,
n1 (1,0, ,0, 1) 就是W1 的一组基.
而在 W2中任取两个向量 , ,设
( x1, x2 , , xn ), ( y1, y2 , , yn ) 则 ( x1 y1, x2 y2 , , xn yn )
但是 ( x1 y1 ) ( x2 y2 ) ( xn yn )
例6 设V为数域P上的线性空间,1,2 , ,r V
令W {k11 k22 krr ki P,i 1,2, ,r}
则W关于V的运算作成V的一个子空间.
即1,2 , ,r 的一切线性
组合所成集合.
2023/9/3§6.5 线性子空间
二、一类重要的子空间 ——生成子空间
定义:V为数域P上的线性空间,1,2, ,r V,
无关组,则
L(1,2 , ,s ) L(i1 ,i2 , ,ir )
3、设 1,2 , ,n 为P上n维线性空间V的一组基,
A为P上一个 n s 矩阵,若
(1, 2 , , s ) (1,2 , ,n ) A 则 L(1, 2 , , s )的维数=秩(A).
2023/9/3§6.5 线性子空间
既然 1,2 , ,m 还不是V的一组基,它又是线
性无关的,那么在V中必定有一个向量
不能被
m1
1,2, ,m 线性表出,把它添加进去,则
1,2 , ,m ,m1 必定是线性无关的.
由定理3,子空间 L(1,2 , ,m1 ) 是m+1维的.
因 n-(m+1)=(n-m)-1=(k+1)-1=k,
由归纳假设,L(1,2 , ,m1 )的基1,2 , ,m ,m1
线性相关性. 所以可对矩阵A作初等行变换化阶梯
阵来求向量组 1, 2, , s 的一个极大无关组,从而 求出生成子空间 L(1, 2 , , s ) 的维数与一组基.