卡尔曼滤波器分类及基本公式
- 格式:ppt
- 大小:790.00 KB
- 文档页数:39
卡尔曼滤波算法基本原理一、概述卡尔曼滤波算法是一种基于线性系统状态空间模型的递归滤波算法,主要用于估计含有噪声的测量数据,并能够有效地消除噪声对估计的影响,提高估计精度。
本篇文章将详细介绍卡尔曼滤波算法的基本原理。
二、基本原理1.状态方程:卡尔曼滤波算法基于线性系统状态空间模型,该模型可以用状态方程来表示。
状态方程通常包含系统的内部状态、输入和输出,可以用数学公式表示为:x(t+1)=Ax(t)+Bu(t)+w(t)。
其中,x(t)表示系统内部状态,u(t)表示输入,w(t)表示测量噪声。
2.测量方程:测量数据通常受到噪声的影响,卡尔曼滤波算法通过建立测量方程来处理噪声数据。
测量方程通常表示为:z(t)=h(x(t))+v(t),其中z(t)表示测量数据,h(x(t))表示系统输出,v(t)表示测量噪声。
3.卡尔曼滤波算法:卡尔曼滤波算法通过递归的方式,根据历史状态和测量数据来估计当前系统的内部状态。
算法的核心是利用过去的估计误差和测量误差来预测当前的状态,并不断更新估计值,以达到最优估计的效果。
卡尔曼滤波算法主要包括预测和更新两个步骤。
预测步骤根据状态方程和上一步的估计值,预测当前的状态;更新步骤则根据当前的测量数据和预测值,以及系统协方差矩阵,来更新当前状态的估计值和系统协方差矩阵。
4.滤波器的选择:在实际应用中,需要根据系统的特性和噪声的性质来选择合适的卡尔曼滤波器。
常见的滤波器有标准卡尔曼滤波器、扩展卡尔曼滤波器等。
选择合适的滤波器可以提高估计精度,降低误差。
三、应用场景卡尔曼滤波算法在许多领域都有应用,如航空航天、自动驾驶、机器人控制等。
在上述领域中,由于系统复杂、噪声干扰大,使用卡尔曼滤波算法可以有效地提高系统的估计精度和控制效果。
四、总结卡尔曼滤波算法是一种基于线性系统状态空间模型的递归滤波算法,通过预测和更新的方式,能够有效地消除噪声对估计的影响,提高估计精度。
本篇文章详细介绍了卡尔曼滤波算法的基本原理和应用场景,希望能对大家有所帮助。
卡尔曼滤波状态方程
卡尔曼滤波(Kalman Filter)是一种由美国专家罗伯特·卡尔曼(R.E.Kalman)提出的一种递推式最优滤波器,它可以有效的进行信
号的平滑和过滤,对一般的非线性结构也有很好的求解精度。
卡尔曼
滤波的基本思想是利用滤波器的输入信号和已知的系统过程的已知信息,来估计潜在的状态变量等参数。
它在非确定性环境中,使用系统
动态、测量观测方程和扩展卡尔曼滤波算法等方法求解不确定性问题,以实时预测系统的动态行为及提高系统的精度而著称。
卡尔曼滤波的状态方程可以表示为:
x(k+1) = Fx(k) + w(k)
其中,F 是状态转移矩阵,w(k) 是维度为 n 的随机驱动向量,
x(k+1) 和 x(k) 分别表示历史状态向量和当前状态向量。
卡尔曼滤波的测量方程如下:
z(k) = Hx(k) + v(k)
其中,H 是测量矩阵,v(k) 是维度为 m 的随机噪声向量,z(k)
表示状态向量的测量值。
另外,还有如下卡尔曼滤波状态方程:
P(k+1) = F P(k) F^T + Q(k)
其中,P(k+1) 和 P(k) 分别表示历史误差协方差矩阵和当前时刻
的误差协方差矩阵,Q(k) 是系统的过程噪声协方差矩阵。
K(k) = P(k) H^T (H P(k) H^T + R(k))^(-1)
其中,K(k) 是本次卡尔曼滤波的卡尔曼增益矩阵,R(k) 为测量
噪声协方差矩阵。
最后:
x(k+1 | k) = x(k) + K(k)(Hx(k) - z(k))
其中, x(k+1 | k) 表示本次卡尔曼滤波的当前状态估计值。
卡尔曼滤波器介绍摘要在1960年,R.E.Kalman发表了关于递归解决线性离散数据滤波器的著名论文,从那时间起,由于在数字计算的大部分提高,Kalman滤波器已成为广泛研究和应用的学科,尤其是自动或辅助导航系统。
Kalman滤波器是一套数学等式,它提供了一种有效的以最小均方误差来估计系统状态的计算(递归的)方法。
它在以下几方面是非常强大的:它支持过去、现在、甚至将来估计,甚至在系统准确模型也未知的情况下。
本文的目的是提供一种对离散的Kalman滤波器的实用介绍。
这些介绍包括对基本离散kalman滤波器、起源和与之相关的简单(有形)的带有真实数字和结果的描述和讨论。
1、离散的kalman滤波器在1960年,R.E.Kalman发表了关于递归解决线性离散数据滤波器的著名论文,从那时间起,由于在数字计算的大部分提高,Kalman滤波器已成为广泛研究和应用的学科,尤其是自动或辅助导航系统。
关于kalman滤波器一般方法的友好介绍可以在〔maybeck79〕的Chapter.1中找到,但是更完整部分的讨论能在〔Sorenson70〕中发现,它还包括许多有趣的历史解释。
在〔Gelb74;Grewal93;Maybeck79;Lewis86;Brown92;jacobs93〕中有更多参考。
估值过程Kalman滤波器解决估计离散时间控制过程的状态X∈R n的一般性问题,定义线性随机差分方程其中,测量值Z∈R m,定义为随机变量W K和V K各自表示系统噪声和测量噪声,我们假定它们为相互独立的、白噪声且为正常概率分布在实际中,系统噪声协方差矩阵Q和测量噪声协方差矩阵R可能随过程和测量时间而改变,无论怎样,我们在这里假定它们是常量。
在差分方程(1.1)中,n×n阶矩阵A与前一时刻(K-1)和当前时刻K相关,这里缺少传递函数或系统噪声。
注意的是,在实际中,A可能随各自时刻改变,但这里我们假定其为常量,n×l阶矩阵R与非强制性输入U∈R l和状态x有关,在测量公式(1.2)中,m×n阶矩阵H 与状态及测量值Z K有关,在实际中,H可能随各自过程或测量时刻而改变,这里假定它们是常数。
卡尔曼滤波器的五个公式
卡尔曼滤波器主要有两个公式,分别是状态预测公式和状态更新公式。
而状态预测公式又可以细分为系统状态预测公式和状态协方差预测公式。
因此,卡尔曼滤波器总共有五个公式,具体如下:
1. 系统状态预测公式(状态方程):
x(k) = F * x(k-1) + B * u(k-1) + w(k-1)
其中,x(k)为当前时刻的状态向量,F为状态转移矩阵,x(k-1)为上一时刻的状态向量,B为控制输入矩阵,u(k-1)为控制输入向量,w(k-1)为过程噪声向量。
2. 状态协方差预测公式(协方差方程):
P(k) = F * P(k-1) * F^T + Q(k-1)
其中,P(k)为当前时刻的状态协方差矩阵,Q(k-1)为过程噪声协方差矩阵。
3. 状态更新公式(测量方程):
z(k) = H * x(k) + v(k)
其中,z(k)为当前时刻的测量向量,H为测量矩阵,v(k)为测量噪声向量。
4. 估计协方差更新公式:
S(k) = H * P(k) * H^T + R(k)
其中,S(k)为当前时刻的估计协方差矩阵,R(k)为测量噪声协方差矩阵。
5. 状态修正公式:
K(k) = P(k) * H^T * (H * P(k) * H^T + R(k))^-1
其中,K(k)为卡尔曼增益矩阵。
通过以上五个公式的迭代运算,可以实现卡尔曼滤波器的状态预测和状态更新,从而提高状态估计的准确性。
目录一. 卡尔曼滤波的背景介绍 (2)二. 卡尔曼滤波的相关原理 (2)三. 卡尔曼滤波的简单理解 (3)1.卡尔曼滤波器基本公式 (3)2.卡尔曼滤波器算法 (3)3.研究对象:房间的温度 (5)四. 卡尔曼滤波的实现形式 (6)五. 卡尔曼滤波的应用范围 (6)六. 卡尔曼滤波的典型实例 (6)卡尔曼滤波器在智能车中的应用 (6)七.卡尔曼滤波器的不足与发展 (12)1.卡尔曼滤波器的不足 (12)2.卡尔曼滤波器的发展 (13)3.自适应卡尔曼滤波(AKF) (13)一. 卡尔曼滤波的背景介绍Kalman,匈牙利数学家。
1930年出生于匈牙利首都布达佩斯。
1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。
1957年于哥伦比亚大学获得博士学位。
卡尔曼滤波器源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
卡尔曼滤波器是一个最优化自回归数据处理算法。
对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。
它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等二. 卡尔曼滤波的相关原理状态估计是卡尔曼滤波的重要组成部分。
一般来说,根据观测数据对随机量进行定量推断就是估计问题,特别是对动态行为的状态估计,它能实现实时运行状态的估计和预测功能。
比如对飞行器状态估计。
状态估计对于了解和控制一个系统具有重要意义,所应用的方法属于统计学中的估计理论。
最常用的是最小二乘估计,线性最小方差估计、最小方差估计、递推最小二乘估计等。
其他如风险准则的贝叶斯估计、最大似然估计、随机逼近等方法也都有应用。
受噪声干扰的状态量是个随机量,不可能测得精确值,但可对它进行一系列观测,并依据一组观测值,按某种统计观点对它进行估计。
卡尔曼滤波算法卡尔曼滤波算法卡尔曼滤波器是⼀个“最优化⾃回归数据处理算法”。
对于解决⼤部分的问题,它是最优,效率最⾼甚⾄是最有⽤的。
其⼴泛应⽤已经超过30年,包括机器⼈导航,控制,传感器数据融合甚⾄在军事⽅⾯的雷达系统以及导弹追踪等。
近年来更被应⽤于计算机图像处理,列⼊,⾯部识别,图像分割,图像边缘检测等⽅⾯。
卡尔曼滤波原理⾸先要引⼊⼀个离散控制过程的系统,该系统可⽤⼀个线性随机微分⽅程来秒速:X(k)=AX(k-1)+BU(k)+W(k)(1)再加上系统的测量值:Z(k)=HX(k)+V(k)(2)上两式⼦中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A和B 是系统参数,对于多模型系统,它们为矩阵。
Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k)分别表⽰过程和测量的噪声。
它们被假设成⾼斯⽩噪声,其协⽅差分别是Q,R,这⾥假设它们不随系统状态变化⽽变化。
由于满⾜上⾯的条件(线性随机微分系统,过程和测量都是⾼斯⽩噪声),卡尔曼滤波器是最优的信息处理器。
下⾯来估算系统的最优化输出。
⾸先利⽤系统的过程模型预测下个状态的系统。
假设现在的系统状态是k,根据系统的模型,可以基于系统的上⼀状态⽽预测出现在状态:X(k|k-1)=AX(k-1|k-1)+BU(k)(3)式(3)中,X(k|k-1)是利⽤上⼀个状态预测的结果,X(k-1|k-1)是上⼀个状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0.到现在为⽌,系统结果已经更新了,可是对应于X(k|k-1)的协⽅差还没有更新。
⽤P 表⽰协⽅差:P(k|k-1)=AP(k|k-1)A’+Q(4)式⼦(4)中P(k|k-1)是X(k|k-1)对应的协⽅差,P(k-1|k-1)是X(k-1|k-1)对应的协⽅差,A’表⽰A的转置矩阵,Q时系统过程的协⽅差。
式(3),式(4)就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
卡尔曼滤波器原理及应用
卡尔曼滤波器是一种利用机器学习算法来优化估计的方差和协方差矩阵的技术。
它主要用于将不稳定的、含有噪声的信号转换为稳定的信号。
卡尔曼滤波器原理:
卡尔曼滤波器原理是基于一个随机过程的线性状态空间模型进行的,对于一个状态空间模型,可以建立一个方案:
1. 状态方程:X(t)=A*X(t-1)+B*U(t)+W(t),其中A、B是状态转移矩阵和输入的控制矩阵,U是输入状态,W是过程噪声。
2. 观测方程:Y(t)=C*X(t)+V(t),其中C是状态观测矩阵,V是观测噪声。
卡尔曼滤波器的应用:
卡尔曼滤波器广泛应用于无人机、移动机器人、航空航天、智能交通、自动控制等领域。
关于卡尔曼滤波器的应用思路,以自动驾驶汽车为例:
自动驾驶汽车的环境复杂多变,包括天气、路况、行人、交通信号灯等各种影响
因素,因此需要通过传感器系统获取各种传感器数据和反馈控制信息来快速精确地反应车辆的实际状态。
利用卡尔曼滤波器算法,可以将各种不同的传感器数据合并起来,利用车辆运动和环境变化的信息,实时估计车辆的状态变量和环境变量,实现车辆轨迹规划和动态控制。
同时,通过利用卡尔曼滤波器的预测功能,可以根据历史数据进行预测,进一步优化系统的控制策略。
总之,卡尔曼滤波器作为一种优秀的估计技术,无论在精度和效率上,都足以发挥其独特的优势,在实际应用中,具有广泛的应用前景。
卡尔曼滤波卡尔曼滤波器是一种由卡尔曼(Kalman )提出的用于时变线性系统的递归滤波器。
这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。
卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。
卡尔曼滤波的基本概念一个实际的系统可用如下形式表示:设向量非平稳序列1-k x 和1-k y 用下面的动态方程描述:)0(111,≥⎩⎨⎧+=+Φ=---k v x C y w x x kk k k k k k k k (1—1)k x 是状态向量,k y 是观测向量,k w 是输入噪声,k v 是观测噪声,1,-Φk k 是从1-k 时刻到k 时刻的状态转移阵。
上述动态方程可由系统的机理推导得来或由实验数据辨识得到。
现假设已知。
有如下假设:1)k w 和k v 为零均值白噪声即:()[]0,[,][]0,[,]()Tk k j k j k kj T k k j k j k kjE w Cov w w E w w Q E v Cov v v E v v R δδ⎧===⎪⎨===⎪⎩其中k Q 对称半正定k R 对称正定,均为已知。
2)k w 和k v 不相关即()[,]0(,)T k j kjC o v w v E w vk j==∀ 3)初始状态0x 是随机向量,且与k w 、k v 不相关,即000000[,][()]0[,][()]0Tk k Tk kCov x w E x Ex w Cov x v E x Ex v ⎧=-=⎪⎨=-=⎪⎩ 卡尔曼滤波:——状态估计在已知动态方程(1—1)(状态和观测方程)和样本观测数据k y ,1-k y ,…情况下,求随机序列样本——状态k x 的估计值k xˆ。
卡尔曼通过对下一步预测观测误差——新息的修正加之最小均方误差调整准则很好地解决了带有噪声的状态估计问题。
卡尔曼的递推思想与新息:递推计算和新息是卡尔曼滤波的基本思想,请看如:)(11111211k k k k k y y k y k y y y y -++=++++=+++平均计算变成一种递推计算,大大减少了计算量,把1+k 估计看成是在k 基础上的修正,修正项11()1k k y y k +-+。
卡尔曼滤波器分类及基本公式根据其应用领域和实现方式,卡尔曼滤波器可以分为线性卡尔曼滤波器、扩展卡尔曼滤波器和无迹卡尔曼滤波器等。
1. 线性卡尔曼滤波器(Linear Kalman Filter):线性卡尔曼滤波器适用于状态变量和观测变量均为线性的情况。
它基于线性动态系统和高斯噪声的假设。
线性卡尔曼滤波器的基本公式为:预测步骤:$\hat{x}_{k,k-1} = F\hat{x}_{k-1,k-1} + Bu_{k-1}$$P_{k,k-1}=FP_{k-1,k-1}F^T+Q$更新步骤:$y_k = z_k - H\hat{x}_{k,k-1}$$S_k=HP_{k,k-1}H^T+R$$K_k=P_{k,k-1}H^TS_k^{-1}$$\hat{x}_{k,k} = \hat{x}_{k,k-1} + K_ky_k$$P_{k,k}=(I-K_kH)P_{k,k-1}$其中,$\hat{x}$ 表示状态变量的估计值,$P$ 表示状态变量估计值的方差,$F$ 表示状态转移矩阵,$B$ 表示输入矩阵,$u$ 表示系统输入,$Q$ 表示系统模型噪声协方差矩阵,$H$ 表示观测矩阵,$z$ 表示观测值,$y$ 表示观测残差,$R$ 表示观测噪声协方差矩阵,$K$ 表示卡尔曼增益,$I$ 表示单位矩阵。
2. 扩展卡尔曼滤波器(Extended Kalman Filter):扩展卡尔曼滤波器适用于状态变量和观测变量为非线性的情况。
它通过对非线性系统进行线性化,然后应用线性卡尔曼滤波器的思想来进行滤波。
扩展卡尔曼滤波器的基本公式与线性卡尔曼滤波器类似,只是在预测步骤和更新步骤中,将线性化的系统模型和观测模型代替原始非线性模型。
3. 无迹卡尔曼滤波器(Unscented Kalman Filter):无迹卡尔曼滤波器通过使用无迹变换,避免了非线性系统线性化的过程,从而提高了滤波精度,并且对于非线性系统更加稳健。
卡尔曼滤波公式推导卡尔曼滤波器是一种基于最优估计的理论,用于对系统状态进行迭代更新的算法。
它被广泛应用于航空航天、自动化控制、信号处理、地球物理学、计算机视觉等领域。
下面将介绍卡尔曼滤波器的公式推导。
假设我们有一个线性系统,其状态空间模型为:$$x_t = f(t,x_{t-1},u_t) + v_t$$$$u_t = h(t,x_t) + w_t$$其中,$x_t$表示状态变量,$u_t$表示输入变量,$v_t$表示噪声变量,$f$和$h$是状态空间和输入空间的概率分布函数(PDF),$w_t$是输入变量的噪声变量。
假设我们有一个测量变量$y_t$,与状态变量$x_t$存在一定的关系,其模型为:$$y_t = g(t,x_t) + z_t$$其中,$y_t$表示测量变量,$z_t$表示噪声变量。
我们的目标是利用过去的测量值和当前的状态变量,估计出当前状态的最优值。
根据最优估计理论,我们可以通过迭代更新的方式来得到状态的最优估计值。
卡尔曼滤波器的基本原理是,利用系统的线性性质和测量模型,对状态变量进行递归估计,不断更新状态估计值,从而得到最优估计值。
具体来说,它通过两个步骤来实现状态估计的更新:1. 前向传播 (Forwardpropagation):根据当前状态的估计值和测量值,计算前向传播的结果。
具体来说,它计算出当前状态的前向传播值$x_t^f$,即:$$x_t^f = (f^Todot g^T)(t,x_t) + v_t$$其中,$odot$表示元素逐个相乘,$f^T$和$g^T$分别为状态空间和输入空间的转置矩阵。
2. 后向传播 (Backward propagation):根据前向传播的结果,计算后向传播的结果。
具体来说,它计算出当前状态的后向传播值$x_t^b$,即:$$x_t^b = (h^Todot f^T)(t,x_t) + w_t$$其中,$odot$表示元素逐个相乘,$h^T$为输入空间的转置矩阵。
卡尔曼核心公式卡尔曼滤波是一种用于处理实时控制、估计和预测问题的算法。
卡尔曼滤波基于贝叶斯统计学的一系列假设,包括线性系统、高斯噪声等。
卡尔曼滤波的核心公式是卡尔曼滤波器方程,它描述了如何根据先前的状态估计和当前的观测值来更新状态估计。
下面我们来具体介绍卡尔曼滤波的核心公式。
状态方程卡尔曼滤波器方程的核心就是状态方程和观测方程。
状态方程描述了系统的演化过程,通常用一个线性动态系统来表示。
假设这个线性动态系统是一个一阶的离散时间系统,其状态方程可以表示为:x[k] = A[k]x[k-1] + B[k]u[k-1] + w[k-1]其中,x[k]是时间k时刻的状态向量,A[k]是状态转移矩阵,B[k]是输入矩阵,u[k-1]是时间k-1时刻的输入,w[k-1]是状态转移过程中噪声的影响。
观测方程观测方程描述了系统的测量过程,通常用一个线性系统来表示。
假设这个线性系统是一个二阶的离散时间系统,其观测方程可以表示为:z[k] = H[k]x[k] + v[k]其中,z[k]是时间k时刻的测量向量,H[k]是观测矩阵,v[k]是测量过程中噪声的影响。
卡尔曼滤波器方程卡尔曼滤波器方程是根据状态方程和观测方程推导出来的,用于更新状态向量的估计。
推导出的卡尔曼滤波器方程如下:x[k|k] = A[k]x[k-1|k-1] + B[k]u[k-1]P[k|k] = A[k]P[k-1|k-1]A[k]T + Q[k-1]K[k] = P[k|k]H[k]T(H[k]P[k|k]H[k]T + R[k])^-1x[k|k] = x[k|k-1] + K[k](z[k] - H[k]x[k|k-1])P[k|k] = (I - K[k]H[k])P[k|k-1]其中,x[k|k]是在时间k时刻根据先前的状态估计和当前的观测值来更新的状态向量,P[k|k]是状态向量的协方差矩阵,Q[k-1]是状态向量的过程噪声协方差矩阵,R[k]是测量噪声协方差矩阵,K[k]是卡尔曼增益。
卡尔曼增益公式卡尔曼增益公式(Kalman Gain Formula)是卡尔曼滤波器(Kalman Filter)中的关键公式,用于实时估计系统状态。
卡尔曼滤波器是一种递归滤波器,能够通过融合系统模型和观测数据,提供最优的状态估计结果。
卡尔曼滤波器的核心思想是通过不断迭代的方式,基于先验估计和观测数据,逐步修正状态估计值,从而得到更准确的系统状态估计。
卡尔曼增益公式在这个过程中起到了至关重要的作用。
卡尔曼增益公式的表达形式如下:K = P * H^T * (H * P * H^T + R)^(-1)其中,K表示卡尔曼增益,P表示先验估计的状态协方差矩阵,H 表示观测矩阵,R表示观测噪声的协方差矩阵。
卡尔曼增益公式的含义是通过计算观测矩阵H与状态协方差矩阵P 的乘积,再加上观测噪声的协方差矩阵R,然后求逆矩阵,最后再乘以先验估计的状态协方差矩阵P的转置,得到卡尔曼增益K。
卡尔曼增益K的作用是衡量观测数据对状态估计的贡献程度。
当观测数据的噪声较大时,卡尔曼增益会减小,降低观测数据的权重;当观测数据的噪声较小时,卡尔曼增益会增大,提高观测数据的权重。
通过调整卡尔曼增益,卡尔曼滤波器能够更好地抵抗观测噪声的影响,提供更准确的状态估计结果。
卡尔曼增益的计算依赖于系统模型和观测数据的统计特性。
在实际应用中,这些统计特性往往通过系统建模和实验测量得到。
通过不断更新卡尔曼增益,卡尔曼滤波器能够适应系统和观测数据的变化,实现状态估计的持续优化。
卡尔曼增益公式的应用广泛,特别在机器人导航、航空航天、自动驾驶等领域具有重要意义。
通过卡尔曼滤波器的状态估计,可以实现对复杂系统的实时监测和控制,提高系统的稳定性和可靠性。
卡尔曼增益公式是卡尔曼滤波器中的关键公式,通过计算观测数据的权重,实现对系统状态的实时估计。
卡尔曼滤波器凭借其高效的状态估计能力,在众多领域得到了广泛应用,为提高系统性能和可靠性做出了重要贡献。