项目1 秒脉冲发生器的制作
- 格式:ppt
- 大小:1.11 MB
- 文档页数:88
XX学院课程设计报告课程名称:电子技术课程设计教学院部:电气与信息工程学院专业班级:XX班学生姓名: XX(XX)指导教师: XX完成时间: XX 年X月X日报告成绩:脉冲序列发生器设计目录1.实验任务2.实验目的3.参考电路(1)设计方案(2)参考设计4.实验内容(1)多谢振荡器介绍(2)计数器的介绍5.实验结果6.心得体会7.参考文献(1)《电子技术课程设计指导书》(2)《电子技术基础》1.实验任务设计并制作一个脉冲序列发生器,周期性的产生脉冲序列101011010101。
2.实验目的通过本次设计,进一步熟悉多谐振荡器、计数器、数据选择器的用法,掌握脉冲序列发生器的设计方法。
3.参考电路(1)设计方案周期性脉冲序列发生器的实现方法很多,可以由触发器构成,可以由计数器外加组合逻辑电路构成,可以有GAL构成,也可以由CPLD\FPGA构成等等。
本设计采用由计数器加多路数据选择器的设计法案,脉冲序列发生器原理框图如(1)图所示。
图(1)脉冲序列发生器原理框图(2)参考设计脉冲序列发生器需要一个时钟信号,可采用由TTL非门和石英晶体振荡器构成的串联式多谐振荡器产生时钟信号,如图(2)所示。
主电路部分如图(3)所示,图中74LS161和与非门构成十二进制计数器,为脉冲序列的宽度为12位。
4.实验内容按照实验要求设计电路,确定元器件型号和参数;用Multisim进行仿真,列出实验数据,画出输出信号及其他关键信号的波形;对实验数据和电路的工作情况进行分析,得出实验结论;写出收获和体会。
图(2)时钟信号产生电路图(3)主电路图多谢振荡器介绍多谐振荡器是一种自激振荡电路。
因为没有稳定的工作状态,多谐振荡器也称为无稳态电路。
具体地说,如果一开始多谐振荡器处于0状态,那么它在0状态停留一段时间后将自动转入1状态,在1状态停留一段时间后又将自动转入0状态,如此周而复始,输出矩形波。
图6.4.1 对称式多谐振荡器电路对称式多谐振荡器是一个正反馈振荡电路[图 6.4.1,]。
用555制作秒脉冲诸多方法介绍本文详细介绍了用555定时器制作秒脉冲的方法,如1Hz或者通过分频制作的1Hz1.秒信号的发生电路秒信号发生电路由集成电路555定时器与RC组成的多谐振荡器构成。
需要的芯片有集成电路555定时器,还有电阻和电容。
下图为其电路图:图3-1秒信号发生电路振荡电路是数字钟的核心部分,它的频率和稳定性直接关系到表的精度。
因此选择555定时器构成的多谐振荡器,其中电容C1为47微法,C2为0.01微法,两个电阻R1=R2=10K欧姆。
此时在电路的输出端就得到了一个周期性的矩形波,其振荡频率为:f=1.43/[(R1+2R2)C](3-1)由公式(3-1)代入R1,R2和C的值得,f=1Hz。
即其输出频率为1Hz的矩形波信号本文详细介绍了用555定时器制作秒脉冲的方法,如1Hz或者通过分频制作的1Hz2.用555制作秒脉冲输出频率为1Hz,占空比为50%.由于CD4060在MULTISIM中仿真不了,所以本设计采用三片74HC161和一片74HC160IC级联,构成2^15分频器。
单元电路连接如下图所示:3、基于NE555的秒方波发生器的设计用NE555芯片以及外围电路搭建成一个多谐振荡器,通过设计外围电路的参数输出方波频率为1Hz,故称为秒方波发生器。
由于脉冲的占空比对系统的影响不大,故把占空比设计为1/3。
输出方波用作计数器及D触发器的clk信号。
NE555定时器引脚图如图1所示,脉冲频率公式:f=1/(R1+2R2)C㏑2选择R1=47K,R2=47K,RV1=2K,C=10μF,形成电路图如图2所示:本文详细介绍了用555定时器制作秒脉冲的方法,如1Hz或者通过分频制作的1Hz图62kΩKey=A图7秒脉冲发生器2.1振荡器电路2.1.1用555作振荡器采用集成电路555定时器与RC组成的多谐振荡器。
输出的脉冲频率为f=(R1+2R2)C1In2=1KHz,周期T=fS=1m。
基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器高频高压微纳秒脉冲发生器是一种重要的脉冲电子设备,广泛应用于激光器、雷达、射频加速器等领域。
本文将介绍一种基于Marx脉冲电路和脉冲变压器的高频高压微纳秒脉冲发生器设计。
一、Marx脉冲电路Marx脉冲电路是一种常见的高压脉冲发生器,能够产生高压、高能量的脉冲。
它由若干个串联的阻抗元件和开关元件组成,如图1所示。
当开关元件关闭时,阻抗元件串联起来,电荷能够储存在阻抗元件中;当开关元件打开时,储存的电荷会通过阻抗元件放电,从而产生高压脉冲输出。
Marx脉冲电路能够产生高压脉冲的原因在于它的串联结构,使得每个阻抗元件都能够充分利用储存的电荷,从而提高了输出的脉冲电压。
Marx脉冲电路还能够实现脉冲的叠加,通过合理设计阻抗元件和开关元件的数量和参数,可以实现多级串联,从而产生更高压的脉冲输出。
二、脉冲变压器脉冲变压器是一种能够实现高压升压的装置,通常在高压脉冲发生器中用于提高输出脉冲的峰值电压。
脉冲变压器的工作原理是利用电磁感应,当输入端施加脉冲电压时,通过变压器的电磁感应作用,能够将输入端的脉冲电压升高到输出端。
脉冲变压器的设计需要考虑因子包括匝比、铁心材料、绝缘材料等,以及变压器的绕组结构和绝缘保护等。
通过合理设计这些因子,可以实现高效的高压升压效果,将输入端的脉冲电压升高数倍甚至数十倍。
三、高频高压微纳秒脉冲发生器的设计在具体实现中,需要考虑Marx脉冲电路和脉冲变压器之间的匹配,尤其是在高频、微纳秒级脉冲输出的情况下,对变压器的响应特性和频率特性都有较高要求。
还需要考虑脉冲输出的稳定性和可控性,以及脉冲变压器的绝缘和耐压等性能。
题目秒脉冲发生器摘要555定时器是美国Signetics公司1972年研制的用于取代机械式定时器的中规模集成电路,因输入端设计有三个5千欧的电阻而成名。
此电路后来竟风靡世界。
目前,流行的产品有4个:BJT两个:555,666(含两个555);COMOS两个:7555,7556(含两个7555)555定时器是一种通用的集模拟与逻辑功能为一体的中规模集成电路。
利用这种集成单片,只要适当配接少量元件,可以很方便地构成脉冲产生和变换电路及具有其他定时功能的电路,在电子系统,电子玩具,家用电器等方面都有广泛的应用555定时器可以说是模拟电路与数字电路结合的典范。
我们的这个课程设计也应用到了555定时器产生秒脉冲的功能。
关键词555定时器;脉冲;LED灯;电路;电路图目录(一)设计目的 (4)(二)设计要求 (4)(三)设计内容 (5)1实验原理 (5)2电路原理图 (5)3实验器材 (6)4实验步骤 (6)(四)仿真结果 (7)(五)焊接好的成品图 (8)(六)成品性能检测 (9)(七)总结 (10)(一)设计目的1. 培养理论联系实际的真确设计思想,训练综合运用已学过的理论和生产实际知识去分析和解决工程实际问题的能力。
2. 学习较复杂的电子系统设计的一般方法,了解和掌握模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。
3. 有利于我们逻辑思维的锻炼,程序设计能直接有效地训练学生的创新思维、培养分析问题、解决问题能力。
即使是一个简单的程序,依然需要学生有条不理的构思。
4. 有利于培养学生严谨认真的学习态度和创新能力。
5. 熟悉一些基本器件的应用。
6. 熟悉多功能板的焊接工艺技术和电子线路系统的装调技术。
(二)设计要求设计一个带555定时器的秒脉冲发生器,通过555定时器产生单位秒脉冲,并将其输出端接到一个LED灯泡上,我们通过观察LED灯泡的状态,可以看到它不停地闪烁,进行明暗两种状态的交替变化,交替时间大约为0.75s。
脉冲发生器工作原理脉冲发生器是一种能够产生一系列脉冲信号的设备,它在许多电子设备和系统中都有着重要的应用。
脉冲发生器的工作原理涉及到许多电子学知识,下面我们将对脉冲发生器的工作原理进行详细的介绍。
首先,脉冲发生器通常由一个稳定的时钟信号源和一个触发器组成。
时钟信号源会产生一个稳定的周期性方波信号,而触发器则会根据外部的触发信号来产生脉冲输出。
当外部触发信号到来时,触发器会对时钟信号进行处理,从而产生一个特定宽度和幅度的脉冲信号。
其次,脉冲发生器的工作原理涉及到触发器的工作方式。
在大多数脉冲发生器中,触发器通常是由一个双稳态多谐振荡器构成。
当外部触发信号到来时,触发器会从一个稳定的状态切换到另一个稳定的状态,从而产生一个脉冲信号。
这种双稳态多谐振荡器的工作方式保证了脉冲发生器可以产生稳定且可靠的脉冲信号。
另外,脉冲发生器的工作原理还涉及到脉冲信号的参数调节。
在实际应用中,脉冲发生器通常需要调节脉冲信号的频率、占空比和幅度等参数。
这就需要通过控制时钟信号源和触发器的工作方式来实现。
通过合理地调节这些参数,脉冲发生器可以产生符合特定要求的脉冲信号,从而满足不同应用的需要。
此外,脉冲发生器的工作原理还涉及到一些特殊的应用场景。
例如,在数字系统中,脉冲发生器常常被用来产生时序信号,用于控制数字电路中各个部分的工作。
在通信系统中,脉冲发生器可以用来产生调制信号,实现信息的传输。
在科学实验中,脉冲发生器也可以用来产生特定的实验信号,用于研究和测试。
综上所述,脉冲发生器是一种能够产生脉冲信号的设备,其工作原理涉及到时钟信号源、触发器、参数调节和特殊应用场景等多个方面。
通过合理地控制这些因素,脉冲发生器可以产生稳定、可靠且符合要求的脉冲信号,从而在各种电子设备和系统中发挥重要作用。
1.秒信号的发生电路秒信号发生电路由集成电路555定时器与RC组成的多谐振荡器构成。
需要的芯片有集成电路555定时器,还有电阻和电容。
下图为其电路图:图3-1 秒信号发生电路振荡电路是数字钟的核心部分,它的频率和稳定性直接关系到表的精度。
因此选择555定时器构成的多谐振荡器,其中电容C1为47微法,C2为0.01微法,两个电阻R1=R2=10K欧姆。
此时在电路的输出端就得到了一个周期性的矩形波,其振荡频率为:f=1.43/[(R1+2R2)C] (3-1)由公式(3-1)代入R1 ,R2和C的值得,f=1Hz。
即其输出频率为1Hz的矩形波信号2. 用555制作秒脉冲输出频率为1Hz,占空比为50%.由于CD4060在MULTISIM中仿真不了,所以本设计采用三片74HC161和一片74HC160IC级联,构成2^15分频器。
单元电路连接如下图所示:3、基于NE555的秒方波发生器的设计用NE555芯片以及外围电路搭建成一个多谐振荡器,通过设计外围电路的参数输出方波频率为1Hz,故称为秒方波发生器。
由于脉冲的占空比对系统的影响不大,故把占空比设计为1/3。
输出方波用作计数器及D触发器的clk信号。
NE555定时器引脚图如图1所示,脉冲频率公式:f=1/(R1+2R2)C㏑2选择R1=47K,R2=47K,RV1=2K,C=10μF,形成电路图如图2所示:图6A2555_VIRTUAL GNDDIS OUTRST VCCTHR CONTRI C5330nFC610uFR1747kΩR1847kΩR192kΩKey=A50%VCC98765图7秒脉冲发生器13 瓷片电容 0.01uF 2 14 点解电容 10uF 12.1振荡器电路2.1.1 用555作振荡器采用集成电路555定时器与RC 组成的多谐振荡器。
输出的脉冲频率为=2)2+(1=121In C R R f 1KHz ,周期T =1=f S 1ms 。
1.秒信号的发生电路秒信号发生电路由集成电路555定时器与RC组成的多谐振荡器构成。
需要的芯片有集成电路555定时器,还有电阻和电容。
下图为其电路图:图 3-1 秒信号发生电路振荡电路是数字钟的核心部分,它的频率和稳定性直接关系到表的精度。
因此选择555定时器构成的多谐振荡器,其中电容C1为47微法,C2为0.01微法,两个电阻R1=R2=10K欧姆。
此时在电路的输出端就得到了一个周期性的矩形波,其振荡频率为:f=1.43/[(R1+2R2)C] (3-1)由公式(3-1)代入R1 ,R2和C的值得,f=1Hz。
即其输出频率为1Hz的矩形波信号2. 用555制作秒脉冲输出频率为1Hz,占空比为50%.由于CD4060在MULTISIM中仿真不了,所以本设计采用三片74HC161和一片74HC160IC级联,构成2^15分频器。
单元电路连接如下图所示:3、基于NE555的秒方波发生器的设计用NE555芯片以及外围电路搭建成一个多谐振荡器,通过设计外围电路的参数输出方波频率为1Hz,故称为秒方波发生器。
由于脉冲的占空比对系统的影响不大,故把占空比设计为1/3。
输出方波用作计数器及D触发器的clk信号。
NE555定时器引脚图如图1所示,脉冲频率公式:f=1/(R1+2R2)C㏑2选择R1=47K,R2=47K,RV1=2K,C=10μF,形成电路图如图2所示:图6A2555_VIRTUAL GNDDIS OUTRST VCCTHR CONTRI C5330nFC610uFR1747kΩR1847kΩR192kΩKey=A50%VCC98765图7秒脉冲发生器13 瓷片电容 0.01uF 2 14 点解电容 10uF 12.1振荡器电路2.1.1 用555作振荡器采用集成电路555定时器与RC 组成的多谐振荡器。
输出的脉冲频率为=2)2+(1=121In C R R f 1KHz ,周期T =1=f S 1ms 。
脉冲发生器电路原理
脉冲发生器电路原理是一种电子设备,用于产生固定频率和幅度的脉冲波形。
该电路由以下几部分组成:
1. 时钟源:提供稳定的时钟信号作为脉冲发生器的参考信号。
常见的时钟源包括晶振或时钟信号发生器。
2. 频率控制电路:根据需要设置脉冲发生器的输出频率。
频率控制电路通常采用可变电容或电感器,通过改变电容或电感的值来调节振荡电路的频率。
3. 振荡电路:产生连续波形的振荡电路。
常见的振荡电路包括RC振荡电路和LC振荡电路。
其中,RC振荡电路由电阻和电容器组成,而LC振荡电路由电感和电容器组成。
4. 整形电路:将振荡电路产生的波形进行整形,使其转变为脉冲波形。
整形电路通常采用比较器、门电路或触发器等元件。
5. 控制电路:用于控制脉冲发生器的起始时间、占空比和输出幅度等参数。
控制电路通常采用计数器、编码器、运算放大器等元件来实现。
以上是脉冲发生器电路的基本原理。
实际电路中,还可以根据需要添加滤波电路、放大电路或保护电路等功能来提高性能和稳定性。