人教版九年级数学上册:扇形,圆锥的面积 练习题
- 格式:doc
- 大小:275.50 KB
- 文档页数:3
3.6 圆锥的侧面积 同步练习【知识要点】1.圆锥可以看做是一个直角三角形绕它的一条直角边旋转一周所成的图形;斜边旋转而成的曲面叫做面锥的侧面.无论转到什么位置;这条科边都叫做圆锥的母线;另一条直角边旋转而成的面叫做圆锥的底面如果记圆锥的高线长为h;地面半径为r;母线长为l ;则h 2+r 2=2l .2.圆锥的侧面展开图是一个扇形;这个扇形的半径是圆锥的母线长l ;弧长是圆锥的底面周长C =2лr;侧面积S 侧=лr l .3.圆锥的侧面积与底面积的和叫圆锥的全面积(或表面积).S 全=2rl r ππ+ 课内同步精练 ●A 组 基础练习 1. 如图是小明制作的一个圆锥形纸帽的示意图;围成这个纸帽的纸的面积为 cm 2.2. 若圆锥的母线长为 20cm ; 底面半径是母线长的14;则这个圆锥的侧面积是 . 3. 已知圆锥的母线长是10cm;侧面展开图的面积是6o лcm 时;则这个圆锥的底面半径是 cm.4. 如果圆锥的母线长为5cm ;底面半径为3cm;那么圆锥的表面积为( )A. 15лcm 2B. 24лcm 2C. 30лcm 2D. 39лcm 25. 沿着圆锥的轴剖开的剖面的等腰三角形的顶角为600;这个圆锥的母线长为8cm ;则这个圆锥的高为( ) A.43cm B.83cm C.4cm D.8cm6. 已知圆锥的母线长是35;它的侧面展开图是圆心角为2160的扇形;那么这个圆锥的( )A .底面半径是15B .高是26C .侧面积是70л 二D .侧面积是735л7. 一个圆锥的侧面积是底面积的2倍;求这个圆锥的侧面展开图扇形的圆心角的度数.●B 组 提高训练8. 圆锥的侧面积是87лcm 2;其轴截面是一个等边三角形;则该轴截面的面积为( )A.83cm 2B. 43cm 2C. 83лcm 2D. 43лcm 29. 已知菱形的周长为20cm;有一角为600;若以较长对角线为轴把菱形旋转一周;所成的几何体的全面积为 .10. 已知圆锥的全面积为12cm 2;侧面积为8cm 2; 试求圆锥的高与母线之间的夹角.11. 如图;在等腰梯形ABCD 中;AB//CD; CD=50 cm; AB=140cm;高h=DE=40cm;以直线AB 为轴旋转一周;得到一个上、下是圆锥;中间是圆柱的组合体.求这个组合体的全面积.课外拓展练习●A组基础练习1. 已知圆锥的底面半径为2cm ;母线长为5cm ;则它的侧面积是cm2.2. 在△ABC中;AB=3 ; AC=4;∠A=900;把Rt△ABC绕直线AC旋转一周得到一个圆锥;其全面积为S1;把Rt△ABC绕AB旋转一周得到另一个圆锥;其全面积为S2;则S1: S2= .3. 一个圆柱形容器的底面直径为2cm;要用一块圆心角为2400的扇形铁板做一个圆锥形的盖子;做成的盖子要能盖住圆柱形容器;这个扇形的半径至少要有cm .4. 把一个半径为8cm的圆片;剪去一个圆心角为900的扇形后;用剩下的部分做成一个圆锥的侧面;那么这个圆锥的高为5. 用一个半径长为6cm 的半圆围成一个圆锥的侧面;则此圆锥的底面半径为()A. 2cmB. 3cmC. 4crnD. 6cm6. 圆锥的全面积和侧面积之比是3 :2;这个圆锥的轴截面的顶角是()A. 300B. 600C. 900D. 12007. 某圆锥的侧面积是8;与这个圆锥等底等高的圆柱的侧面积是2;则圆锥的母线长是高线长的( )A. 4倍B. 8倍C. 22倍D.15倍8. 已知扇形的圆心角为1200;面积为300лcm2.( 1 )求扇形的弧长;( 2 )若把此扇形卷成一个圆锥;则这个圆锥的轴截面面积是多少?●B组提高训练9.将一个半圆围成一个圆锥的侧面;则两条母线之间的最大夹角是()A. 1500B. 1200C. 900D. 60010. 已知两个母线相等的圆锥的侧面展开图恰好能拼成一个圆;且它们的侧面积之比为1∶2;则它们的高之比为().A.2:1B.3:2D.5:11. 如图;在△ABC 中;∠C =Rt ∠; AC > BC 若以AC 为底面圆半径;BC 为高的圆锥的侧面积为S 1;以BC 为底面圆半径;AC 为高的圆锥的侧面积为S 2;则( )A . S 1 = S 2 B.S 1 > S 2 C. S 1 < S 2 D. S 1、S 2的大小关系不确定12. 将半径为R 的圆分割成面积之比为l : 2 : 3的三个扇形作为三个圆锥的侧面;设这三个圆锥的底面半径依次为r 1、r 2、r 3;则r 1+r 2+r 3= .13.一个等边圆柱(轴截面是正方形的圆柱)的侧面积是S 1;另一个圆锥的侧面积是S 2;如果圆锥和圆柱等底等高;求12S S14. 圆锥的底面半径是R;母线长是3R;M 是底面圆周上一点;从点M 拉一根绳子绕圆锥一圈;再回到M 点;求这根绳子的最短长度.。
24.4弧长和扇形面积(第1课时)【学习目标】了解扇形的概念,理解 n?°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.【学习重点】n°的圆心角所对的弧长 L= n R,扇形面积S扇= n R2及其它们的应用.180360【学习过程】(教师寄语:勤动脑,多动手,体验收获!)自主探究(教师寄语:学会独立思考,自主学习是最重要的!)一、任务一:探究弧长公式1、圆的周长公式是什么?什么叫弧长?2、圆的周长可以看作 ______度的圆心角所对的弧.1°的圆心角所对的弧长是 _______; 2°的圆心角所对的弧长是 _______;4°的圆心角所对的弧长是 _______;n°的圆心角所对的弧长是 _______。
任务二:探究扇形面积公式3、圆的面积公式是什么?什么叫扇形?4、圆的面积可以看作度圆心角所对的扇形的面积;设圆的半径为R,1°的圆心角所对的扇形面积S 扇形 =_______; 2°的圆心角所对的扇形面积 S 扇形=_______; 5°的圆心角所对的扇形面积S 扇形=_______;n °的圆心角所对的扇形面积S 扇形 =_______。
5、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?二、合作学习(教师寄语:学会与别人合作是一种能力!)例 1、(教材 121 页例 1)例 2:如图,已知扇形 AOB的半径为 10,∠ AOB=60°,求AB的长( ?结果精确到 0.1)和扇形 AOB的面积结果精确到 0.1)三、课时小结(教师寄语:及时总结能使人不断进步!)四、自我测评(教师寄语:细心思考,必定成功!)1、已知扇形的圆心角为120°,半径为6,则扇形的弧长是().A . 3B . 4C . 5D . 62、如图所示,把边长为 2 的正方形 ABCD的一边放在定直线L 上,按顺时针方向绕点 D 旋转到如图的位置,则点 B 运动到点 B′所经过的路线长度为()A.1B.C.2D.2B C(A')B'AlD C'A BCO(第 2 题图)(第 3 题图)(第 4 题图)(第 6 题图)3、如图所示, OA=30B,则AD的长是BC的长的 _____倍.4、如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB 为120,OC 长为8cm, CA 长为12cm,则阴影部分的面积为。
初三数学扇形和弧长练习题1. 计算扇形的面积问题:一个半径为5cm的圆的一个扇形的圆心角为60度,求该扇形的面积。
解析:扇形的面积等于圆的面积乘以扇形的圆心角度数除以360度。
已知半径为5cm,圆心角为60度,代入公式可得:扇形面积 = 圆的面积 ×圆心角度数 / 360= π × 5^2 × 60 / 360= π × 25 × 60 / 360= π × 25 / 6≈ 13.09cm^2所以该扇形的面积约为13.09cm^2。
2. 计算弧长问题:一个圆的周长为10π cm,求圆的一段弧长。
解析:弧长等于圆的周长乘以弧所占圆周的比例。
已知圆的周长为10π cm,我们可以设所求弧长为x cm,代入公式可得:x / (10π) = 所求弧所占圆周的比例 = 弧长 / 圆的周长解得 x = 弧长= (10π) × 弧长 / 圆的周长= (10π) × 1 / 4π= 10 / 4= 2.5 cm所以该圆的一段弧长为2.5 cm。
3. 综合计算问题:一个半径为8cm的圆的两个扇形的圆心角分别为120度和60度,求这两个扇形的面积之和。
解析:根据第一题的解析,我们可以计算出两个扇形的面积,然后相加即可。
已知半径为8cm,圆心角分别为120度和60度,代入公式可得:第一个扇形的面积= π × 8^2 × 120 / 360= π × 64 × 120 / 360= π × 8 × 40= 320π cm^2第二个扇形的面积= π × 8^2 × 60 / 360= π × 64 × 60 / 360= π × 8 × 10= 80π cm^2两个扇形的面积之和 = 第一个扇形的面积 + 第二个扇形的面积= 320π + 80π= 400π cm^2所以这两个扇形的面积之和为400π cm^2。
人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)基础巩固1.⊙的内接多边形周长为3 ,⊙的外切多边形周长为3.4, 则下列各数中与此圆的周长最接近的是( )AB. D2.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .3.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是A .40°B .80°C .120°D .150°4.艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8 米,所对的圆心角为100°,则弧长是 米.(π≈3) 【参考答案】 1. C 2. D 3. C 4. 3O O 10AOB 120°24πcm 26πcm 29πcm 212πcm 120 BOA6cm能力提高 一、选择题1.如图,已知的半径,,则所对的弧的长为( ) A .B .C .D .2.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )A .10cmB .30cmC .40cmD .300cm3.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ) A .1.5B .2C .3D .64.有30%圆周的一个扇形彩纸片,该扇形的半径为40cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ).A.9°B.18°C.63°D.72°5.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图所示),则sin θ的值为( )A.B. C. D. O ⊙6OA =90AOB ∠=°AOB ∠AB 2π3π6π12π125135131013126.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径高则这个圆锥漏斗的侧面积是( ) A . B . C . D .二、填空题1.,圆心角等于450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA上,点D .E 在OB 上,点F 在上,则阴影部分的面积为(结果保留) .2.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留).3.将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是3,则圆锥的侧面积是____.4.如图,三角板中,,,.三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 .6cm OB =,8cm OC =.230cm 230cm π260cm π2120cm AB ππABC ︒=∠90ACB ︒=∠30B 6=BC C A 'A AB B 第2题图5.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留).6.矩形ABCD的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),则顶点A 所经过的路线长是_________.7.已知在△ABC 中,AB=6,AC=8,∠A=90°,把Rt△ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为,把Rt△ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为,则:等于_________ 三、解答题1.如图,有一个圆O 和两个正六边形,.的6个顶点都在圆周上,的6条边都和圆O 相切(我们称,分别为圆O 的内接正六边形和外切正六边形).(1)设,的边长分别为,,圆O 的半径为,求及的值; (2)求正六边形,的面积比的值.π1111A B C D 1S 2S 1S 2S 1T 2T 1T 2T 1T 2T 1T 2T a b r a r :b r :1T 2T 21:S SB 'A CAB 第4题2.如图,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .(1)求证:AC=BD ; (2)若图中阴影部分的面积是,OA=2cm ,求OC 的长.3.如图,已知菱形的边长为,两点在扇形的上,求的长度及扇形的面积.2 43cm ABCD 1.5cm B C ,AEF ABCBCD AEF【参考答案】 选择题 1. B 2. A3. C4. B5. A6. C 填空题 1.2. 3. 18π 4. 5. 6. 7. 2∶3 解答题1.解:(1)连接圆心O 和T 的6个顶点可得6个全等的正三角形 .所以r∶a=1∶1;连接圆心O 和T 相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r∶b=∶2;(2) T ∶T 的连长比是∶2,所以S ∶S = . 2. (1)证明:2385-π∏83π22ππ24123123124:3):(2=b a(2)根据题意得:;∴ 解得:OC =1cm .3. 解:四边形是菱形且边长为1.5,.又两点在扇形的上,,是等边三角形..的长(cm )BDAC BOD AOC DO CO BO AB BOD AOC AODBOD AOD AOC COD AOB =⇒∆≅∆⇒⎪⎭⎪⎬⎫==∠=∠⇒∠+∠=∠+∠⇒∠∠ 900==360)(9036090360902222OC OA OC OA S -=-=πππ阴影360)2(904322OC -=ππABCD 1.5AB BC ∴==B C 、AEF 1.5AB BC AC ∴===ABC ∴△60BAC ∴∠=°21805.160ππ=∙=ππ835.122121=∙∙==lR S ABC 扇形)(2cm。
2 2 第 2 课时 圆锥的侧面积和全面积1. 已知一个圆锥的底面直径是 6 cm,母线长是 8 cm,则它的全面积为( )A .24π cm 2B .33 cm 2C .24 cm 2D .33π cm 22. 如图,圆锥的底面半径为 r cm,母线长为 10 cm,其侧面展开图是圆心角为 216°的扇形,则 r 的值是()A .3 B.6 C.3π D.6π3. 已知一个圆锥的侧面积是底面积的 2 倍,母线长为 2,则该圆锥的底面半径是()A .1B .1C . 2D .34. 右面是一个圆锥的轴截面,则此圆锥的侧面展开图的圆心角的度数为.5. 已知圆锥的底面周长为 6π cm,高为 4 cm,则该圆锥的全面积是 cm 2;侧面展开扇形的圆心角是 .6. 工人师傅用一张半径为 24 cm,圆心角为 150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为 .7. 一个圆锥的高为 3,侧面展开图是半圆,求:(1)圆锥的母线与底面半径之比;(2)圆锥的全面积.8.如图,有一个直径是1 m 的圆形铁皮,要从中剪出一个半径为1 m 且圆心角是120°的扇形ABC,求:2(1)被剪掉后剩余阴影部分的面积.(2)若用所留的扇形铁皮围成一个圆锥,该圆锥底面圆的半径是多少米?9.已知圆锥的底面半径为4 cm,高为5 cm,则它的表面积为( )A.12π cm2B.26π cm2C. 41π cm2D.(4 41+16)π cm210.已知点O 为一圆锥的顶点,点M 为该圆锥底面上一点,点P 在母线OM 上,一只蚂蚁从点P 出发,绕圆锥侧面爬行,回到点P 时所爬过的最短路线的痕迹如图所示.若沿母线OM 将圆锥侧面剪开并展开, 则所得侧面展开图是( )11.如图,圆锥的底面半径为5,母线长为20,一只蜘蛛从底面圆周上一点A 出发沿圆锥的侧面爬行一周后回到点A 的最短路程是.12.如图,这是一个由圆柱形材料加工而成的零件,它是以圆柱的上底面为底面,在其内部“掏取”一个与圆柱等高的圆锥而得到的,其底面直径AB=12 cm,高BC=8 cm,求这个零件的全面积.(结果保留根号)★13.如图①,在正方形的铁皮上剪下一个圆形和一个扇形,使之恰好围成如图②的一个圆锥,设图① 中圆的半径为r,扇形的半径为R,那么扇形的半径R 与☉O 的半径r 之间满足怎样的关系?并说明理由.★14.如图,一个纸杯的母线延长后相交于一点,形成的立体图形是圆锥,该圆锥的侧面展开图是扇形OAB,经测量,纸杯上开口圆的直径是6 cm,下底圆直径为4 cm,母线长EF=8 cm.求扇形OAB 的圆心角及这个纸杯的全面积.(面积计算结果用π表示)2 2 180 180参考答案夯基达标1.D2.B 圆锥的侧面展开图是扇形,它的弧长=216π×10=12π,弧长又等于底面圆的周长,于是 12π=2π×r ,可180 得 r=6.故选 B .3.B 设圆锥的底面半径为 r ,则圆锥的侧面积为1·2πr ·2=2πr ,底面面积为πr 2,根据题意得 2πr=2πr 2,解得 r=1,即圆锥的底面半径是 1.故选 B .4.90° ∵2π×3=�π×12,∴n=90.180 5.24π 216° 设圆锥的底面半径为 r cm,母线长为 R cm,侧面展开扇形的圆心角为 n °.∵圆锥的底面周长为 2πr=6π,∴r=3.∵圆锥的高为 4 cm,∴R= 32 + 42=5.∴圆锥的全面积=底面积+侧面积=π×32+1×6π×5=24π(cm 2).∵侧面展开扇形的弧长 l=底面周长=6π=�π�,∴n=180×6π=216.π×5 即侧面展开扇形的圆心角是 216°.6.2 119 cm 由题意可得圆锥的母线长为 24 cm,设圆锥底面圆的半径为 r cm,则 2πr=150π×24,2 解得 r=10.故这个圆锥的高为 242-102=2 119(cm).7. 解 如图,设圆锥的轴截面为△ABC ,过点 A 作 AO ⊥BC 于点 O ,设母线长 AB=l ,底面☉O 的半径为 r ,高AO=h.(1) ∵圆锥的侧面展开图是半圆,∴2πr=1×2πl=πl ,�=2.2 �(2) 在 Rt △ABO 中,∵l 2=r 2+h 2,l=2r ,h=3,∴(2r )2=32+r 2.由 r 为正数,解得 r= 3,l=2r=2 3.故 S 全=S 侧+S 底=πrl+πr 2=π× 3×2 3+π×( 3)2=9π.8. 解 (1)设 O 为圆心,连接 OA ,OB ,OC.∵OA=OC=OB ,AB=AC ,∴△ABO ≌△ACO (SSS).又∠BAC=120°,∴∠BAO=∠CAO=60°.∴△ABO 是等边三角形.∴AB=1m .1 2 41 2 12 2 2 2 2 120π× 1 2 ∴� = 2 = π (m 2). 扇形A � 360 122 ∴S =π − π = π(m 2). 阴影 12 6120π×1 π (2)在扇形 ABC 中,�ˆ�的长为 2 = 1803(m). 设底面圆的半径为 r m,则 2πr=π.∴r=1(m).3 6培优促能9.D 底面半径为 4 cm,则底面周长为 8π cm,底面面积为 16π cm 2.由勾股定理得母线长为 cm,圆锥的侧面积为1×8π× 41=4 41π(cm 2),所以它的表面积为 16π+4 41π=(4 41+16)π cm 2.故选 D .10.D11. 20 将圆锥的侧面展开成扇形,连接 AA',则蜘蛛爬行的最短路程就是线段 AA'的长度.由题意知,OA=OA'=20,�ˆ�'=2π×5=10π,设∠AOA'=n °,根据弧长公式可求 n=10π×180=90.20π 所以在 Rt △AOA'中,AA'= ��2 + ��'2=20 2.12. 解 这个零件的底面积为2 π× =36π(cm 2),这个零件的外侧面积为12π×8=96π(cm 2),圆锥母线长OC= 82 + 122 =10(cm),这个零件的内侧面积为1×12π×10=60π(cm 2),2 2 2 所以这个零件的全面积为 36π+96π+60π=192π(cm 2).13. 分析 因为题图①中的圆形和扇形刚好围成题图②中的圆锥,所以题图①中的扇形的弧长等于☉O 的周长.解 扇形的半径 R 等于☉O 的半径 r 的 4 倍.理由如下:因为�ˆ�=2πR×1 = 1πR ,☉O 的周长为 2πr ,42且题图①中的扇形和☉O 能围成题图②的圆锥,所以1πR=2πr ,即 R=4r.创新应用14. 分析 展开图扇形的圆心角可利用圆锥底面周长等于展开图扇形的弧长来计算;纸杯的侧面积利用母线延长后的大圆锥的侧面积与小圆锥的侧面积的差来表示.解 由题意,知�ˆ�=6π cm,�ˆ�=4π cm .设∠AOB=n °,AO=R cm,则 CO=(R-8)cm, 根据弧长公式,�π� �π(�-8) 得 180=6π, 180 =4π.解得 n=45,R=24.所以扇形圆心角的度数为 45°.由 R=24,得 R-8=16.所以 S OCD =1×4π×16=32π(cm 2),S 扇形 OAB =1×6π×24=72π(cm 2).所以 S 纸杯侧=S 扇形 OAB -S 扇形 OCD =72π-32π=40π(cm 2). 又因为 S纸杯底=π 2 =4π(cm 2),4 2 扇形所以S=40π+4π=44π(cm2).纸杯全。
24.4 弧长和扇形面积同步练习2024-2025学年九年级上册数学人教版第一课时知识点一 弧长的有关计算1. 在半径为1的⊙O 中, 120°的圆心角所对的弧长是 ( ) A.3π B. 3π- C. π D.2π 2. 在半径为2 的⊙O 中,AB 的长为2π,则AB 所对的圆心角 为 ( ) A. 90° B. 45° C. 22.5° D. 180°3.“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”. 若等边△ABC 的边长为3,则该“莱洛三角形”的周长等于 ( ) A. π B. 3π C. 2π D.2π−√34. 如图, 四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B=135°, 则 AĈ的长是( ) A. 2π B. π C. π/2 D. π/3 5. 如图, 在扇形AOB 中, ∠AOB=90°, 点 C 为OA 的中点, CD⊥OA 交 AB ̂于D, 若 BD ̂的长为 13π, 则⊙O 的半径为 .知识点二 扇形面积的有关计算6. 如图, 在⊙O 中, OA=2,∠C=45°, 则图中阴影部分的面积是 .7. 如图,在3×3的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点△ABC 外接圆的一部分,小正方形的边长为1,图中阴影部分的面积为 ( )A.52π−74 B.52π−72 C.54π−74 D.54π−72 8.(1) 在扇形AOB 中, ∠AOB =75∘,AB̂的长为2.5π, 则⊙O 的半径为 ;9. 如图, AB 是半圆O的直径, 以O为圆心, OC 长为半径的半圆交AB于C, D 两点, 弦AF 切小半圆于点E.已知OA=2, OC=1, 则图中阴影部分的面积是̂所在圆相切于点A, B. 若该10.如图是某款“不倒翁”及其轴截面图, PA, PB 分别与AMB̂的长是 cm.圆半径是18 cm,∠P=50°, 则AMB11. 如图, AB 为⊙O 的直径,点C 为⊙O上一点, CD⊥AD, AD 交⊙O 于E, AC 平分∠BAD.(1) 求证: CD 是⊙O 的切线;(2) 连CE, CE∥AB,AB=4,求图中阴影部分面积.12.如图, 在Rt△ABC 中,∠C=90°, AC=BC, 点O在AB 上, 以O为圆心, OA 为半径的半圆分别交AC, BC, AB 于点 D, E, F, 且点 E 是弧 DF 的中点.(1) 求证: BC 是⊙O 的切线;(2) 若CE=√2,求图中阴影部分的面积(结果保留π).̂的中点, D、E为圆上动点, 且 D、E关于AB 对13. 如图, AB 为⊙O 的直径, 点 C 为AB̂沿AD 翻折交AE 于点F, 使点C 恰好落在直径AB 上点C'处, 若⊙O 的周长为1称,将AD̂的长.0,求AF第二课时知识点一圆锥的展开图与扇形的关系1. 圆锥的母线长为13 cm,底面半径为5cm,则此圆锥的高线为 ( )A. 6 cmB. 8cmC. 10 cmD. 12 cm2. 在半径为50cm的圆形铁皮上剪出一块扇形铁皮,用剩余部分做一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪出的扇形的圆心角度数为 ( )A. 228°B. 144°C. 72°D. 36°3. 现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为 ( )A. 4 cmB. 3cmC. 2cmD. 1 cm4. 已知一个圆锥的侧面展开图是一个半径为9,圆心角为120°的扇形,则该圆锥的底面半径等于( ).A. 9B. 27C. 3D. 10知识点二圆锥的侧面积与全面积5. 已知圆锥的底面半径是3,高为4,则这个圆锥的侧面展开图的面积是 ( )A. 12πB. 15πC. 30πD. 24π6. 已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径的比是 .7. 在长方形ABCD 中, AB=16, 如图所示裁出一个扇形ABE, 将扇形围成一个圆锥 (AB 和AE 重合),则此圆锥的底面圆的半径为 ( )A. 4B. 6C. 4√2D. 88. 如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°, AB的长为12πcm, 求该圆锥的侧面积.9. 如图,一个圆锥的高为3√3 cm,侧面展开图是半圆.(1) 求∠BAC 的度数;(2) 求圆锥的侧面积(结果保留π).10. 若一个圆锥的侧面积是底面积的3 倍,则这个圆锥的侧面展开图的圆心角为 ( )A. 60°B. 90°C. 120°D. 180°11. 如图, 用一个半径为30 cm, 面积为300πcm²的扇形铁皮,制作一个无底的圆锥 (不计损耗),则圆锥的底面半径r 为 ( )A. 5cmB. 10 cmC. 20cmD. 5πcm12. 如图,圆锥的底面半径为3cm,母线长为9cm,C 为母线PB 的中点,在圆锥的侧面上, 从A 到C 的最短距离是 cm.13. 如图,已知圆锥的母线AB 长为40cm, 底面半径OB 长为 10 cm, 若将绳子一端固定在点B,绕圆锥侧面一周,另一端与点B 重合,则这根绳子的最短长度是 cm.14. 如图,有一个直径为1m的圆形铁皮,圆心为O,要从中间剪去一个圆心角为120°的扇形ABC, 且BC经过点O.(1) 求被剪掉阴影部分的面积;(2) 若用所留的扇形ABC 铁皮围成一个圆锥,该圆锥的底面半径是多少?15. 如图1,在正方形铁皮上剪下一个扇形和一个半径为1 cm的圆形,使之恰好围成如图2所示的一个圆锥,求圆锥的高.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第24章圆24.4弧长和扇形面积一、选择题1.如图,在Rt ABC 中,90ACB Ð=°,AB =2BC =,以点A 为圆心,AC 的长为半径画弧,交AB 于点D ,交AC 于点C ,以点B 为圆心,AC 的长为半径画弧,交AB 于点E ,交BC 于点F ,则图中阴影部分的面积为()A .8p -B .4p -C .24p-D .14p-2.如图,AB 是O 的直径,4,AB C =为半圆AB 的中点,P 为弧AC 上一动点,连接PC 并延长,作BQ PC ^于点Q ,若点P 从点A 运动到点C ,则点Q 运动的路径长为()A .2B .p C D .43.如图,ABC 是等腰直角三角形,90ACB Ð=°,2AC BC ==,把ABC 绕点A 按顺时针方向旋转45°后得到AB C ¢¢△,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是()A .13p B .12πC .p D .2p4.如图,O 内切于边长为2的正方形ABCD ,则图中阴影部分的面积是()A .12π4-B .1π4C .4π-D .11π4-5.如图,正方形ABCD 的边长为8,以点A 为圆心,AD 为半径,画圆弧DE 得到扇形DAE (阴影部分,点E 在对角线AC 上).若扇形DAE 正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A .B .2CD .16.如图,把直径为60cm 的圆形车轮(O )在水平地面上沿直线l 无滑动地滚动一周,设初始位置的最低点为P ,则下列说法错误的是()A .当点P 离地面最高时,圆心O 运动的路径的长为30cmp B .当点P 再次回到最低点时,圆心O 运动的路径的长为60cmp C .当点P 第一次到达距离地面15cm 的高度时,圆心O 运动的路径的长为7.5cmp D .当点P 第二次到达距离地面30cm 的高度时,圆心O 运动的路径的长为45cmp 7.如图是一圆锥的左视图,根据图中所示数据,可得圆锥侧面展开图的圆心角的度数为()A .60°B .90°C .120°D .135°8.如图所示,矩形纸片ABCD 中,6cm AD =,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为()A .24πcmB .25πcmC .26πcmD .28πcm 9.如图,圆锥侧面展开得到扇形,此扇形半径6CA =,圆心角120ACB Ð=°,则此圆锥高OC 的长度是()A .2B .C .D .10.如图,一张扇形纸片OAB ,∠AOB =120°,OA =6,将这张扇形纸片折叠,使点A 与点O 重合,折痕为CD ,则图中未重叠部分(即阴影部分)的面积为()A .B .12p -C .D .6p -二、填空题11.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为6m ,则圆心O 所经过的路线长是____________m .(结果用π表示)12.如图,AC 的半圆O 的一条弦,将弧AC 沿弦AC 为折线折叠后过圆心O ,,则⊙O 的半径为___.13.如图,从一块半径是1m的圆形铁皮上剪出一个圆心角为90°的扇形围成一个圆锥,则这个圆锥的底面半径是______m.14.在如图所示的网格中,每个小正方形的边长均为1,每个小正方形的顶点叫、、都是格点,若图中扇形AOB是一个圆锥的侧面展开图,则该做格点,点O A B圆锥底面圆的半径为_______.15.如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心、BC长为半径画AC,点P为菱形内一点,连接P A,PB,PC.当BPC为等腰直角三角形时,图中阴影部分的面积为________.三、解答题16.已知,如图,在△ABC中,AB=AC,以腰AB为直径作半圆O,分别交BC,AC于点D、E.(1)求证:BD=DC;(2)若∠BAC=40°,AB=AC=8,求弧求的长.17.如图,点C ,D 是半圆O 上的三等分点,直径8AB =,连接AD ,AC ,作DE AB ^,垂足为E ,DE 交AC 于点F .(1)求证:AF DF =.(2)求阴影部分的面积(结果保留p 和根号)18.如图,直线AB 经过⊙O 上的点C ,直线BO 与⊙O 交于点F 和点D ,OA 与⊙O 交于点E ,与DC 交于点G ,OA =OB ,CA =CB .(1)求证:AB 是⊙O 的切线;(2)若FC ∥OA ,CD =6,求图中阴影部分面积.19.如图,在正方形网格中,ABC 的4个顶点都在格点上,点A 、B 、C 的坐标分别为()2,4-、()2,0-、()4,1-,将ABC 绕着点A 逆时针旋转90°得到11ABC △.(1)画出11AB C △;(2)求点C 走过的路线长.20.如图,在直角坐标系中,点A ,B ,C 的坐标分别为(3,3),(4,0),(0,2),将ABC 绕着点C 顺时针旋转90°得11A B C ,其中点A 的对应点为点1A .(1)请画出旋转后的11A B C ,并写出1A 的坐标;(2)求出在旋转过程中点A 所走过的路径长.(结果保留p )21.如图,在△ABC 中,AB =AC .以BC 为直径画圆O 分别交AB ,AC 于点D ,E .(1)求证:BD =CE ;(2)当△ABC 中,∠B =70°且BC =12时,求DE 的长.22.如图,AB 为⊙O 的直径,且AB =4,点C 是弧AB 上的一动点(不与A ,B 重合),过点B 作⊙O 的切线交AC 的延长线于点D ,点E 是BD 的中点,连接EC .(1)求证:EC 是⊙O 的切线;(2)当∠D =30°时,求图中阴影部分面积.23.如图1所示,在ABC 中,12AB AC ==,120CAB Ð=°,P 是BC 边上一点(不与B 、C 点重合),将线段AP 绕点A 逆时针旋转120°得到扇形P AQ .@(1)求证:APB AQC(2)当BC与扇形P AQ相切时,求BQ的长;∥,求阴影部分的图形的周长.(结果不求近似值)(3)如图2,若AP CQ参考答案1.D 2.A 3.B 4.D 5.D 6.C 7.C 8.B 9.C 10.A11.(3π+50)50+3π)12.213.414.5415.23p 16.(1)连接BE ,AD ,∵AB 为直径,∴90ADB Ð=°,∴AD BC ^,又∵AB =AC ,∴AD 是BC 边上的中线,∴BD =DC ;(2)连接OE ,∵∠BAC =40°,OA OE =,∴40OEA Ð=°,∴80BOE Ð=°,又∵AB =AC =8,∴4OB =,∴804161801809n r BC p p p ´´===.17.(1)证明:连接OD ,OC ,∵C 、D 是半圆O 上的三等分点,∴AD CD BC ==,度数都是60°,∴∠AOD =∠DOC =∠COB =60°,∴∠DAC =30°,∠CAB =30°,∵DE ⊥AB ,∴∠AEF =90°,∴∠ADE =180°-90°-30°-30°=30°,∴∠DAC =∠ADE =30°,∴AF =DF ;(2)解:由(1)知,∠AOD =60°,∵OA =OD ,AB =8,∴△AOD 是等边三角形,OA =4,∵DE ⊥AO ,OA =4,∠ADE =30°,∴AE =2,=∴S 阴影=S 扇形AOD -S △AOD =260418436023p p ×´-´´=-.18.(1)证明:连接OC ,∵OA =OB ,CA =CB ,∴OC ⊥AB ,∵OC 是⊙O 的半径,∴AB 是⊙O 的切线;(2)解:∵DF 是圆O 的直径,∴∠DCF =90°,∵FC ∥OA ,∴∠DGO =∠DCF =90°,∴DC ⊥OE ,∴DG =12CD =12×6=3,∵OD =OC ,∴∠DOG =∠COG ,∵OA =OB ,AC =CB ,∴∠AOC =∠BOC ,∴∠DOE =∠AOC =∠BOC =13×180°=60°,∠ODG =30°,∴OD=2OG ,在Rt △ODG 中,DG =,OG ,OD =,∴S 阴影=S 扇形ODE ﹣S △DOG =260360p ×﹣12×3=2π.19.解:(1)如图所示,11AB C △即为所求;(2)由题意得:190CAC Ð= ,AC ,∴1CC 的长A-;20.解:(1)如图,△A1B1C为所作,1(1,1)(2)CA=所以在旋转过程中点A.21.解:(1)证明:如图1,连接CD和BE,∵BC是⊙O的直径,∴∠BDC=∠CEB=90°,∵AB=AC,∴∠ABC=∠ACB,∴∠BCD=∠CBE,∴BD CE=,∴BD=CE.(2)解:如图2,连接OD、OE,∵AB=AC,∠B=70°,∴∠ABC=∠ACB=70°,∴∠DOC=140°,∵OE=OC,∴∠OEC=∠OCE=70°,∴∠COE=40°,∴∠DOE=100°,∵BC=12,∴⊙O的半径为6,∴DE的长=1006180p´=103π.22.(1)证明:连接OC,OE,∵AB为⊙O的直径,∴∠ACB=90°,∵BE=ED,∴DE=EC=BE,∵OC=OB,OE=OE,∴△OCE≌△OBE(SSS),∴∠OCE=∠OBE,∵BD是⊙O的切线,∴∠ABD=90°,∴∠OCE=∠ABD=90°,∴OC ⊥CE ,∴EC 是⊙O 的切线;(2)∵OA =OB ,BE =DE ,∴AD ∥OE ,∴∠D =∠OEB ,∵∠D =30°,∴∠OEB =30°,∠EOB =60°,∴∠BOC =120°,∵AB =4,∴OB =2,∴BE.∴四边形OBEC 的面积为2S △OBE =2×12=,∴阴影部分面积为S 四边形OBEC ﹣S 扇形BOC =﹣21202360p ×´=﹣43p.23.解:(1)∵120CAB Ð=°,120PAQ Ð=°,∴CAB PAQ Ð=Ð,∵PAB CAB CAP Ð=Ð-Ð,CAQ PAQ CAP Ð=Ð-Ð,∴PAB CAQ Ð=Ð,在APB D 和AQC D 中,AB AC PAB QACAP AQ =ìïÐ=Ðíï=î∴APB AQC ≌ΔΔ(SAS );(2)如图所示,当BC 与扇形P AQ 相切时,P 为切点,则^AP BC 于P 点,∵120CAB Ð=°,AB AC =,∴30B ACB Ð=Ð=°,∵12AB =,∴6AP =,∵APB AQC ≌,∴60PAB CAQ Ð=Ð=°,AP AQ =,∴180QAB CAB CAQ Ð=Ð+Ð=°,∴12618BQ AB AQ =+=+=;(3)∵APB AQC ≌,∴30B ACQ Ð=Ð=°,CQ BP =,∵AP CQ ∥,∴60APB QCB ACQ ACB Ð=Ð=Ð+Ð=°,∴90PAB Ð=°,∴2BP AP =,∵12AB =,∴222AP AB BP +=,∴AP =,BP =,∴120ππ1803PQ =´=,∵30ACB PAC Ð=Ð=°,∴PC AP ==,∴阴部部分图形的周长为π3CQ PC PQ ++=+.。
扇形,圆锥的面积练习题
选择题
1..如图, 已知圆锥的高为8,底面圆的直径为12,则此圆锥
的侧面积是 ( )
A .24π
B .30π
C .48π
D .60π
2.已知一个圆锥的侧面展开图是一个半径为9,
圆心角为120°的扇形,则该圆锥的底面的半径等于( ).
A .9
B .27
C .3
D .10
3.如图在Rt △ABC 中,∠BAC =90°,AB =3,BC =5,若把Rt △ABC 绕直线AC 旋转一周,则所得圆锥的侧面积等于( ) A .6π B .9π C .12π D .15π
4..如图所示,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,
从点A 出发绕侧面一周,再回到点A 的最短的路线长是( )
A .63
B .
332
C .33
D .3
填空题
1.已知圆锥的底面半径为5,母线长为8,则这个圆锥的侧面积是________.
2.圆锥的底面半径是2米,母线长4米,则圆锥的全面积是 平方米.
3.已知一个圆锥的高为6cm ,半径为8cm ,则这个圆锥的母线长为_______,侧
面积为_______
4.如图,正方形ABCD 的边长为4,分别以AD 、DC 为直径作半圆,则图中阴
影部分的面积为_____.
5.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的底面圆的半径r =2 cm ,扇形的圆心角θ=120°,则该圆锥的母线l 长为 。
6.若一个圆锥的底面圆的周长是5π cm ,母线长是6 cm ,则该圆锥的侧面展开图的圆心角度数是 .
7.已知圆锥的轴截面是边长为6的等边三角形,则这个圆锥的侧面积是____.
8.若圆锥的底面半径为3cm ,母线长为5cm ,则这个圆锥的全面积为_____.(结果保留π)
9.一个扇形的半径为3cm ,面积为π2cm ,则此扇形的圆心角为 。
10.一个圆锥的底面半径4r =,高3h =,则这个圆锥的侧面积是
__________________(结果取整数).
11..用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底
面圆的半径是_____.
12.如图,正方形ABCD的边长为4,分别以AD、DC为直径作半圆,则图中阴影部分的面积为_____.
13..如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的底面圆的半径r
=2 cm,扇形的圆心角θ=120°,则该圆锥的母线l长为。
解答题
1.如图所示,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,
求圆锥全面积.
2.在如图所示的扇形中,半径R=10,圆心角 =1440,用这个扇形围成一个圆
锥的侧面。
(1)求这个圆锥的底面半径r;(2)求这个圆锥的高(精确到0.1)。