2.3.2《范德华力和氢键》导学案(含解析)2020-2021学年人教版高二化学选修3
- 格式:doc
- 大小:940.40 KB
- 文档页数:12
2.3分子的性质(第2课时)教案教学目标1.范德华力、氢键及其对物质性质的影响2.能举例说明化学键和分子间作用力的区别3.例举含有氢键的物质4.采用图表、比较、讨论、归纳、综合的方法进行教学5.培养学生分析、归纳、综合的能力教学重点分子间作用力、氢键及其对物质性质的影响教学难点分子间作用力、氢键及其对物质性质的影响教学过程[创设问题情景]气体在加压或降温时为什么会变成液体或固体?学生联系实际生活中的水的结冰、气体的液化,讨论、交流。
[结论]表明分子间存在着分子间作用力,且这种分子间作用力称为范德华力。
[思考与讨论]仔细观察教科书中表2-4,结合分子结构的特点和数据,能得出什么结论?[小结]分子的极性越大,范德华力越大。
[思考与交流]完成“学与问”,得出什么结论?[结论]结构相似时,相对分子质量越大,范德华力越大。
[过渡]你是否知道,常见的物质中,水是熔、沸点较高的液体之一?冰的密度比液态的水小?为了解释水的这些奇特性质,人们提出了氢键的概念。
[阅读、思考与归纳]学生阅读“三、氢键及其对物质性质的影响”,思考,归纳氢键的概念、本质及其对物质性质的影响。
[小结]氢键是除范德华力之外的另一种分子间作用力。
氢键是由已经与电负性很强的原子(如水分子中的氢)与另一个分子中电负性很强的原子(如水分子中的氧)之间的作用力。
氢键的存在大大加强了水分子之间的作用力,使水的熔、沸点教高。
补充练习1.下列各组物质的晶体中,化学键类型相同,熔化时所克服的作用力也完全相同的是()A.CO2和SiO2B.NaCl和HClC.(NH4)2CO3和CO(NH2)2D.NaH和KCl2.你认为下列说法不正确的是()A.氢键存在于分子之间,不存在于分子之内B.对于组成和结构相似的分子,其范德华力随着相对分子质量的增大而增大C.NH3极易溶于水而CH4难溶于水的原因只是NH3是极性分子,CH4是非极性分子D.冰熔化时只破坏分子间作用力3.沸腾时只需克服范德华力的液体物质是()A.水 B.酒精 C.溴 D.水银4.下列物质中分子间能形成氢键的是()A.N2 B.HBr C.NH3 D.H2S5.以下说法哪些是不正确的?(1) 氢键是化学键(2) 甲烷可与水形成氢键(3) 乙醇分子跟水分子之间存在范德华力16.碘化氢的沸点比氯化氢的沸点高是由于碘化氢分子之间存在氢键6.乙醇(C2H5OH)和二甲醚(CH3OCH3)的化学组成均为C2H6O,但乙醇的沸点为78.5℃,而二甲醚的沸点为-23℃,为何原因?7.你认为水的哪些物理性质与氢键有关?试把你的结论与同学讨论交流。
2.3 分子的性质第2课时范德华力和氢键练基础落实知识点1 范德华力与化学键1.下列物质的变化过程中有共价键明显被破坏的是( )①I2升华②氯化钠溶于水③氯化氢溶于水④碳酸氢铵中闻到了刺激性气味A.①② B.①③ C.②③ D.③④2.下列变化中,不需要破坏化学键的是( )A.加热氯化铵 B.干冰汽化C.石油裂化 D.氯化氢溶于水3.下列关于范德华力的叙述正确的是( )A.是一种较弱的化学键B.分子间存在的较强的电性作用C.直接影响物质的熔、沸点D.稀有气体的原子间存在范德华力知识点2 氢键及其对物质性质的影响4.关于氢键的下列说法正确的是( )A.由于氢键的作用,使NH3、H2O、HF的沸点反常,且沸点高低顺序为HF>H2O>NH3 B.氢键只能存在于分子间,不能存在于分子内C.没有氢键,就没有生命D.相同量的水在气态、液态和固态时均有氢键,且氢键的数目依次增多5.下列说法中错误的是( )A.卤化氢中,以HF沸点最高,是由于HF分子间存在氢键B.H2O的沸点比HF的高,可能与氢键有关C.氨水中有分子间氢键D.氢键X—H…Y的三个原子总在一条直线上练方法技巧分子间范德华力大小的判断方法6.卤素单质从F2到I2在常温常压下的聚集状态由气态、液态到固态的原因是( ) A.原子间的化学键键能逐渐减小B.范德华力逐渐增大C.原子半径逐渐增大D.氧化性逐渐减弱7.罗马大学Fulvio Cacace 等人获得了极具理论研究意义的N 4分子,N 4分子结构如右图所示(与白磷P 4相似)。
已知断裂1 mol N —N 键吸收167 kJ 热量,生成 1 mol N≡N 键放出 942 kJ 热量。
由此判断下列说法正确的是( )A .N 4属于一种新型的化合物B .N 4与N 2互为同分异构体C .N 4沸点比P 4(白磷)高D .1 mol N 4气体转变为N 2将放出882 kJ 热量 由于氢键的存在对物质性质影响的判断方法8.下列化合物的沸点比较,前者低于后者的是( )A .乙醇与氯乙烷B .邻羟基苯甲酸与对羟基苯甲酸C .对羟基苯甲酸与邻羟基苯甲酸D .H 2O 与H 2Te 9.右图中每条折线表示周期表ⅣA~ⅦA 中的某一族元素氢化物的沸点变化。
第三节分子的性质第一课时键的极性与分子的极性范德华力跟氢键及其对物质性质的阻碍…A组1.以下表达中精确的选项是()A.极性分子中不克不迭够含有非极性键B.离子化合物中不克不迭够含有非极性键C.非极性分子中不克不迭够含有极性键D.共价化合物中不克不迭够含有离子键分析:A项,如H2O2中含非极性键,B项,如Na2O2中含非极性键,C项,如CCl4是极性键形成的非极性分子。
答案:D2.以下关于氢键的说法精确的选项是()A.由于氢键的感染,使NH3、H2O、HF的沸点失落常,且沸点高低次第为HF>H2O>NH3B.氢键只能存在于分子间,不克不迭存在于分子内C.不氢键,就不生命D.一样量的水在气态、液态跟固态时均有氢键,且氢键的数目依次增多分析:A项,“失落常〞是指它们在与其本家氢化物沸点排序中的现象,它们的沸点次第可由氢化物的形状所得,水常温下是液体,沸点最高。
B项,氢键存在于不开门见山相连但相邻的H、O原子间,因此,分子内可以存在氢键。
C项精确,由于氢键形成了常温、常压下水是液态,而液态的水是生物体营养转达的基础。
D项,在气态时,分子间距离大年夜,分子之间不氢键。
答案:C3.以下表达中精确的选项是()A.卤化氢分子中,卤素的非金属性越强,共价键的极性越大年夜,动摇性也越强B.以极性键结合的分子,肯定是极性分子C.揣摸A2B或AB2型分子是否是极性分子的按照是看分子中是否存在极性键D.非极性分子中,各原子间都应以非极性键结合分析:对比HF、HCl、HBr、HI分子中H—X极性键的强弱,卤素中非金属性越强,键的极性越大年夜,A项精确。
以极性键结合的双原子分子,肯定是极性分子,但以极性键结合形成的多原子分子,也可以是非极性分子,如CO2,B项差错。
A2B型如H2O、H2S等,AB2型如CO2、CS2等,揣摸其是否是极性分子的按照是看分子中是否有极性键及分子的立体构型是否对称,如CO2、CS2为直线形,分子的立体构型对称,为非极性分子;如H2O,有极性键,分子的立体构型差错称,为极性分子,C项差错。
第二课时教学目标1、范德华力、氢键及其对物质性质的影响2、能举例说明化学键和分子间作用力的区别3、例举含有氢键的物质4、采用图表、比较、讨论、归纳、综合的方法进行教学5、培养学生分析、归纳、综合的能力教学重点分子间作用力、氢键及其对物质性质的影响教学难点分子间作用力、氢键及其对物质性质的影响教学过程[创设问题情景]气体在加压或降温时为什么会变成液体或固体?学生联系实际生活中的水的结冰、气体的液化,讨论、交流。
[结论]表明分子间存在着分子间作用力,且这种分子间作用力称为范德华力。
[思考与讨论]仔细观察教科书中表2-4,结合分子结构的特点和数据,能得出什么结论?[小结]分子的极性越大,范德华力越大。
[思考与交流]完成“学与问”,得出什么结论?[结论]结构相似时,相对分子质量越大,范德华力越大。
[过渡]你是否知道,常见的物质中,水是熔、沸点较高的液体之一?冰的密度比液态的水小?为了解释水的这些奇特性质,人们提出了氢键的概念。
[阅读、思考与归纳]学生阅读“三、氢键及其对物质性质的影响”,思考,归纳氢键的概念、本质及其对物质性质的影响。
[小结]氢键是除范德华力之外的另一种分子间作用力。
氢键是由已经与电负性很强的原子(如水分子中的氢)与另一个分子中电负性很强的原子(如水分子中的氧)之间的作用力。
氢键的存在大大加强了水分子之间的作用力,使水的熔、沸点教高。
[讲解]氢键不仅存在于分子之间,还存在于分子之内。
一个分子的X-H键与另一个分子的Y相结合而成的氢键,称为分子间氢键,如图2-34 一个分子的X-H键与它的内部的Y相结合而成的氢键称为分子内氢键,如图2-33 [阅读资料卡片]总结、归纳含有氢键的物质,了解各氢键的键能、键长。
[小结]本节主要是分子间作用力及其对物质性质的影响,氢键及其对物质性质的影响。
练习1.下列各组物质的晶体中,化学键类型相同,熔化时所克服的作用力也完全相同的是A.CO2和SiO2B.NaCl和HClC.(NH4)2CO3和CO(NH2)2D.NaH和KCl2.你认为下列说法不正确的是A.氢键存在于分子之间,不存在于分子之内B.对于组成和结构相似的分子,其范德华力随着相对分子质量的增大而增大C.NH3极易溶于水而CH4难溶于水的原因只是NH3是极性分子,CH4是非极性分子D.冰熔化时只破坏分子间作用力3.沸腾时只需克服范德华力的液体物质是A.水B.酒精C.溴D.水银4.下列物质中分子间能形成氢键的是A.N2 B.HBr C.NH3 D.H2S5.以下说法哪些是不正确的?(1) 氢键是化学键(2) 甲烷可与水形成氢键(3) 乙醇分子跟水分子之间存在范德华力⑷碘化氢的沸点比氯化氢的沸点高是由于碘化氢分子之间存在氢键6.乙醇(C2H5OH)和二甲醚(CH3OCH3)的化学组成均为C2H6O,但乙醇的沸点为78.5℃,而二甲醚的沸点为-23℃,为何原因?7.你认为水的哪些物理性质与氢键有关?试把你的结论与同学讨论交流。
第三节分子结构与物质的性质第2课时分子间的作用力分子的手性学习目标: 1.掌握范德华力、氢键的概念。
2.通过范德华力、氢键对物质性质影响的探析,形成“结构决定性质”的认知模型。
3.能从微观角度理解分子的手性,形成判断手性分子的思维模型。
一、预习(阅读教材,完成学案)二、合作探究深度学习三、聚焦展示学习目标一、分子间的作用力1.范德华力及其对物质性质的影响(1)概念:是分子间普遍存在的相互作用力,它使得许多物质能以一定的凝聚态(固态和液态)存在。
(2)特征:很弱,比化学键的键能小1~2个数量级。
(3)影响因素:分子的极性越大,范德华力越大;组成和结构相似的物质,相对分子质量越大,范德华力越大。
(4)对物质性质的影响:范德华力主要影响物质的物理性质,如熔、沸点,组成和结构相似的物质,范德华力越大,物质熔、沸点越高。
思考:怎样解释卤素单质从F2~I2的熔点和沸点越来越高?针对训练1::下列有关物质性质判断正确且可以用范德华力来解释的是( )A.沸点:HBr>HCl B.沸点:CH3CH2Br<C2H5OHC.稳定性:HF>HCl D.—OH上氢原子的活泼性:H—O—H>C2H5—O—H学习目标二、氢键(1)概念:由已经与电负性很大的原子形成共价键的氢原子(如水分子中的氢)与另一个电负性很大的原子(如水分子中的氧)之间的作用力。
(2)表示方法:氢键通常用X—H…Y—表示,其中X、Y为,“—”表示共价键,“…”表示形成的氢键。
(3)氢键的本质和性质氢键的本质是静电相互作用,它比化学键弱得多,通常把氢键看作是一种比较强的分子间作用力。
氢键具有方向性和饱和性,但本质上与共价键的方向性和饱和性不同。
①方向性:X—H…Y—三个原子一般在同一方向上。
原因是在这样的方向上成键两原子电子云之间的排斥力最小,形成的氢键最强,体系最稳定。
②饱和性:每一个X—H只能与一个Y原子形成氢键,原因是H原子半径很小,再有一个原子接近时,会受到X、Y原子电子云的排斥。
1.了解共价键的极性及分子的极性及其产生的原因。
2.知道范德华力、氢键对物质性质的影响。
3.了解影响物质溶解性的因素及相似相溶原理。
4.了解手性分子在生命科学等方面的应用。
5.了解无机含氧酸分子酸性强弱的原因。
细读教材记主干1.共价键依据电子对是否偏移分为非极性键和极性键,依据电子云的重叠方式分为σ键和π键。
2.分子间作用力是化学键吗?其主要影响物质的物理性质还是化学性质?提示:不是,其主要影响物质的物理性质,如熔、沸点,溶解性等。
3.极性分子中一定有极性键,含极性键的分子不一定是极性分子。
非极性分子中可能有极性键,也可能含有非极性键。
4.分子的相对分子质量越大,范德华力越大,其熔、沸点越高。
若分子之间存在氢键,会使物质的熔、沸点升高。
5.非极性溶质一般能溶于非极性溶剂,极性溶质一般能溶于极性溶剂;溶质和溶剂之间形成氢键,可增大其溶解度。
6.无机含氧酸的通式(HO)m RO n,若成酸元素R相同,n值越大,酸性越强。
[新知探究]1.键的极性2.分子的极性3.键的极性和分子极性的关系(1)只含非极性键的分子一定是非极性分子。
(2)含有极性键的分子有没有极性,必须依据分子中极性键的极性的向量和是否等于零而定,等于零时是非极性分子。
[名师点拨]分子极性的判断方法只含非极性键→非极性分子(单质分子,如Cl2,N2,P4,I2)等[对点演练]1.(2016·桓台高二检测)下列含有极性键的非极性分子是( )①CCl4②NH3③CH4④CO2⑤N2⑥H2O ⑦HFA.②③④⑤B.①③④⑤C.①③④ D.以上均不对解析:选C ①CCl4中含有极性键,空间结构为正四面体,正负电荷的中心重合,属于非极性分子;②NH3中含有极性键,空间结构为三角锥形,正负电荷的中心不重合,属于极性分子;③CH4中含有极性键,空间结构为正四面体,正负电荷的中心重合,属于非极性分子;④CO2含有极性键,空间结构为直线型,属于非极性分子;⑤N2是由非极性键构成的非极性分子;⑥H2O中含有极性键,空间结构为V型,属于极性分子;⑦HF是极性键形成的极性分子;含有极性键的非极性分子是①③④,C项正确。
2.3 分子的性质第2课时范德华力和氢键练基础落实知识点1 范德华力与化学键1.下列物质的变化过程中有共价键明显被破坏的是( )①I2升华②氯化钠溶于水③氯化氢溶于水④碳酸氢铵中闻到了刺激性气味A.①② B.①③ C.②③ D.③④2.下列变化中,不需要破坏化学键的是( )A.加热氯化铵 B.干冰汽化C.石油裂化 D.氯化氢溶于水3.下列关于范德华力的叙述正确的是( )A.是一种较弱的化学键B.分子间存在的较强的电性作用C.直接影响物质的熔、沸点D.稀有气体的原子间存在范德华力知识点2 氢键及其对物质性质的影响4.关于氢键的下列说法正确的是( )A.由于氢键的作用,使NH3、H2O、HF的沸点反常,且沸点高低顺序为HF>H2O>NH3B.氢键只能存在于分子间,不能存在于分子内C.没有氢键,就没有生命D.相同量的水在气态、液态和固态时均有氢键,且氢键的数目依次增多5.下列说法中错误的是( )A.卤化氢中,以HF沸点最高,是由于HF分子间存在氢键B.H2O的沸点比HF的高,可能与氢键有关C.氨水中有分子间氢键D.氢键X—H…Y的三个原子总在一条直线上练方法技巧分子间范德华力大小的判断方法6.卤素单质从F2到I2在常温常压下的聚集状态由气态、液态到固态的原因是( )A.原子间的化学键键能逐渐减小B.范德华力逐渐增大C.原子半径逐渐增大D.氧化性逐渐减弱7.罗马大学Fulvio Cacace等人获得了极具理论研究意义的N4分子,N4分子结构如右图所示(与白磷P4相似)。
已知断裂1 mol N—N键吸收167 kJ热量,生成1 mol N≡N键放出 942 kJ 热量。
由此判断下列说法正确的是( )A.N4属于一种新型的化合物B.N4与N2互为同分异构体C.N4沸点比P4(白磷)高D.1 mol N4气体转变为N2将放出882 kJ热量由于氢键的存在对物质性质影响的判断方法8.下列化合物的沸点比较,前者低于后者的是( ) A.乙醇与氯乙烷B.邻羟基苯甲酸与对羟基苯甲酸C.对羟基苯甲酸与邻羟基苯甲酸D.H2O与H2Te9.右图中每条折线表示周期表ⅣA~ⅦA中的某一族元素氢化物的沸点变化。
第二章《分子结构与性质》导学案第三节分子的性质(第二课时范德华力和氢键)【学习目标】1.通过阅读思考、讨论交流,认识范德华力与化学键的区别,能说明分子间作用力对物质的状态等方面的影响。
2.通过问题探究、典例剖析,知道氢键的形成过程、条件及特点,能判断氢键的存在及氢键对物质性质的影响。
【学习重点】分子间作用力、氢键及其对物质性质的影响【学习难点】氢键的形成条件及对物质物理性质的影响【自主学习】旧知回顾:12.气体在加压或降温时为什么会变成液体或固体的原因是3.什么是化学键?它对物质的性质有何影响?【温馨提示】化学键(chemical bond)是指分子或晶体内相邻原子(或离子)间强烈的相互作用。
化学键可以影响物质的物理性质,如离子晶体和原子晶体的熔沸点就取决于离子键和共价键的强弱。
还可以影响物质的化学性质,如你所说的键能越大物质越稳定。
化学键还可以解释化学反应的热效应,断键吸热,形成键放热。
新知预习:1.范德华力是分子之间普遍存在的相互作用力,它使得许多物质能以一定的凝聚态(固态液态)存在。
影响范德华力大小的因素主要有分子的极性和相对分子质量,范德华力主要影响物质的物理性质。
2.氢键是一种分子间作用力。
它是由已经与电负性很强的原子(如N、F、O)形成共价键的氢原子与另一个分子中或同一分子中电负性很强的原子之间的作用力。
氢键不属于化学键,是一种分子间作用力,氢键键能较小,约为化学键的十分之几,但比范德华力强。
氢键具有一定的方向性和饱和性。
【同步学习】情景导入:我们知道,化学反应的实质是旧键的断裂和新键的形成的过程,因此,化学键主要影响物质的化学性质。
那么,物质的溶沸点、溶解性等物理性质又受什么影响呢?这节课我们就来研究解决这一问题。
活动一、范德华力及其对物质性质的影响1.阅读思考:阅读教材P47页内容,思考范德华力含义、特征分别是什么?【温馨提示】(1)定义:范德华力是分子之间普遍存在的相互作用力,它使得许多物质能以一定的凝聚态(固态液态)存在。
(2)特征:①范德华力约比化学键能小1~2个数量级;②无方向性和饱和性,只要分子周围空间允许,分子总是尽可能多地吸引其他分子。
2.讨论交流:(1)仔细观察分析教材P47页表2-7,结合分子结构的特点和数据,能得出什么结论?【温馨提示】①分子的极性越大,范德华力越大。
②结构和组成相似的物质,相对分子质量越大,范德华力越大。
(2)根据教材P47页“学与问”,能得出什么结论?【温馨提示】范德华力主要影响物质的物理性质,如熔点、沸点;化学键主要影响物质的化学性质。
范德华力越大,物质熔沸点越高。
当分子结构相似时,相对分子质量越大,范德华力越大。
因此,由于F2~I2的相对分子质量逐渐增大,范德华力也逐渐增大,使F2~I2的熔、沸点越来越高。
3.问题探究:(1)Cl2、Br2、I2三者的组成和化学性质均相似,但状态却为气、液、固的原因是什么?【温馨提示】Cl2、Br2、I2的组成和结构相似,由于相对分子质量逐渐增大,所以范德华力逐渐增大,故熔、沸点升高,状态由气体变为液体、固体。
如下图:(2)CCl4、SiCl4、SnCl4的稳定性为什么逐渐减弱?而它们的沸点逐渐升高?【温馨提示】分子稳定性取决于键长和键能,CCl4、SiCl4、SnCl4中的键长逐渐变长,键能逐渐减小,分子稳定性减弱;由分子构成的物质的沸点取决于分子间作用力的大小,CCl4、SiCl4、SnCl4的组成和结构相似,随相对分子质量的增大,它们分子间的作用力逐渐增大,沸点逐渐升高。
如下图:(3)为什么HCl、HBr、HI的热稳定性依次减弱而熔沸点依次升高?【温馨提示】HCl、HBr、HI的热稳定性依次减弱是由于H—X键键能依次减小,熔沸点依次升高是由于范德华力依次增大。
(4)结合教材P47页“科学视野”,思考夏天经常见到许多壁虎在墙壁或天花板上爬行,却掉不下来,为什么?【温馨提示】壁虎为什么能在天花板土爬行自如?这曾是一个困扰科学家一百多年的谜。
用电子显微镜可观察到,壁虎的四足覆盖着几十万条纤细的由角蛋白构成的纳米级尺寸的毛。
壁虎的足有多大吸力?实验证明,如果在一个分币的面积土布满100万条壁虎足的细毛,可以吊起20kg重的物体。
近年来,有人用计算机模拟,证明壁虎的足与墙体之间的作用力在本质上是它的细毛与墙体之间的范德华力。
4.归纳小结:范德华力对物质性质的影响有哪些?【温馨提示】(1)范德华力越大,物质的熔、沸点越高。
①组成和结构相似的分子,相对分子质量越大,范德华力越大,物质的熔、沸点越高。
如熔、沸点I2>Br2>Cl2>F2,HCl<HBr<HI。
②组成相似、相对分子质量相近的物质,分子的极性越大,物质的熔、沸点越高。
如熔、沸点CO>N2(CO为极性分子);又如有机物的同分异构体中,通常支链越多,分子对称性越好,分子极性越小,物质的熔、沸点越低(沸点:正戊烷>异戊烷>新戊烷)。
(2)溶质分子与溶剂分子间的范德华力越大,则溶质分子的溶解度越大。
如CH4和HCl 在水中的溶解情况,由于CH4与H2O分子间的作用力很小,故CH4几乎不溶于水,而HCl与H2O分子间的作用力较大,故HCl极易溶于水;同理,Br2、I2与苯分子间的作用力较大,故Br2、I2易溶于苯中,而H2O与苯分子间的作用力很小,故H2O很难溶于苯中。
【对应训练】1.下列关于范德华力的叙述中,正确的是()A.范德华力的实质也是一种电性作用,所以范德华力是一种特殊的化学键B.范德华力与化学键的强弱不同C.任何分子间都会产生范德华力D.范德华力非常微弱,故破坏范德华力不需要消耗能量【答案】B【解析】范德华力普遍存在于分子之间,但也必须满足一定的距离要求,若分子间距足够大,分子之间也难以产生相互作用。
2.下列叙述与范德华力无关的是()A.气态物质加压或降温时能凝结或凝固B.干冰易升华C.氟、氯、溴、碘单质的熔沸点依次升高D.H2O、H2S、H2Se的热稳定性逐渐减弱【答案】D【解析】一般由分子构成的物质,其物理性质通常与范德华力的大小密切相关。
A、B、C三个选项与分子间作用力的大小有关,只有D选项中涉及的是分子的化学性质,而分子的化学性质与范德华力无关。
3.人们熟悉的影片《蜘蛛侠》为我们塑造了一个能飞檐走壁、过高楼如履平地的蜘蛛侠,现实中的蜘蛛能在天花板等比较滑的板面上爬行,蜘蛛之所以不能从天花板上掉下的主要原因是()A.蜘蛛脚的尖端锋利,能抓住天花板B.蜘蛛的脚上有“胶水”,从而能使蜘蛛粘在天花板上C.蜘蛛脚上的大量细毛与天花板之间的范德华力这一“黏力”使蜘蛛不致坠落D.蜘蛛有特异功能,能抓住任何物体【答案】C【解析】蜘蛛不能掉下的根本原因是蜘蛛脚上的大量细毛与天花板之间存在范德华力。
活动二、氢键及其对物质性质的影响1.阅读思考:阅读教材P48页内容,回答氢键的概念、特征、表示方法及类型分别是什么?【温馨提示】(1)定义:氢键是一种分子间作用力。
它是由已经与电负性很强的原子(如N、F、O)形成共价键的氢原子与另一个分子中或同一分子中电负性很强的原子之间的作用力。
(2)特征:①氢键不属于化学键,是一种分子间作用力。
氢键键能较小,约为化学键的十分之几,但比范德华力强。
②氢键具有一定的方向性和饱和性。
在“X—H…Y”所表示的氢键中,一个H原子只能与一个Y原子(O、N、F)结合,这就是氢键的饱和性。
Y原子以负电荷分布得最多的部分(一般是孤电子对)接近H原子,并在可能范围内使孤电子对轨道的对称轴尽量跟氢键方向一致,这样成键能力最强,这就是氢键的方向性。
注意:①每个水分子最多与4个水分子形成氢键。
②表示氢键的三个原子在一条直线上。
(3)类型:氢键可分为分子内氢键和分子间氢键两类。
如有机物A()的结构可以表示为(虚线表示氢键),而有机物B()只能形成分子间氢键。
(4)表示方法:分子间的氢键通常用“X—H…Y”来表示,式中X、Y为N、O、F,“—”表示共价键,“…”表示氢键。
例如,HF分子间的氢键可以表示为“F—H…F—H…”,即:2.讨论交流:(1)氢键对物质性质有何影响?【温馨提示】①当形成分子间氢键时,物质的熔、沸点将升高。
当形成分子内氢键时,物质的熔、沸点将下降。
如存在分子内氢键,存在分子间氢键。
前者的沸点低于后者。
②氢键也影响物质的电离、溶解性等。
氢键的存在使物质的溶解性增大。
例如,NH3极易溶解于水,主要是由于氨分子和水分子之间形成了氢键,彼此互相缔合,因而加大了溶解。
再如乙醇、低级醛易溶于水,也是因为它们能与水分子间形成氢键。
(2)水中的氢键对水的性质有哪些影响?【温馨提示】①水分子间形成氢键,增大了水分子间的作用力,使水的熔沸点比同主族元素中H2S的熔沸点高。
②氢键与水分子的性质:A.水结冰时,体积膨胀,密度减小。
在水蒸气中水以单个的水分子形式存在;在液态水中,通常是几个水分子通过氢键结合,形成(H2O)n分子;在固态水(冰)中,水分子大范围地以氢键互相连接,成为疏松的晶体,因此在冰的结构中有许多空隙,造成体积膨胀,密度减小。
B.接近沸点时形成“缔合”分子水蒸气的相对分子质量比用化学式H2O计算出来的相对分子质量大。
C形成氢键还能增大物质的硬度(如水变为冰);HF分子通过氢键形成缔合分子(HF)n,测量HF分子的相对分子质量时,测量结果会偏高等。
3.问题探究:(1)氢键的形成需要什么条件?【温馨提示】①要有一个与电负性很大的元素X形成强极性键的氢原子,如H2O中的氢原子。
②要有一个电负性很大、含有孤电子对并带有部分负电荷的原子Y,如H2O中的氧原子。
③X和Y的原子半径要小,这样空间位阻较小。
一般来说,能形成氢键的元素有N、O、F等。
(2)为什么干冰的熔、沸点比冰的低,密度却比冰的大?【温馨提示】因为冰中除了存在范德华力外还存在氢键,破坏分子间作用力较难,所以冰的熔、沸点比干冰的高。
由于冰中的水分子间作用力特别是氢键具有方向性,导致冰晶体中有相当大的空隙,所以相同状况下体积较大,又因为CO2分子的相对分子质量比H2O分子的大,所以干冰的密度比冰的大。
如图:。
(3)在第ⅤA、ⅥA、ⅦA族元素的氢化物中,为什么NH3、H2O、HF三者的相对分子质量分别小于同主族其他元素的氢化物,但熔、沸点却比其他元素的氢化物高?【温馨提示】因为NH3、H2O、HF三者的分子间能形成氢键,同主族其他元素的氢化物不能形成氢键,所以它们的熔点和沸点高于同主族其他元素的氢化物。
5.拓展探究:结合教材P49页“科学视野”,思考生物大分子蛋白质和DNA中的氢键有何特点?【温馨提示】【对应训练】1.关于氢键,下列说法正确的是()A.氢键比分子间作用力强,所以它属于化学键B.冰中存在氢键,水中不存在氢键C.分子间形成的氢键使物质的熔点和沸点升高D.H2O是一种非常稳定的化合物,这是由于氢键所致【答案】C【解析】氢键属于分子间作用力,其大小介于范德华力和化学键之间,不属于化学键,分子间氢键的存在,加强了分子间作用力,使物质的熔、沸点升高,A项错误,C项正确;在冰和水中都存在氢键,而H2O的稳定性主要是由分子内的O—H的键能决定,B、D项错误。