钢筋混凝土空间薄壁结构
- 格式:pptx
- 大小:8.34 MB
- 文档页数:77
建筑结构选型——薄壳结构学校:专业班级:指导老师:小组成员:摘要大跨建筑中的壳体结构通常为薄壳结构,即壳体厚度于其中的最小曲率半径之比小于1/20,为薄壁空间结构的一种,它包括球壳、筒壳、双曲扁壳和扭壳等多种形式。
他们的共同特点在于通过发挥结构的空间作用,把垂直于壳体表面的外力分解为壳体面内的薄膜力,再传递给支座,弥补了板、壳等薄壁构件的面外薄弱性质,以比较轻的结构自重和较大的结构刚度及较高的承载能力实现结构的大跨度。
关键词形态分类受力特点应用与发展案例研究正文1 薄壳结构的定义壳,是一种曲面构件,主要承受各种作用产生的中面内的力。
薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋和混凝土。
壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。
1.1薄壳结构的特点壳体结构一般是由上下两个几何曲面构成的空间薄壁结构。
两个曲面之问的距离即为壳体的厚度(δ),当δ比壳体其他尺寸(如曲率半径R,跨度等)小得多时,一般要求δ/R≤1/20(鸡蛋壳的δ/R≈1/50)称为薄壳结构。
现代建筑工程中所采用的壳体一般为薄壳结构。
而薄壳结构为双向受力的空间结构,在竖向均布荷载作用下,壳体主要承受曲面内的轴向力(双向法向力)和顺剪力作用,曲面轴力和顺剪力都作用在曲面内,又称为薄膜内力。
而只有在非对称荷载(风,雪等)作用下,壳体才承受较小的弯矩和扭矩。
由于壳体内主要承受以压力为主的薄膜内力,且薄膜内力沿壳体厚度方向均匀分布,所以材料强度能得到充分利用;而且壳体为凸面,处于空间受力状态,各向刚度都较大,因而用薄壳结构能实现以最少之材料构成最坚之结构的理想。
由于壳体强度高、刚度大、用料省、自重轻,覆盖大面积,无需中柱,而且其造型多变,曲线优美,表现力强,因而深受建筑师们的青睐,故多用于大跨度的建筑物,如展览厅、食堂、剧院、天文馆、厂房、飞机库等。
不过,薄壳结构也有其自身的不足之处,由于体形多为曲线,复杂多变,采用现浇结构时,模板制作难度大,会费模费工,施工难度较大;一般壳体既作承重结构又作屋面,由于壳壁太薄,隔热保温效果不好;并且某些壳体(如球壳、扁壳)易产生回声现象,对音响效果要求高的大会堂、体育馆、影剧院等建筑不适宜。
平面受力结构体系有两个方面的优点,其一是荷载为单向传递,给计算分析带来方便;其二是桁架,钢架,拱等主体传力结构与屋面板结构是分离的,给结构吊装带来方便。
其缺点是结构内力较大,材料强度得不到充分利用,材料用量增大,空间整体性减弱,结构安全性降低。
薄壁结构指结构的厚度远较长度和宽度小,一般由金属或钢筋混凝土制成,并布置成空间受力体系。
薄壳:壳体结构一般是由上下两个几何曲面所构成的薄壁空间结构。
这两个曲面之间的距离称为壳体的厚度。
当此厚度远小于壳体的最小曲率半径时,称为薄壳。
在杆系结构中,梁主要受弯矩和剪力的作用,而拱主要受轴力作用,因此,拱式结构比梁式结构受力合理,节省材料。
在面结构中,平板主要受力矩的作用(包括双向弯矩及扭矩)薄壳结构主要靠曲面内的双向轴力及顺剪力承重。
壳体结构的强度和刚度主要是利用了其几何形状的合理性,而不是以增大其结构截面尺寸取得的。
曲率:是描述曲线的弯曲程度的量值,其倒数为曲率半径。
曲率半径:是这段圆弧为一个圆的一部分时所成圆的半径。
在曲面上取一点E,曲面在E点的法线为z轴,包括z轴可以有无限多个剖切平面,每个剖切平面与曲面相交,其交线为一条平面曲线,每条平面曲线在E点有一个曲率半径。
不同的剖切平面上的平面曲线在E点的曲率半径一般是不相等的。
这些曲率半径中,有一个最大和最小的曲率半径,称之为主曲率半径,分别用R′和R表示。
高斯曲率:设曲面在E点处的两个主曲率为k1,k2,它们的乘积k=k1·k2称为曲面于该点的总曲率或高斯曲率。
它反映了曲面的弯曲程度。
薄壳结构的曲面形式:旋转曲面平移曲面直纹曲面薄壳结构的内力分为两类,作用于中曲面内的薄膜内力和作用于中曲面外的弯曲内力。
圆顶的下部支撑结构:(1)圆顶结构通过支座环支撑在房屋的竖向承重构件上(如砖墙,钢筋混凝土柱等)(2)圆顶结构支撑在斜柱或斜拱上(3)圆顶结构支撑在框架上。
(4)圆顶结构直接落地并支撑在基础上。
圆顶的薄膜内力圆顶上任意一点的位置经线与纬线的交点确定薄膜内力只要是作用在单位环向弧长上的经向轴力以及作用在单位经向弧长上的环向轴力。
薄壁空间结构在本小节中我们要给大家介绍各种薄壁空间结构体系的组成、优缺点及适用范围;各种薄壁空间结构体系的合理布置原则及及受力特点。
一、薄壳结构的概念壳体结构一般是由上下两个几何曲面构成的空间薄壁结构。
这两个曲面之间的距离称为壳体的厚度t。
当厚度t远小于壳体的最小曲率半径时,称为薄壳。
一般在建筑工程中所遇到的壳体,常属于薄壳结构的范畴。
在面结构中,平板结构主要受弯曲内力,包括双向弯矩和扭矩,如图1-65a。
薄壁空间结构如图1-95b所示的壳体,它的厚度t远小于壳体的其它尺寸(如跨度),属于空间受力状态,主要承受曲面内的轴力(双向法向力)和顺剪力作用,弯矩和扭矩都很小。
图1-65 面结构(a)平板结构(b)曲面结构(壳)薄壁空间结构,由于它主要承受曲面内的轴力作用,所以材料强度得到充分利用;同时由于它的空间工作,所以具有很高的强度及很大的刚度。
薄壳空间结构内力比较均匀,是一种强度高、刚度大、材料省、既经济又合理的结构型式。
薄壁空间结构常用于中、大跨度结构,如展览大厅,飞机库、工业厂房、仓库等。
在一般的民用建筑中也常采用薄壳结构。
薄壁空间结构在应用中也存在一些问题,由于它体形复杂,一般采用现浇结构,所以费模板、费工时,往往因此而影响它的推广。
同时在设计方面,薄壁空间结构的计算过于复杂。
二、薄壳空间结构的曲面形式薄壳结构中曲面的形式,按其形成的几何特点可以分成以下三类:1.旋转曲面由一平面曲线(或直线)作母线绕其平面内的一根轴线旋转而成的曲面,称为旋转曲面。
在薄壁空间结构中,常用的旋转曲面有球形曲面、旋转抛物(椭圆)面、圆锥曲面、旋转双曲面等,分别见图1-66。
图1-66 旋转曲面2.直纹曲面(图1-67)一根直母线,其两端各沿两固定曲导线(或为一固定曲导线,一固定直导线)平行移动而成的曲面,称为直纹曲面。
一般有:(1)柱曲面(一根直母线沿两根曲率方向和大小相同的竖向曲导线移动而成)或柱状曲面(一根直母线沿两根曲率方向相同但大小不同的竖向曲导线始终平行于导平面移动而成)它们又都称单曲柱面,分别见图1-67。
建筑结构选型——薄壳结构学校:专业班级:指导老师:小组成员:摘要大跨建筑中的壳体结构通常为薄壳结构,即壳体厚度于其中的最小曲率半径之比小于1/20,为薄壁空间结构的一种,它包括球壳、筒壳、双曲扁壳和扭壳等多种形式。
他们的共同特点在于通过发挥结构的空间作用,把垂直于壳体表面的外力分解为壳体面内的薄膜力,再传递给支座,弥补了板、壳等薄壁构件的面外薄弱性质,以比较轻的结构自重和较大的结构刚度及较高的承载能力实现结构的大跨度。
关键词形态分类受力特点应用与发展案例研究正文1 薄壳结构的定义壳,是一种曲面构件,主要承受各种作用产生的中面内的力。
薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋和混凝土。
壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。
1.1薄壳结构的特点壳体结构一般是由上下两个几何曲面构成的空间薄壁结构。
两个曲面之问的距离即为壳体的厚度(δ),当δ比壳体其他尺寸(如曲率半径R,跨度等)小得多时,一般要求δ/R≤1/20(鸡蛋壳的δ/R≈1/50)称为薄壳结构。
现代建筑工程中所采用的壳体一般为薄壳结构。
而薄壳结构为双向受力的空间结构,在竖向均布荷载作用下,壳体主要承受曲面内的轴向力(双向法向力)和顺剪力作用,曲面轴力和顺剪力都作用在曲面内,又称为薄膜内力。
而只有在非对称荷载(风,雪等)作用下,壳体才承受较小的弯矩和扭矩。
由于壳体内主要承受以压力为主的薄膜内力,且薄膜内力沿壳体厚度方向均匀分布,所以材料强度能得到充分利用;而且壳体为凸面,处于空间受力状态,各向刚度都较大,因而用薄壳结构能实现以最少之材料构成最坚之结构的理想。
由于壳体强度高、刚度大、用料省、自重轻,覆盖大面积,无需中柱,而且其造型多变,曲线优美,表现力强,因而深受建筑师们的青睐,故多用于大跨度的建筑物,如展览厅、食堂、剧院、天文馆、厂房、飞机库等。
不过,薄壳结构也有其自身的不足之处,由于体形多为曲线,复杂多变,采用现浇结构时,模板制作难度大,会费模费工,施工难度较大;一般壳体既作承重结构又作屋面,由于壳壁太薄,隔热保温效果不好;并且某些壳体(如球壳、扁壳)易产生回声现象,对音响效果要求高的大会堂、体育馆、影剧院等建筑不适宜。
薄壁空间结构
薄壁空间结构,也称壳体结构。
它的厚度比其他尺寸(如跨度)小得多,所以称薄壁。
它属于空间受力结构,主要承受曲面内的轴向压力,弯矩很小。
它的受力比较合理,材料强度能得到充分利用。
薄壳常用于大跨度的屋盖结构,如展览馆、俱乐部、飞机库等。
薄壳结构多采用现浇钢筋混凝土,费模板、费工时。
薄壁空间结构的曲面形式很多。
这里讲两种,筒壳和双曲壳。
筒壳一般由壳板、边梁和横隔三部分组成。
筒壳的空间工作是由这三部分结构协同完成的。
它的跨度在30m以内是有利的。
当跨度再大时,宜采用双曲薄壳。
双曲壳特别适用于大空间大跨度的建筑。
双曲壳又分为圆顶壳、双曲扁壳和双曲抛物面壳。
目前圆顶的直径已达200多米。
圆顶结构可用在大型公共建筑中,如天文馆、展览馆的屋盖。
圆顶结构由壳面、支座环组成。
通过支座环支于垂直构件上。
壳面主要承受压力,支座环承受拉力。
北京天文馆顶盖为半球形圆顶,直径25m,壳面厚6cm,结构自重约200kg/m2。
双曲扁壳是双曲抛物面的一种形式,它由壳板和竖直的边缘构件(横隔构件)组成。
因为扁壳的矢高比底面尺寸小得多,大约为l/5,所以叫扁壳。
例如北京火车站大厅,35mx35m的双曲面扁壳屋盖,壳板为8cm,宽敞明亮,是一成功的范例。
钢筋混凝土原理和分析钢筋混凝土是由钢筋和混凝土两种物理—力学性能完全不同的材料所组成。
混凝土的抗压能力较强而抗拉能力却很弱。
钢材的抗拉和抗压能力都很强。
为了充分利用材料的件能,把混凝土和钢筋这两种材料结合在一起共同工作,使混凝土主要承受压力,钢筋上要承受拉力,以满足工程结构的使用要求。
一混凝土结构的发展简况及其应用钢筋混凝土是在19世纪中叶开始得到应用的,由于当时水泥和混凝土的质量都很差,同时设计计算理论尚未建立,所以发展比较缓慢。
直到19世纪末,随着生产及建设的发展需要.钢筋混凝土的试验工作、计算理论、材料及施工技术均得到了较快的发展。
目前已成为现代工程建设中应用最广泛的建筑材料之一。
在工程应用方面,钢筋混凝土最初仅在最简单的结构物如拱、板等中使用,随着水泥和钢铁工业的发展.混凝土和钢材的质量不断改进,强度逐步提高。
20世纪20年代以后,混凝土和钢筋的强度有了提高,出现了装配式钢筋混凝土结构、预应力混凝土结构和壳体空间结构,构件承载力开始按破坏阶段计算,计算理论开始考虑材料的塑性。
20世纪50年代以后,高强混凝土和高强钢筋的出现使钢筋混凝土结构有了飞速的发展。
装配式混凝土、泵送商品混凝土等工业化的生产结构,使钢筋混凝土结构的应用范围不断扩大。
近20年来,随着生产水平的提高,试验的深入,计算理论研究的发展,材料及施工技术的改进,新型结构的开发研究,混凝土结构的应用范围在不断的扩大,已经从工业与民用建筑、交通设施、水利水电建筑和基础工程扩大到近海工程、海底建筑、地下建筑、核电站安全壳等领域,并已开始构思和实验用于月面建筑。
随着轻质高强材料的使用,在大跨度、高层建筑中的混凝土结构越来越多。
近年来,随着高强度钢筋、高强度高性能混凝土以及高性能外加剂和混合材料的研制使用,高强高性能混凝土的应用范围不断扩大,钢纤维混凝土和聚合物混凝土的研究和应用有了很大的发展。
还有,轻质混凝土、加气混凝土、陶粒混凝土以及利用工业废渣的“绿色混凝土”,不但改善了混凝土的性能而且对节能和保护环境具有重要的意义。
混凝土薄壁构件的概念
混凝土薄壁构件是指在建筑结构中使用的具有较小厚度和大面积的混凝土构件。
相比于传统的厚壁构件,薄壁构件通常具有以下特点:
1.小厚度:薄壁构件的厚度相对较小,一般在10毫米到150毫
米之间,这使得构件更加轻巧。
2.大面积:薄壁构件的面积相对较大,可以覆盖更广阔的空间,
提供更大的支撑面积。
3.高强度:薄壁构件通常采用高强度混凝土或钢筋混凝土材料制
成,以满足其承载和抗震等要求。
4.节约材料:由于薄壁构件的厚度较小,使用的混凝土和钢筋等
材料相对较少,可以实现材料的节约。
5.施工便利:薄壁构件具有相对较轻的重量和较薄的截面,使得
施工过程更加便利。
此外,薄壁构件的形状和尺寸可根据需要
进行定制和调整。
薄壁构件在建筑中的应用非常广泛,特别适用于一些需要大面积覆盖、轻质结构、快速施工或要求空间灵活性的场所。
例如,它们常用于建筑物的墙体、楼板、天花板、隔断、柱子等部位。
薄壁构件的使用可以有效提高结构的强度和稳定性,并满足建筑安全、节能和美观等方面的要求。
钢筋混凝土空间薄壁结构在现代建筑领域中,钢筋混凝土空间薄壁结构以其独特的优势和特点,成为了众多建筑设计中的重要选择。
这种结构形式不仅在力学性能上表现出色,还能够为建筑带来美观与创新。
首先,我们来了解一下什么是钢筋混凝土空间薄壁结构。
简单来说,它是由较薄的钢筋混凝土板或壳组成的空间结构体系。
这些薄壁构件通常具有较大的跨度和较小的厚度,通过合理的设计和布局,能够承受各种荷载并保持结构的稳定性。
与传统的结构形式相比,钢筋混凝土空间薄壁结构具有诸多优点。
其一,它能够充分发挥材料的性能。
由于薄壁结构的截面尺寸较小,混凝土和钢筋的应力分布更加均匀,从而提高了材料的利用率。
其二,这种结构具有良好的空间整体性。
薄壁构件相互连接,形成一个连续的空间受力体系,能够有效地抵抗来自各个方向的荷载,增强了结构的抗震性能和抗风性能。
其三,钢筋混凝土空间薄壁结构造型美观,可以创造出丰富多样的建筑形态,满足人们对于建筑美学的追求。
在实际应用中,钢筋混凝土空间薄壁结构的形式多种多样。
比如,筒壳结构常用于大跨度的工业厂房和仓库;双曲抛物面壳结构则常见于展览馆、体育馆等公共建筑;而折板结构则适用于一些小型的建筑或构筑物。
以筒壳结构为例,它是由单向或双向弯曲的弧形薄板组成。
在承受竖向荷载时,筒壳主要通过薄膜内力来传递荷载,其内力分布较为均匀,能够有效地跨越较大的空间。
同时,筒壳结构的边缘构件可以有效地约束薄板的变形,提高结构的整体稳定性。
双曲抛物面壳结构则是一种具有独特几何形状的薄壁结构。
它的曲面形状类似于马鞍,具有良好的力学性能。
在荷载作用下,双曲抛物面壳结构的内力分布较为复杂,但通过合理的设计和配筋,可以充分发挥其承载能力。
这种结构形式不仅能够提供较大的空间,还能够营造出独特的建筑效果,给人以强烈的视觉冲击。
折板结构是由一系列平板组成的折线形薄壁结构。
它具有构造简单、施工方便等优点。
在折板结构中,平板之间通过刚性节点连接,共同承受荷载。
折板结构是由若干狭长的薄板以一定角度相交连成折线形的空间薄壁体系。
跨度不宜超过30米,适宜于长条形平面的屋盖,两端应有通长的墙或圈梁作为折板的支点。
常用有V形、梯形等型式。
我国常用为预应力混凝土V形折板,具有制作简单、安装方便与节省材料等忧点,最大跨度可达24米。
作用由多块条形平板组合而成的空间结构,是一种既能承重,又可围护,用料较省,刚度较大的薄壁结构,可用作车间、仓库、车站、商店、学校、住宅、亭廊、体育场看台等工业与民用建筑的屋盖。
此外,折板还可用作外墙、基础及挡土墙。
图1为全折板房屋。
历史20世纪20年代,欧洲已有折板屋盖。
中国在50年代有所应用,自60年代后期起,发展较快,折板结构建筑中绝大部分采用折叠式生产的 V形折板屋盖。
跨度一般为9~18米,预应力混凝土V形折板的跨度可达27米;折板的倾角α大于或等于25°,板厚35~60毫米。
条形平板的板宽一般小于跨度的1/5,板厚大于板宽的1/40,板与板的夹角为60°~160°;两端一般设有横隔,横隔的长度称为波宽,板面连接处称为折缝。
分类折板按截面形式分有折线多边形、槽形、∏形及V形折板等。
按跨数分有单跨、多跨及悬臂折板。
按覆盖平面分有矩形、扇形、环形及圆形的平面折板。
按所用材料分有钢筋混凝土折板、预应力混凝土折板及钢纤维混凝土折板。
如果折板沿跨度方向也是折线形或弧线形,则形成折板拱,是大跨度屋盖结构的形式之一。
内力计算折板计算的假定:不考虑板平面内的横向应变及剪切应变,只计板平面内的轴向力和剪力以及板的横向弯矩和横切力,每块条板作为矩形截面的梁,按沿跨度方向的弯曲理论进行分析。
计算时先将分布荷载按等效方法换算为作用在折缝处的线荷载,按薄壁空间结构力学的分析方法,计算折板的全部内力和位移。
折板结构也可采用有限元法进行计算。
V形折板在纵、横向均按矩形截面进行强度和抗裂度计算,配置纵向和横向钢筋。
折板折缝处的连接构造应适当加强。