第三章滤波器
- 格式:ppt
- 大小:481.50 KB
- 文档页数:55
第三章 自适应数字滤波器3.1 引言滤波器的设计都是符合准则的最佳滤波器。
维纳滤波器参数固定,适用于平稳随机信号的最佳滤波;自适应滤波器参数可以自动地按照某种准则调整到最佳。
本章主要涉及自适应横向滤波器.....、自适应格型滤波器........、最小二乘自适应滤波器..........。
3.2 自适应横向滤波器自适应...线性组合....器.和自适应....FIR ...滤波器...是自适应信号......处理的基础.....。
3.2.1 自适应线性组合器和自适应FIR 滤波器自适应滤波器的矩阵表示式 滤波器输出:()()()1N m y n w m x n m -==-∑n 用j 表示,自适应滤波器的矩阵形式为T T j jj y ==X W W X 式中1212,,,,,,,TTN N w w w x x x ⎡⎤⎡⎤==⎣⎦⎣⎦W X误差信号表示为T T j j j j jj j e d y d d =-=-=-X W W X 与维纳滤波相同,先考虑最小均方误差准则:()2222T T j j j j dx xx E e E d y E e ⎡⎤⎡⎤⎡⎤=-=-+⎣⎦⎣⎦⎢⎥⎣⎦R W W R W2j E e ⎡⎤⎣⎦称为性能函数....,将其对每个权系数求微分,形成一个与权系数相同的列向量: 2221222,,,Tj j jj xx dx N E e E e E e w w w ⎡⎤⎡⎤⎡⎤⎡⎤∂∂∂⎣⎦⎣⎦⎣⎦⎢⎥∇==-∂∂∂⎢⎥⎣⎦R W R令梯度为零,可得最佳权系数此时最小均方误差为:22*min T j j dx E e E d ⎡⎤⎡⎤=-⎣⎦⎣⎦W R 要求2minj Ee ⎡⎤⎣⎦和最佳权系数*W ,先求自相关矩阵xx R 和互相关矩阵dx R 。
3.2.2 性能函数表示式及几何意义3.2.3 最陡下降法3.2.1给出了要求2minj Ee ⎡⎤⎣⎦和最佳权系数*W 的理论求解方法,但实际很难应用。
模拟电子技术电子教案第一章:模拟电子技术基础1.1 模拟电子技术的概念与发展1.2 模拟电子电路的组成与特点1.3 模拟电子技术的基本定律与分析方法第二章:放大器电路2.1 放大器的作用与分类2.2 放大器的性能指标2.3 放大器的基本电路分析2.4 常用放大器电路实例第三章:滤波器电路3.1 滤波器的作用与分类3.2 滤波器的性能指标3.3 滤波器的基本电路分析3.4 常用滤波器电路实例第四章:振荡器电路4.1 振荡器的作用与分类4.2 振荡器的性能指标4.3 振荡器的基本电路分析4.4 常用振荡器电路实例第五章:模拟电子技术的应用5.1 模拟电子技术在通信领域的应用5.3 模拟电子技术在视频设备中的应用5.4 模拟电子技术在其他领域的应用第六章:模拟集成电路6.1 集成电路概述6.2 模拟集成电路的类型与特点6.3 集成电路的封装与测试6.4 常用模拟集成电路介绍第七章:模拟信号处理7.1 信号处理的基本概念7.2 模拟信号处理技术7.3 信号处理电路实例7.4 信号处理在实际应用中的案例分析第八章:模拟电路设计方法与实践8.1 模拟电路设计的基本原则8.2 电路设计的一般步骤8.3 电路仿真与实验8.4 电路设计实例分析第九章:模拟电子技术在现代科技中的应用9.1 模拟电子技术在生物医学领域的应用9.2 模拟电子技术在工业控制领域的应用9.3 模拟电子技术在新能源领域的应用第十章:模拟电子技术的未来发展趋势10.1 模拟电子技术的发展历程10.2 当前模拟电子技术面临的挑战10.3 模拟电子技术的未来发展趋势10.4 我国在模拟电子技术领域的发展现状与展望重点和难点解析教案中的重点环节包括:1. 模拟电子技术的概念与发展:了解模拟电子技术的基本定义和发展历程,理解模拟电子技术与数字电子技术的区别。
2. 放大器电路的分析:掌握放大器的作用、性能指标和基本电路分析方法,了解不同类型的放大器电路及其应用。
1.1 匹配滤波器检测基于第三章对频谱滤波器检测的简要描述,本节就对此进行详细的解说。
前面提到了当认知用户知道主用户的先验信息时,匹配滤波器检测就是频谱检测的最优算法,早期的研究表明,匹配滤波器需要(1/SNR )个采样数,检测时间相比较而言较短,就可以与预期的误差概率相吻合。
这种滤波器在数字通信信号和雷达信号的检测中具有特别重要的意义。
匹配滤波器频谱检测算法在加性高斯白噪声信道中是一种最优的频谱感知方法,主要通过对授权信号进行解调或者导频检测实现。
前者实现比较复杂,通过采用匹配滤波器对授权用户信号解调,要求认知用户为每类授权用户提供一套接收解码设备;后者实现相对简单,不再需要复杂的接收解码设备,而且目前大部分无线通信系统都存在导频、前导码、时间同步信号和扩频码等确知信号, 这样就使得匹配滤波器检测大大简化,但它的缺点就是为了获得匹配滤波器而必须具备授权用户信号的先验知识,除此之外,计算量也比较大。
因此如果先验知识不准确,那么匹配滤波器的性能就会大大下降。
1.1.1 匹配滤波器检测框图检测统计量Y 为: *)()(∑=Nn x n y Y假设x(n)发射信号已知,将检测统计量与预先设定的门限值λ进行比较,大于门限值时就表明关心的频谱存在授权用户,如果小于门限值,就说明该信道中只有噪声,也就是说,出现了频谱空洞,感知用户可以占用该信道。
匹配滤波器检测框图1对于现实中的信道,信号可能是M 进制的,这就需要同时进行几路信号同时进行匹配,将每一路频谱的结果进行比较,得到的判决结果后,再根据一定的判决根据,判决得到经过不同信道的接受信号。
其工作原理图如下:匹配滤波器工作原理图21.1.2 匹配滤波器检测原理在第三章中曾提到,匹配滤波器检测的设计准则就是使信号的输出信噪比SNR 在某一时刻达到最大值。
信噪比SNR 表达式如下:N 2EsSNR =式子中Es 为观测时间段中检测信号的能量,N 0为噪声功率。
信道在传输信号时还叠加有高斯白噪声n(t),其均值为零,双边功率谱密度为N 0//2,因此接收信号波形为:Tt t n t s t r ≤≤+=0),()()(设最大输出信噪比准则下的最佳线性滤波器H(ω),输出为 )()()(y 0t n t s t o += 在t=tm 时候,输出信噪比为:()()m m t n t s 2o2o=ρ 设()()[]t s S F =ωj ,那么经过匹配滤波器后的输出信号为()()()⎰∞∞-=ωωωπωd 21o m t j m e j S j H t s白噪声功率谱是()N j H ⋅2ω,所以噪声平均功率为()()⎰∞∞-=ωωπd 2122o j H N t n由上面的式子可以看出噪声平均功率与时间没有关系所以可以得出:()⎰∞∞-=ωωπd 21)(22oj H N t n由于输出信号是实数,所以信噪比为()()()()()⎰⎰∞∞-∞∞-==ωωπωωωρωd 2d 222o 2oj H N ej S j H t n t s m t j m m根据柯西—史瓦斯不等式()()()()⎰⎰⎰∞∞-∞∞-∞∞-≤ωωωωωωωωd d d 222j S j H ej S j H mt j为了使信噪比取得最大值,也就是说要使得上面的不等式取得等号, 当匹配滤波器满足 ()()[]()mm t j t j ej kS e j S k j H ωωωωω-*-==滤波器输出的信噪比最大值为()()()⎰∞∞-==ωωπρd j S Nt n t s m m 22o 2omax 21此时,匹配滤波器的频域关系式为()()m j e j kS j H ωωω--=对应的时域关系式为 ()()[]()t t ks j H F t h m -==-*1ω由上面的推导可以得出频谱滤波器检测的功能相当于对输入信号的自相关运算()()()()()()t t R t t s t s t h t s t s m SS m -=-*=*=*o当信噪比达到最大的时候,噪声得到明显的抑制输出最大值如下式,与信号的输入形式没有关系()()⎰∞∞-=ωωπd 212o j S t s m物理可实现的匹配滤波器,其输入端信号 s(t) (假设是实数)必须在它输出最大信噪比的时刻 t0 之前消失,也就是说,匹配滤波器要满足:t<0时 h(t) = 0。
滤波器原理及应用在电子学和通信领域中,滤波器是一种能够选择特定频率信号并抑制其他频率信号的电路组件。
它在各种电子设备中扮演着至关重要的角色,例如在音频设备、射频通信、无线电等领域的应用中都需要滤波器来确保信号质量和频谱高效利用。
本文将介绍滤波器的基本原理和常见应用。
滤波器的原理滤波器主要依靠其电路设计对特定频率范围的信号进行放大或衰减,从而实现对信号的频率选择性处理。
根据频率选择性能力不同,滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种类型。
•低通滤波器:只允许低于一定频率的信号通过,而抑制高于该频率的信号。
•高通滤波器:只允许高于一定频率的信号通过,而抑制低于该频率的信号。
•带通滤波器:只允许在一定频率范围内的信号通过,而抑制其他频率的信号。
•带阻滤波器:只允许除一定频率范围内的信号通过外,抑制其他频率的信号。
在滤波器的设计中,根据滤波器的截止频率、通带波纹、衰减量等指标要求,可以选择不同的滤波器电路结构和元件参数。
常用的滤波器元件包括电容、电感、电阻等,它们可以组合成各种滤波器电路,如RC滤波器、LC滤波器、RLC滤波器等。
滤波器的应用滤波器在各种电子设备和通信系统中有着广泛的应用,其中一些常见的应用包括:1. 音频设备在音频系统中,滤波器用于音频信号的处理和增强,例如在扬声器中使用低通滤波器去除高频噪声,在麦克风中使用高通滤波器去除低频噪声,以提高音频设备的音质和清晰度。
2. 通信系统在无线通信系统中,滤波器用于频率选择和信号处理,以确保传输信号的质量和可靠性。
例如,在基站中使用带通滤波器选择特定频段的信号,同时抑制其他频段的干扰信号,以保证通信系统的正常运行。
3. 无线电在无线电接收机中,滤波器通过滤除不必要的频率信号,提高接收机对特定信号的接收灵敏度和选择性。
不同类型的滤波器可以应用于调频接收、调幅接收等不同的无线电接收系统中。
4. 信号处理在信号处理系统中,滤波器常用于滤除噪声、分离信号、提取特定频率成分等应用。
光学滤波器的设计与制备第一章:引言在光学领域,滤波器是一种常见的光学元件,可以用于改变光波的波长、强度、偏振方向等特性,在光学成像、光纤通信、激光系统等领域有广泛的应用。
本文将就光学滤波器的设计与制备进行探讨。
第二章:光学滤波器的基本原理光学滤波器是通过选择性地透过或折射光线,从而达到滤波的效果。
光学滤波器的基本原理是产生了光学薄膜干涉现象,利用薄膜在不同位置的反射和透射作用,将特定波长的光线从光谱中分离提取,而不同波长的光则被滤掉。
第三章:光学滤波器的设计光学滤波器的设计关键在于薄膜的制备和选择。
首先,设计者需要分析所需要过滤的波长范围,确定光学滤波器的结构和材料参数。
然后,选择合适的光学材料进行薄膜制备,一般使用的材料有SiO2、TiO2、Al2O3等。
最后,对薄膜进行测试和反馈修正,确保光学滤波器的性能符合要求。
第四章:光学滤波器的制备光学滤波器的制备主要是通过物理气相沉积和分子束外延等技术。
在物理气相沉积中,将需要使用的光学材料在高真空下加热,形成蒸汽并沉积在基片上,形成所需要的光学薄膜。
在分子束外延中,将所需要使用的材料进行分子束照射,通过原子重组形成光学薄膜。
在制备过程中,需要时刻注意气压、温度和时间等参数的调节,以确保薄膜的质量和性能。
第五章:光学滤波器的应用光学滤波器的应用非常广泛,主要分为以下几个领域:1. 光学成像:可以用于增强图像的对比度、分辨率和饱和度等性能,以达到更好的成像效果。
2. 光纤通信:可以用于选择性地过滤特定波长的光信号,增强光信号的传输质量和稳定性。
3. 激光系统:可以用于选择性地过滤特定波长的激光光束,以达到所需要的激光波长和性能要求。
第六章:结论光学滤波器是一种非常重要的光学元件,可以用于改变光波的特性,从而达到特定的应用目的。
光学滤波器的设计和制备需要考虑多个因素,包括波长范围、材料参数、薄膜制备工艺等。
通过科学的设计和制备,可以制备出性能稳定、可靠的光学滤波器,以满足各种应用需求。
模拟电子技术教案第一章:模拟电子技术概述1.1 教学目标了解模拟电子技术的基本概念掌握模拟电子技术的主要应用领域理解模拟电子技术的基本原理1.2 教学内容模拟电子技术的定义模拟电子技术与数字电子技术的区别模拟电子技术的主要应用领域模拟电子技术的基本原理及其重要性1.3 教学方法采用讲解、案例分析、互动讨论等方式进行教学1.4 教学评估课堂问答小组讨论课后作业第二章:放大器电路2.1 教学目标理解放大器电路的基本原理掌握放大器电路的主要应用学会分析放大器电路的性能指标2.2 教学内容放大器电路的分类及原理放大器电路的主要应用放大器电路的性能指标分析2.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学2.4 教学评估课堂问答小组讨论课后作业第三章:滤波器电路3.1 教学目标理解滤波器电路的基本原理掌握滤波器电路的主要应用学会分析滤波器电路的性能指标3.2 教学内容滤波器电路的分类及原理滤波器电路的主要应用滤波器电路的性能指标分析3.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学3.4 教学评估课堂问答小组讨论课后作业第四章:振荡器电路4.1 教学目标理解振荡器电路的基本原理掌握振荡器电路的主要应用学会分析振荡器电路的性能指标4.2 教学内容振荡器电路的分类及原理振荡器电路的主要应用振荡器电路的性能指标分析4.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学4.4 教学评估课堂问答小组讨论课后作业第五章:模拟集成电路5.1 教学目标理解模拟集成电路的基本原理掌握模拟集成电路的主要应用学会分析模拟集成电路的性能指标5.2 教学内容模拟集成电路的分类及原理模拟集成电路的主要应用模拟集成电路的性能指标分析5.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学5.4 教学评估课堂问答小组讨论课后作业第六章:模拟信号处理6.1 教学目标理解模拟信号处理的基本概念掌握模拟信号处理的主要技术学会分析模拟信号处理的性能指标6.2 教学内容模拟信号处理的概念与分类模拟信号处理的主要技术,包括滤波、放大、调制等模拟信号处理的性能指标分析,如信噪比、失真度等6.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学6.4 教学评估课堂问答小组讨论课后作业第七章:模拟电路设计与仿真7.1 教学目标理解模拟电路设计的基本原则掌握模拟电路仿真的一般方法学会使用仿真软件进行模拟电路的设计与分析7.2 教学内容模拟电路设计的基本原则与步骤模拟电路仿真的一般方法与流程常见仿真软件的使用方法,如Multisim、LTspice等7.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学7.4 教学评估课堂问答小组讨论课后作业第八章:模拟电子技术的应用8.1 教学目标理解模拟电子技术在现代社会中的广泛应用掌握模拟电子技术在实际应用中的关键作用学会分析模拟电子技术应用中的具体问题8.2 教学内容模拟电子技术在通信、音响、医疗等领域的应用实例模拟电子技术在实际应用中的关键作用,如信号处理、滤波等模拟电子技术应用中常见的问题及其解决方法8.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学8.4 教学评估课堂问答小组讨论课后作业第九章:模拟电子技术实验9.1 教学目标掌握模拟电子技术的基本实验技能学会使用常用实验仪器与设备熟练进行模拟电子技术实验操作9.2 教学内容模拟电子技术实验基本要求与注意事项常用实验仪器与设备的使用方法经典模拟电子技术实验项目,如放大器、滤波器等的设计与测试9.3 教学方法采用讲解、示范、互动讨论等方式进行教学9.4 教学评估实验报告实验操作考核实验成果展示第十章:模拟电子技术在现代科技中的应用及发展趋势10.1 教学目标了解模拟电子技术在现代科技领域中的应用掌握模拟电子技术的发展趋势学会分析模拟电子技术在现代科技发展中的重要作用10.2 教学内容模拟电子技术在现代科技领域中的应用,如物联网、大数据等模拟电子技术的发展趋势,包括微电子技术、集成技术等模拟电子技术在现代科技发展中的重要作用及其影响10.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学10.4 教学评估课堂问答小组讨论课后作业重点和难点解析1. 模拟电子技术的定义及应用领域:理解模拟电子技术的基本概念和主要应用领域是教学的基础,需要重点关注。
第三章
二、谐波的危害ü
四、特征谐波分析的假设条件
五、谐波分析方法
3.2
3.2.1 换流器
二、换流变网侧电流特征谐波()
三、电源侧电流特征谐波()
电源侧电流特征谐波()
电源侧电流特征谐波()
电源侧电流特征谐波的特性()
电源侧电流特征谐波的特性()0=
电源侧电流特征谐波的特性()
3.2.2
单桥整流电压中的特征谐波
整流电压平均值
32
单桥整流电压中的特征谐波
空载时,第h 次谐波电压有效值
ü2d h h
U
空载时,第h 次谐波电压相位
二、
ü
整流电压平均值
单桥整流电压的特征谐波ü第h次谐波电压有效值
第h次谐波电压相位
整流电压平均值
2cos()
d h h h
U h t ×
222
2cos sin U h
2212
122cos(2)
2
C C C C +
单桥整流电压中特征谐波的特性
工程中直流侧电压谐波分析方法:
3.3
非特征谐波产生的原因
HVDC
u p61
e ca
u
e ca p62
双桥换流变网侧电流波形
p61e
u p61
e ca。
滤波器工作原理滤波器是一种能够将信号中特定频率成分通过而抑制其他频率成分的电路或设备。
在电子电路和通信系统中,滤波器扮演着至关重要的角色,它可以帮助我们实现信号的处理、分析和传输。
本文将介绍滤波器的工作原理,包括滤波器的分类、工作原理和应用。
首先,我们来看一下滤波器的分类。
根据频率特性的不同,滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种基本类型。
低通滤波器可以通过低频信号而抑制高频信号,高通滤波器则相反,可以通过高频信号而抑制低频信号。
带通滤波器可以通过某一频率范围内的信号而抑制其他频率范围的信号,带阻滤波器则相反,可以抑制某一频率范围内的信号。
除了这四种基本类型外,还有衍生出来的各种复合类型滤波器,如陷波滤波器、全通滤波器等。
接下来,让我们来了解一下滤波器的工作原理。
滤波器的工作原理基于信号的频率特性和电路的响应特性。
以低通滤波器为例,当输入信号经过滤波器时,滤波器会根据其频率特性,通过低频信号而抑制高频信号。
这是通过滤波器内部的电路结构和元件特性来实现的,比如电容、电感、电阻等。
通过合理设计电路结构和选择合适的元件参数,可以实现不同类型的滤波器,从而满足不同的应用需求。
滤波器在电子电路和通信系统中有着广泛的应用。
在无线通信系统中,滤波器可以用来滤除不同频段的信号,以便实现频谱的分配和复用。
在音频处理系统中,滤波器可以用来调节音频信号的音色和音质。
在生物医学领域,滤波器可以用来处理生物信号,如心电图、脑电图等。
在工业控制系统中,滤波器可以用来抑制噪声干扰,提高系统的稳定性和可靠性。
总之,滤波器作为一种重要的电子电路和通信设备,其工作原理涉及到信号处理、电路设计和应用技术等多个方面。
通过对滤波器的分类和工作原理的了解,可以更好地应用滤波器来解决实际问题,提高系统的性能和可靠性。
希望本文能够帮助读者对滤波器有一个更清晰的认识,促进滤波器技术的发展和应用。