有一些特殊的性质,比如对角线相等,对边平行等。
5. 正方形正方形是一种特殊的矩形和菱形,它的四条边相等且每个角都是直角。
正方形是一种非常常见的图形,它有着许多特殊的性质和特征,比如对角线相等,对边平行等。
三、四边形的性质1. 对角线性质对于任意一个四边形,其对角线之间的距离是相等的,即对角线相等。
这个性质是许多四边形的共同性质,比如矩形、菱形和正方形。
2. 对边平行性质对于平行四边形和梯形,它们的对边两两平行。
这个性质为我们研究和分析这些四边形图形提供了重要的线索。
3. 相邻角性质四边形的相邻两个角的和为180度。
这个性质可以帮助我们计算出四边形内部角的大小,以及判断四边形的类型。
4. 对边长度性质对于矩形、菱形和正方形,它们的对边长度相等。
这个性质可以帮助我们判断四边形的类型,以及求解四边形的边长。
5. 对角度性质对于矩形和正方形,它们的每个角都是直角。
菱形的每个角也都相等。
这些性质可以帮助我们判断四边形的类型,以及求解四边形的角度大小。
四、四边形的计算1. 周长四边形的周长等于其四条边的长度之和。
第四章四边形性质探索知识点归纳 一.四边形的相关概念和性质(1)在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形.四边形用表示它的各顶点的字母来表示.注意:表示四边形必须按顶点的顺序书写,可按照顺时针或逆时针的顺序.如图读作“四边形ABCD ” .(2)在四边形中,连结不相邻两个顶点的线段叫做四边形的对角线.注意:①四边形共有两条对角线.②连结四边形的对角线也是一种常用的辅助线作法.(3)四边形的不稳定性:三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性.但是,四边形四边长确定后,它的形状不能确定.这就是四边形具有不稳定性,它在生产、生活方面有很多的应用.(4)四边形的内角和等于 360.(5)四边形的外角和等于 360.注意:1、四边形内角中最多有三个钝角,四个直角,三个锐角;2、四边形外角中最多有三个钝角、四个直角、三个锐角,最少没有钝角,没有直角,没有锐角;3、四边形内角与同一个顶点的一个外角互为邻补角.二.多边形的概念和性质:(1)n 边形的内角和等于 180)2(⋅-n .(2)任意多边形的外角和等于 360.(3)n 边形共有2)3(-n n 条对角线.(4)在平面内,内角都相等且边都相等的多边形叫做正多边形。
(5)正多边形的每个内角等于n n 180).2(-三、平行四边形.1.平行四边形的性质(1)平行四边形的邻角互补,对角相等.(2)平行四边形的对边平行且相等.(3)夹在两条平行线间的平行线段相等.(4)平行四边形的对角线互相平分.(5)中心对称图形,对称中心是对角线的交点。
(6)若一直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分四边形的面积.2.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形.(2)定理1:两组对角分别相等的四边形是平行四边形.(3)定理2:两组对边分别相等的四边形是平行四边形.(4)定理3:对角线互相平分的四边形是平行四边形.(5)定理4:一组对边平行且相等的四边形是平行四边形.3.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离.平行线间的距离处处相等.注意:(1)距离是指垂线段的长度,是正值.(2)两条平行线的位置确定后,它们的距离是定值,不随垂线段位置改变.(3)平行线间的距离处处相等,因此在作平行四边形的高时,可根据需要灵活选择位置.4.平行四边形的面积S=底边长×高=ah(a是平行四边形任何一边长,h必须是a边与其对(1)、平行四边形边的距离).(2)、同底(等底)同高(等高)的平行四边形面积相等.四.矩形、1.矩形的定义:_________________________________2.矩形的性质:(1)对边平行且相等。
专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12C . 16D .18【答案】B .【解析】试题分析:设多边形的边数为n ,则有(n -2)×180°=n ×150°,解得:n =12.故选B .考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C .AC BD = D .12∠=∠【答案】C .考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D【解析】试题分析:根据菱形的对角线互相垂直,可知OA =3,OB =4,根据勾股定理可知AB =5,所以菱形的周长为4×5=20.故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m =8a ,设CM =x ,DE =y ,则DM =2a -x ,EM =2a -y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG =(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM +CG +MG =24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a -x )2+y 2=(2a -y )2整理得4ax -x 2=4ay∴CM +MG +CG =2444ax x ay a y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【答案】C【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n -2)·180°=720°,解得n =6,故是六边形.故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形.若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误;若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( )A .24B .14C .13D .23【答案】A .【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DF EB EF BF== ,因点E 是边BC 的中点且AD =BC ,所以AD AF DF EB EF BF ===2,设EF =x ,可得AF =2x ,在Rt △ABE 中,由射影定理可得BF =2x ,再由AD AF DF EB EF BF ===2可得DF =22x ,在Rt △DEF 中,tan BDE ∠=2422EF x DF x == ,故选A . 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243C .323D .3238-【答案】A .【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点 423,3AF EF EL ∴==∴=,P 是F E 的中点,32PK ∴= 43DH = 1373322PP CD ∴-= 高为4 7382832S ∴=⨯=L K H故答案选A .考点:平行四边形的面积,三角函数. 10.(2017江苏苏州第7题)如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36C .54D .72【答案】B .【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B . 考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为 ( )A . 53B .2C . 52D .4 【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【答案】5.【解析】试题分析:连结AC ,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC =FG =2,AC =32,即可得AE =22,因P 为AE 的中点,可得PE =AP =2,再由正方形的性质可得GM =EM =22,FG 垂直于AC ,在Rt △PGM 中,PM =322,由勾股定理即可求得PG =5.2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD =∠ODC =180°-108°=72°,∴∠COD =36°,∴∠AOB =360°-108°-108°-36°=108°.D C3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)137A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40)17,F CF OC CFO COF ∴=<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1137,22FG OB FG OB ∴== D E 、 是OB 的三等分点,1373DE ∴= 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确 113733OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70°【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70°考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA =OC ,OB =OD =12BD =5,CD =AB =4,由sin ∠BDC =35,证出AC ⊥CD ,OC =3,AC =2OC =6,得出▱ABCD 的面积=CD •AC =24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD =32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH =EH ,设AH =x ,则DH =EH =8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x =3,即可得AH =3,EH =5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EH BE BF EF == ,即3452BF EF ==,解得BF =83 ,EF =103,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA +PE 的最小值是 .【答案】10.9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】3105. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB =BG =EF =CD =5,AD =GF =3,在Rt △BCG 中,根据勾股定理求得CG =4,再由1122BCG S BC CG BG CM =⋅=⋅ ,即可求得CM =125 ,在Rt △BCM 中,根据勾股定理求得BM =22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE =MN =3,BM =EN =95,所以CN =MN -CM =3-125=35,在Rt △ECN 中,根据勾股定理求得EC =22223990310()()55255CN EN +=+==.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. 【解析】试题分析:连接AG ,设DG =x ,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC =='254974'55CC BB +∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB ,已知菱形的周长为cm 24,根据菱形的性质可得AB =6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE =33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 . 考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(2)3. 【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.本题解析:(1)证明:∵E 为AD 中点,A D =2BC ,∴BC =ED , ∵AD ∥BC , ∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)∵AD ∥BC ,AC 平分∠BAD ∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°, ∴∠DAC =30°, ∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC = 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ’的坐标为(2,1);(2)1;(3)3333(,)22--或2333(,)22- . 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得OA =3 ,OB =1,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’=OA =3,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB =2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B , ∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A ’OP ≌△AOP .∴OA ’=OA =3,由OB B A ⊥',得∠A ’BO =90°.在Rt △A ’OB 中,22''2A B OA OB =-=, ∴点A ’的坐标为(2,1). (2) 在Rt △AOB 中,OA =3 ,OB =1, ∴222AB OA OB =+= ∵当P 为AB 中点, ∴AP =BP =1,OP =12AB =1. ∴OP =OB =BP , ∴△BOP 是等边三角形 ∴∠BOP =∠BPO =60°, ∴∠OPA =180°-∠BPO =120°. 由(1)知,△A ’OP ≌△AOP ,∴∠OPA ’=∠OPA =120°,P ’A =PA =1,又OB =PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B =OP =1. (3)3333(,)22--或2333(,)22- .4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF =324【解析】试题分析:(Ⅰ)分情况CP =CD 、PD =PC 、DP =DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP =2 ,从而可得CF =324. 试题解析:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6, AC =22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP =CD 时,CP =6,∴AP =AC -CP =4 ;(2)当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC,即AP =5;(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ ,∵S △ADC =12 AD ·DC =12AC ·DQ ,∴DQ =245AD DC AC = ,∴CQ =22185DC DQ -= ,∴PC =2CQ =365 ,∴AP =AC -PC =145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF ,∵∠BCD =90°,OE =OD ,∴OC =12 ED ,在矩形PEFD 中,PF =DE ,∴OC =12PF ,∵OP =OF =12PF ,∴OC =OP =OF ,∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°,在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD ,∴△ADP ∽△CDF ,∴34CF CD AP AD == ,∵AP =2 ,∴CF =324.5. (2017广东广州第24题)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.【答案】(1)详见解析;(2)①2sin 3EAD ∠= ②32AP =和Q 走完全程所需时间为32s 【解析】(2)①连接OE ,直线OE 分别交AB 于点F ,交DC 于点GCOD ∆ 关于CD 的对称图形为CED ∆,OE DC DC AB ∴⊥ ,OF AB EF AD ∴⊥在矩形ABCD 中,G 为DC 的中点,且O 为AC 的中点OG ∴ 为CAD ∆ 的中位线 52OG GE ∴==同理可得:F 为AB 的中点,532OF AF ==, 22223593()22AE EF AF ∴=+=+= 32sin sin 932EAD AEFEAD AEF ∠=∠∴∠=∠==②过点P 作PM AB ⊥ 交AB 于点MQ ∴ 由O 运动到P 所需的时间为3s由①可得,23AM AP = ∴ 点O 以1.5/cm s 的速度从P 到A 所需的时间等于以 1/cm s 从M 运动到A 即:11OP PA OP MA t t t OP MA =+=+=+ Q ∴ 由O 运动到P 所需的时间就是OP +MA 和最小.如下图,当P 运动到1P ,即1PO AB 时,所用时间最短. 3t OP MA ∴=+=在11Rt APM ∆ 中,设112,3AM x APx == 2222211115(3)=(2)+()22AP AM PM x x =+∴ 解得:12x = 32AP ∴= 32AP ∴=和Q 走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。
初中四边形知识点总结归纳四边形作为初中数学中的重要内容,是学习几何学不可或缺的一部分。
在初中阶段,我们需要系统地学习和掌握四边形的性质、分类以及相关的定理。
本文将对初中四边形的知识点进行总结和归纳,帮助大家更好地理解和掌握这一部分知识。
1. 四边形的定义四边形是由四条线段组成的图形。
四边形的特点是有四个顶点、四条边和四个内角。
2. 四边形的分类根据边长和角度的不同,四边形可以分为以下几类:1) 矩形:具有四个右角的四边形,对边相等。
2) 正方形:具有四个相等边和四个右角的四边形。
3) 平行四边形:具有两对平行边的四边形。
4) 长方形:具有四个右角的四边形,对边相等。
5) 菱形:具有四个相等边的四边形。
6) 梯形:具有两对平行边的四边形。
7) 不规则四边形:没有特殊性质的四边形。
3. 四边形的性质1) 内角和定理:任意四边形的内角和等于360度。
2) 对角线性质:- 矩形、正方形和菱形的对角线相互平分。
- 平行四边形的对角线互相等长。
- 不规则四边形的对角线一般不相等。
3) 矩形、正方形和菱形的边长关系:正方形的边长等于矩形或菱形的长度,矩形和菱形的边长相等。
4) 平行四边形的边长关系:对边相等。
5) 梯形的特点:有一个对角线作为它的中线,两腰相等的梯形是等腰梯形。
6) 不规则四边形的特点:没有特殊性质,边长和角度都可能不相等。
4. 四边形的重要定理1) 矩形的重要定理:- 矩形的对角线相等。
- 矩形的四个角都是直角。
- 矩形的边互相垂直。
2) 正方形的重要定理:- 正方形的对角线相等且垂直。
- 正方形的对角线平分角。
- 正方形的四个角都是直角。
3) 平行四边形的重要定理:- 平行四边形的对边平行且相等。
- 平行四边形的对角线互相平分。
4) 菱形的重要定理:- 菱形的对角线互相垂直。
- 菱形的对角线平分角。
5. 解题技巧和注意事项1) 综合运用已知条件和四边形的性质来解题。
2) 注意图形的标记和注释,保持清晰易懂。
2017中考数学复习:四边形考点信息_考点解析
四边形考点一文为各位考生朋友们提供了四边形定义、四边形顺口溜、四边形试题及答案等,详细信息如下:
四边形定义
由不在同一直线上的不交叉的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形。
凸四边形
四个顶点在同一平面内,对边不相交且作出一边所在直线,其余各边均在其同侧。
平行四边形(包括:普通平行四边形,矩形,菱形,正方形)。
梯形(包括:普通梯形,直角梯形,等腰梯形)。
凸四边形的内角和和外角和均为360度。
凹四边形
凹四边形四个顶点在同一平面内,对边不相交且作出一边所在直线,其余各边有些在其异侧。
依次连接四边形各边中点所得的四边形称为中点四边形。
不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。
中点四边形的形状取决于原四边形的对角线。
若原四边形的对角线垂直,则中点四边形为矩形;若原四边形的对角线相等,则中点四边形为菱形;若原四边形的对角线既垂直又相等,则中点四边形为正方形。
不稳定性四边形不具有三角形的稳定性,易于变形。
但正是由于四边形不稳定具有的活动性,使其在生活中有广泛的应用,如拉伸门等拉伸、折叠结构。
四边形顺口溜
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
四边形练习题及答案
一、选择题
矩形具有而一般的平行四边形不一定具有的特征是( )
A.对角相等
B.对角线互相平分
C.对角线相等
D.对边相等
□ABCD的周长为40cm,△ABC的周长为25cm,则对角线AC长为( )
A.5cm
B.6cm
C.8cm
D.10cm
□ABCD中,△A=43°,过点A作BC和CD的垂线,那么这两条垂线的夹角度为( )
A.113°
B.115°
C.137°
D.90°
下列命题:
① 一组对边平行,另一组对边相等的四边形是平行四边形;
② 对角线互相平分的四边形是平行四边形;
③ 四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;
④一组对边平行,一组对角相等的四边形是平行四边形.其中正确命题的个数是( )
A.0个
B.1个
C.2个
D.3个。