大跨空间结构案例分析
- 格式:doc
- 大小:4.86 MB
- 文档页数:36
大跨度建筑的混合空间结构案例分析作者:张玥明来源:《砖瓦世界·下半月》2019年第04期摘; ;要:以大跨度建筑的混合空间结构为研究对象,从工程概况、结构体系两个方面分析当代国内案例,重点对大跨度建筑的混合空间结构的特点和组成要素进行分析。
为以后大跨度建筑设计理念和设计手法提供启发与参考,关键词:大跨度建筑;混合空间结构;拱-壳结构;悬索-拱结构一、概述混合空间结构,指的是将刚架结构、桁架结构、拱式结构、薄壁结构、网架结构、悬索结构和薄膜结构等不同形式的结构经过合理组合而形成的空间结构形式。
它充分发挥了各种结构及各种材料的特长,弥补了单一大跨结构受力、材料上的不足,使结构更广泛的适应于多种建筑功能并增大了建筑造型的灵活性。
一般来说,建筑形体轮廓由巨大的刚架、拱、悬索或斜拉结构作为巨型骨架而形成;屋盖造型则由骨架上布置的平板网架、网壳、桁架、悬索或薄膜结构形成。
通常,混合空间结构由刚架、桁架、拱、薄壁、网架、网壳、悬索、薄膜结构的两种或者三种结构单元组成。
在选择不同的组合方式时应满足建筑功能的需要、保持结构受力的均匀合理,充分发挥材料的特性、尽量采用预应力等先进的技术手段,改善结构受力性能、使整体结构刚柔并济,具有良好的整体稳定性、并保证施工简洁,造价合理的原则。
二、案例分析(一)武汉火车站1、工程概况武汉火车站是全国四大铁路网客运中心之一,也是第一个上部大型建筑与下部桥梁共同作用的新型结构火车站,实现了高速铁路,地铁,公路三者的无缝对接。
它的建筑面积为33.2万㎡,建筑高度为59.3m,建筑主体采用了拱-网壳结构。
2、结构体系武汉火车站由中央站房、南侧雨棚、北侧雨棚三部分组成。
武汉火车站中央站房的屋面支承结构由五榀主拱、半拱和斜立柱共同支撑,五榀主拱的基本间距为64.5m,最大主拱跨度甚至可达到116m。
主拱、半拱共同承担着楼面梁的支承任务,由于共用支撑结构,楼面结构与屋面结构有间接的联系;中央站房的屋盖采用网壳覆盖,其中上下弦采用圆管、腹杆两种形式。
大跨度空间桁架结构吊装施工技术分析1. 引言1.1 研究背景在现代建筑工程中,大跨度空间桁架结构被广泛应用于体育馆、会展中心、机场等大型建筑中。
这种结构具有跨度大、自重轻、空间利用率高的特点,能够满足大空间覆盖的需求,提供了更为灵活多样的建筑设计方案。
由于大跨度空间桁架结构的建造和吊装存在较高的技术难度和风险,因此对吊装施工技术进行深入研究和分析具有重要意义。
随着我国大型建筑工程的不断发展和建设规模的日益扩大,大跨度空间桁架结构的应用也越来越广泛。
在实际工程中,由于各种复杂因素的影响,吊装施工往往成为工程施工中的难点和重点。
对大跨度空间桁架结构的吊装施工技术进行深入研究和分析,既有助于总结经验,提高施工效率,又能够有效降低工程风险,保障施工安全。
本文旨在通过对大跨度空间桁架结构的吊装施工技术进行分析,探讨其设计原则和要求,总结吊装工艺流程,提出相关安全措施,以期为工程实践提供参考和借鉴。
1.2 研究目的研究目的是为了探究大跨度空间桁架结构吊装施工技术的相关问题,深入分析吊装过程中可能出现的挑战和难点,寻找解决方案和改进措施,提高施工效率和质量,确保施工安全。
通过对吊装施工技术进行系统研究和分析,可以为相关领域的工程师和施工人员提供参考和借鉴,推动大跨度空间桁架结构的施工工艺不断完善和发展。
通过这一研究,还可以促进国内相关产业的技术进步和创新,提高我国在大跨度空间桁架结构领域的竞争力,为我国建筑行业的发展做出贡献。
是本论文的重要组成部分,对于全面了解大跨度空间桁架结构吊装施工技术以及未来研究方向具有重要意义。
1.3 研究意义大跨度空间桁架结构是一种具有较大跨度、较高荷载承载能力和较小自重的结构形式,广泛应用于体育馆、展览馆、大型工业厂房等建筑领域。
随着建筑技术的发展和人们对建筑美学的追求,大跨度空间桁架结构在现代建筑中得到了越来越广泛的应用。
研究大跨度空间桁架结构吊装施工技术的意义在于提高建筑施工的效率和质量,保障施工安全,推动建筑行业的发展。
钢结构案例分析钢结构作为一种重要的建筑结构形式,广泛应用于工业厂房、商业建筑、桥梁等领域。
本文将通过对几个钢结构案例的分析,来探讨钢结构在不同场景下的应用特点和优势。
首先,我们来看一个工业厂房的钢结构案例。
在这个案例中,钢结构被用于搭建一个大跨度的厂房,其优势在于可以实现大空间无柱的布局,为生产线的布置提供了更大的灵活性。
同时,钢结构的轻质特性也减少了地基的承载压力,降低了建筑成本。
此外,钢结构的施工速度快,可以缩短工期,提高工程效率。
其次,我们来分析一下商业建筑中的钢结构应用。
在一些商业综合体项目中,钢结构常常用于搭建大跨度的屋盖结构,如购物中心、体育馆等。
钢结构的轻量化和高强度使得其可以支撑更大的屋盖跨度,从而提供更宽敞的室内空间。
同时,钢结构还可以实现更复杂的建筑形式和曲线造型,为商业建筑赋予更多的设计可能性。
最后,让我们来看一个桥梁工程中的钢结构案例。
在桥梁建设中,钢结构常常被用于搭建桥梁的主体结构,如桥梁梁、桥面板等。
由于钢结构具有良好的延展性和韧性,可以更好地应对桥梁在使用过程中的动态荷载和挠曲变形,保证了桥梁的安全性和稳定性。
此外,钢结构的可塑性也使得桥梁可以更好地适应复杂的地形和交通需求,为城市交通建设提供了更多的选择。
综上所述,钢结构在工业厂房、商业建筑和桥梁工程中都具有重要的应用价值。
其轻质化、高强度和灵活性等特点,使得钢结构能够更好地满足不同场景下的建筑需求,为现代建筑行业的发展提供了更多的可能性。
希望通过本文的案例分析,读者能够对钢结构的应用特点有更深入的了解,为今后的工程设计和施工提供参考和借鉴。
大跨度厂房结构设计实例分析摘要:以大跨度单层工业厂房的实际工程为例,根据有关技术资料和现行规范要求,运用建筑结构专业设计软件,对该厂房进行排架和屋架结构二维平面分析。
考虑到跨度为60 m的特殊性,采用通用有限元分析方法对该厂房进行三维空间分析,结果表明:大跨度厂房需要考虑空间效应,支撑体系的承载力验算十分必要。
关键词:大跨度结构; 钢桁架; 单层工业厂房; 支撑体系; 构件承载力1 工程概况许多大尺寸零部件产品的制作加工,需要大跨度的厂房。
而大跨度结构的受力模式和结构体系的控制条件可能会有变化,会有一些特殊要求。
为了解大跨度工业建筑的结构特性,本文选用一个典型工程实例,通过分析计算得到了许多具有参考价值的结论。
本工程是单层工业厂房,建筑物总长243.28 m,宽78.74 m,建筑高度(屋面面层最低点至室外地面)14.550 m,总建筑面积20 566.04 m2,主体厂房1层(生活间3层)。
风力发电的叶片生产车间为3跨连续钢结构刚架,跨距为24,30,24 m。
每跨设有100 kN吊车多台,轨顶标高9.000 m;柱距7.5 m。
胶衣腻子车间为单跨钢排架结构,跨度为60 m,屋架宽翼缘H型钢桁架结构;吊车起重量200 kN,轨顶标高9.000 m;柱距6.0 m。
建筑物主体结构设计合理使用年限为50年,室内设计标高±0.000 m对应的绝对标高为834.000 m,车间部分室内外高差150 mm,建筑平面如图1所示。
图1 建筑平面本文以胶衣腻子车间为例,分析大跨度厂房设计问题。
屋面采用单层压型钢板防水保温屋面,坡度为5%,用于主体厂房,做法(由上到下):1)0.5 mm 厚(基板厚度)镀铝锌压型钢板本色板,360°直立锁缝构造;2)150 mm厚底面贴W38聚丙烯贴面离心玻璃棉;3)钢檩条。
厂房屋面圆拱形采光天窗采光板为不着色聚碳酸酯采光板(阳光板)。
2 荷载取值结构设计荷载条件:屋面恒载0.3 kN/m2;屋面活载0.3 kN/m2;吊车荷载100 kN梁式起重机;基本风压(重现期50年)0.6 kN/m2;基本雪压(重现期50年)0.3 kN/m2;抗震设防烈度为7度,设计基本地震加速度值为0.10g。
大跨度建筑结构形式与建筑造型实例分析一、概述人类活动对建筑空间提出了新的要求。
人类在满足基本功能需要的同时,也在展示自己聪明才智和改造自然的伟大力量。
在空间上对大跨的追求一直是人类的梦想。
建筑物的跨度和规模越来越大,目前,尺度达150m以上的超大规模建筑已非个别;结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。
例如 1975年建成的美国新奥尔良“超级穹顶”(Superdome),直径207m,长期被认为是世界上最大的球面网壳;现在这一地位已被1993年建成直径为222m的日本福冈体育馆所取代,但后者更著名的特点是它的可开合性:它的球形屋盖由三块可旋转的扇形网壳组成,扇形沿圆周导轨移动,体育馆即可呈全封闭、开启1/3或开启2/3等不同状态。
1983年建成的加拿大卡尔加里体育馆采用双曲抛物面索网屋盖,其圆形平面直径135m,它是为1988年冬季奥运会修建的,外形极为美观,迄今仍是世界上最大的索网结构。
70年代以来,由于结构使用织物材料的改进,膜结构或索-膜结构(用索加强的膜结构)获得了发展,美国建造了许多规模很大的气承式索-膜结构;1988年东京建成的“后乐园”棒球馆,也采用这种结构技术尤为先进,其近似圆形平面的直径为204m;美国亚特兰大为1996年奥运会修建的“佐治亚穹顶”(Geogia Dome,1992年建成)采用新颖的整体张拉式索一膜结构,其准椭圆形平面的轮廓尺寸达192mX241m。
下面我们来分析大跨度结构形式与造型分析二、结构形式与造型分析大跨度建筑通常是指跨度在30米以上的建筑,主要用于民用建筑的影剧院、体育场、展览馆、大会堂、航空港以及其他大型公共建筑。
在工业建筑中则主要用于飞机装配车间、飞机库和其他大跨度厂房。
1.拱结构及其建筑造型拱是古代大跨度建筑的主要结构形式。
由于拱成曲面形状,在外力作用下,拱内的弯矩可以降到最小限度,主要内力变为轴向压力,且应力分布均匀,能充分利用材料的强度,比同样跨度的梁结构断面小,故拱能跨越较大的空间。
大跨度空间钢结构的施工过程模拟分析及研究3篇大跨度空间钢结构的施工过程模拟分析及研究1随着现代工业和建筑技术的快速发展,大跨度空间钢结构已成为现代建筑设计中常见的形式之一。
作为一种新型的建筑结构形式,它在优美的外观和强大的承重能力方面具有独特的优势,受到了广泛的关注和应用。
然而,由于其施工工艺的特殊性和复杂性,其施工过程也面临着许多难题和挑战。
为了解决这些困难并提高施工效率,需要对大跨度空间钢结构的施工过程进行模拟分析与研究。
首先,大跨度空间钢结构的施工过程模拟分析应包括从工程设计、施工准备到钢结构组立和安装全过程的模拟和分析。
在工程设计和施工准备阶段,需要确定项目目标和工期,制定详细的施工计划,并进行相关的材料采购和现场准备工作。
针对大跨度空间钢结构的特殊需求和复杂性,需要对施工方案进行细致的分析和评估,寻求最佳施工方案,并确认现场施工所需设备、材料、技术和人员。
在理论分析的基础上,可以利用计算机辅助设计(CAD)软件进行建模,生成完整的施工过程模拟。
通过在虚拟环境中反复模拟施工过程,可以识别出施工中可能存在的问题并作出相应的调整。
在大跨度空间钢结构的组立和安装过程中,往往面临着作业空间狭小、高度差异大、干预空间限制、气象条件不利等复杂情况。
通过模拟分析,可以有效降低施工难度,提高安全性和施工效率。
其次,大跨度空间钢结构的施工过程模拟分析涉及到的几个重要的参数应包括工序、设备、材料以及资源等。
在具体施工过程中,需要根据施工计划对每个关键节点的工序进行详细规划和调度,合理分配现场设备和人员,并保证材料供应的及时性和质量。
在施工过程中需要动态地调整工序的先后顺序,分配合适的设备和材料,保证整个施工过程的连贯性和协调性。
最后,大跨度空间钢结构的施工过程模拟分析还应该聚焦在整个施工过程中的质量、成本和时间三个关键要素。
针对工程质量要求,必须严格按照相关标准执行施工,遵守各项安全规定和环保法律法规,确保钢结构施工质量。
霍尔三维结构案例霍尔三维结构是一种常见的空间结构形式,它在建筑中得到了广泛的应用。
本文将通过一个实际案例来介绍霍尔三维结构的设计和施工过程,以及其在建筑中的优势和特点。
案例背景。
某大型体育馆项目采用了霍尔三维结构,该体育馆设计跨度大、空间要求高,需要满足大型体育赛事和演出活动的需求。
为了实现空间的大跨度和灵活的使用功能,设计团队选择了霍尔三维结构作为体育馆的主要结构形式。
设计过程。
在进行霍尔三维结构的设计过程中,设计团队首先进行了详细的空间分析和结构需求分析。
根据体育馆的功能要求和空间布局,确定了霍尔三维结构的基本形式和节点布置。
同时,设计团队还进行了大量的结构计算和模拟分析,确保结构的稳定性和安全性。
在结构形式上,霍尔三维结构采用了双向曲面结构,通过双向张拉和曲面构件的组合,实现了大跨度空间的覆盖。
结构节点采用了特殊的连接方式,确保了结构的整体稳定性和刚度。
施工过程。
在进行霍尔三维结构的施工过程中,施工团队面临了诸多挑战。
首先是结构构件的加工和制作,由于曲面结构的特殊性,需要精准的加工和拼装。
其次是结构的吊装和安装,大跨度结构的吊装需要精密的施工计划和安全保障措施。
在施工过程中,施工团队采用了先进的施工技术和设备,确保了结构的精准安装和施工质量。
同时,施工团队还加强了安全管理和质量监控,确保了施工过程的安全和顺利进行。
优势和特点。
霍尔三维结构在体育馆项目中展现了诸多优势和特点。
首先是空间的灵活性和覆盖能力,霍尔三维结构能够实现大跨度空间的覆盖,满足了体育馆的功能要求。
其次是结构的美观性和艺术性,曲面结构形式赋予了体育馆独特的外观和空间感。
同时,霍尔三维结构还具有较好的结构性能和抗震性能,能够保障体育馆在各种外部荷载和环境条件下的安全运行。
此外,霍尔三维结构的施工周期相对较短,能够有效缩短工期,提高工程效率。
结语。
通过以上案例的介绍,我们可以看到霍尔三维结构在大型体育馆项目中的应用优势和特点。
它不仅能够满足大跨度空间的覆盖需求,还具有良好的结构性能和美观性。