八年级10月月考数学试题
- 格式:doc
- 大小:100.43 KB
- 文档页数:4
河南省周口市川汇区周口市第十九初级中学 2024-2025学年上学期10月月考八年级数学试题一、单选题1.下列各个选项中的两个图形属于全等形的是( )A .B .C .D .2.每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cm C .13cm ,12cm ,20cmD .5cm ,5cm ,11cm3.如图所示,一扇窗户打开后,用窗钩AB 即可固定,这里所用的几何原理是( )A .两点之间线段最短B .垂线段最短C .两点确定一条直线D .三角形具有稳定性4.如图,已知BAD CAD ∠=∠,欲证ABD ACD △≌△,还必须从下列选项中补选一个,则错误的选项是( )A .ADB ADC ∠=∠ B .B C ∠=∠C .BD CD = D .AB AC =5.如图所示的两个三角形全等,则E ∠的度数为( )A .50︒B .60︒C .70︒D .80︒6.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且24cm ABC S =△,则阴影部分的面积等于( )A .2cm 2B .1cm 2C .3cm 2D .4cm 27.如图,小敏做了一个角平分仪ABCD ,其中AB AD =,BC DC =,将仪器上的点A 与PRQ ∠的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A 、C 画一条射线AE ,AE 就是PRQ ∠的平分线.此角平分仪的画图原理是( )A .SSSB .SASC .ASAD .AAS8.如图,一束太阳光线平行照射在放置于地面的正六边形上,若145∠=︒,则2∠的度数为( )A .45︒B .30︒C .20︒D .15︒9.如图,A B C D E F ∠+∠+∠+∠+∠+∠等于( )A .240︒B .180︒C .360︒D .540︒10.如图,点A 在点O 正北方向,点B 在点O 正东方向,且点A 、B 到点O 的距离相等,甲从点A 出发,以每小时50千米的速度朝正东方向行驶,乙从点B 出发,以每小时30千米的速度朝正北方向行驶,1小时后,位于点O 处的观察员发现甲、乙两人之间的夹角为45︒,此时甲、乙两人相距( )A .60千米B .70千米C .80千米D .90千米二、填空题11.一个多边形的内角和等于外角和的3倍,那么这个多边形为边形.12.若x ,y 满足23(6)0x y -+-=,则以x ,y 的值为两边长的等腰三角形的周长为.13.已知ABC V 的三边长为x ,3,6,DEF V 的三边长为5,6,y .若ABC V 与DEF V 全等,则x y +的值为.14.如图,在Rt ABC △中,90ABC ∠=︒,62A ∠=︒,点P 为AC 边上一点,沿BP 折叠使得点A 的对应点D 落在BC 边上,则CPD ∠的度数为.15.如图,OP 平分∠AOB ,PM ⊥OA 于M ,点D 在OB 上,DH ⊥OP 于H .若OD =4,OP =7,PM =3,则DH 的长为.三、解答题16.已知a ,b ,c 是ABC V 的三边长. (1)若 8a =,2b =,c 为偶数,求c 的长; (2)化简∶a b c a b c --++-.17.如图,ABC V 的顶点都在方格纸的格点上,按要求在方格纸中画图.(1)在图①中画出ABC V 中BC 边上的高线AD ;(2)在图②中,作直线CN ,将ABC V 分成面积相等的两个三角形; (3)在图③中画出一个与ABC V 全等的ACE △.18.如图,D 为ABC V 内一点,CD 平分,,ACB BD CD A ABD ∠⊥∠=∠,若76DBC ∠=︒,求A ∠的度数.19.如图,已知点B F E C ,,,在同一条直线上,AB CD ∥且AB CD =,A D ∠=∠.求证:CE BF =.20.在三角形ABC 中,D 为BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别是E ,F ,BE CF =.求证:点D 在A ∠的平分线上.21.某小组利用延时课进行三角形外角知识的相关研究,制定项目式学习表如下,请你解答任务中的问题:如图,点D 在AB 上,点E 在BC 上,AE 、CD 相交于点P .22.综合与实践.[积累经验]我们在第十二章《全等三角形》中学习了全等三角形的性质和判定,在一些探究题中经常用以上知识转化角和边,进而解决问题.例如:我们在解决:“如图1,在ABC V 中,90ACB ∠=︒,AC BC =,线段DE 经过点C ,且AD DE ⊥于点D ,BE DE ⊥于点E .求证:=AD CE ,CD BE =”这个问题时,只要证明ADC CEB △≌△,即可得到解决.(1)请写出证明过程;[类比应用](2)如图2,在平面直角坐标系中,ABC V 中,90ACB ∠=︒,AC BC =,点A 的坐标为()02,,点C 的坐标为()10,,求点B 的坐标并写出求解过程; [拓展提升](3)如图3,在平面直角坐标系中,90ACB ∠=︒,AC BC =,点A 的坐标为()21,,点C 的坐标为()42,,直接写出B 点坐标 ___________. 23.在△ABC 中,AD 是角平分线,∠B <∠C ,(1)如图(1),AE 是高,∠B =50°,∠C =70°,求∠DAE 的度数;(2)如图(2),点E 在AD 上.EF ⊥BC 于F ,试探究∠DEF 与∠B 、∠C 的大小关系,并证明你的结论;(3)如图(3),点E 在AD 的延长线上.EF ⊥BC 于F ,试探究∠DEF 与∠B 、∠C 的大小关系是(直接写出结论,不需证明).。
重庆市育才中学2023-2024学年八年级上学期数学月考同步练习(10月份)一.选择题(共10小题,满分40分,每小题4分)1.(4分)如图图片是公能中学初一年级班徽设计比赛的四幅作品,其中是轴对称图形的是()A.B.C.D.2.(4分)下列四个图形中,线段BE是△ABC中AC边上的高的图形是()A.B.C.D.3.(4分)下列长度的三条线段首尾顺次相接能组成三角形是()A.1,2,3 B.2,4,7 C.3,4,8 D.2,3,44.(4分)如图,△ABC≌△BAD,如果AB=6,BD=5,AD=4,则AC的长是()A.6 B.5 C.4 D.不能确定5.(4分)若一个n边形从一个顶点最多能引出5条对角线,则n是()A.5 B.8 C.9 D.106.(4分)一副三角板按如图所示叠放在一起,则图中∠α的度数是()A.60°B.65°C.70°D.75°7.(4分)下列命题中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形三条角平分线交点在三角形的外部C.三角形的三条高都在三角形内部D.三角形的一条中线将三角形分成两个面积相等的三角形8.(4分)如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<199.(4分)如图,在四边形ABCD中,BD平分∠ABC,且AD=CD,若∠CBD=α,则∠ADC一定等于()A.3αB.90°+2αC.135°﹣2αD.180°﹣2α10.(4分)有两个整数x,y,把整数对(x,y)进行操作后可得到(x+y,y),(x﹣y,y),(y,x)中的某一个整数对,将得到的新整数对继续按照上述规则操作下去,每得到一个新的整数对称为一次操作.若将整数对(2,32)按照上述规则进行操作,则以下结论正确的个数是()①若m次操作后得到的整数对仍然为(2,32),则m的最小值为2;②三次操作后得到的整数对可能为(2,﹣30);③不管经过多少次操作,得到的整数对都不会是(﹣3,18).A.3个B.2个C.1个D.0个二.填空题(共8小题,满分32分,每小题4分)11.(4分)起重机的吊臂中有三角形结构,这是利用了三角形的.12.(4分)如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=°.13.(4分)如图,∠1是六边形ABCDEF的一个外角.若∠1=70°,则∠A+∠B+∠C+∠D+∠E的度数为.14.(4分)如图所示,将△ABC沿着DE翻折,B点落到了B′点处.若∠1+∠2=80°,则∠B′=.15.(4分)如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=12cm2,则阴影部分的面积为.16.(4分)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE =.17.(4分)已知关于x的不等式组的整数解仅有4个,则a的取值范围是.18.(4分)一个两位自然数m,若各位数字之和小于等于9,则称为“完美数”.将m的各个数位上的数字相加所得的数放在m的前面,得到一个新数m′,那么称m′为m的“前置完美数”;将m的各个数位上的数字相加所得的数放在m的后面,得到一个新数m n,那么称m n为m的“后置完美数”.记,例如:m=12时,m′=312,m n=123,.请计算F(32)=;已知两个“完美数”m=10a+b(6≤a≤9,0≤b≤9),n=10x+y(1≤x≤9,0≤y≤9),若F(m)是一个完全平方数,且2m+F(n)﹣8y=140,则n的最大值为.三.解答题(共8小题,满分78分)19.(10分)已知:如图,E,B,F,C四点在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:ED=AC.20.(8分)尺规作图并完成证明:如图,点C是BD上一点,AB=CD,BC=DE,∠BAE=∠DEA.(1)尺规作图:作∠ACE的平分线,交AE于点F;(2)证明:CF⊥AE证明:∵,∴AB∥DE,∴.在△ABC和△CDE中,∵,①∴△ABC≌△CDE(SAS).∴.又∵CF是∠ACE的角平分线,∴CF⊥AE().21.(10分)如图所示,在平面直角坐标系中,已知A(1,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC,并作出关于y轴对称的△A1B1C1;(2)已知P为y轴上一点,若△ACP的周长最小,则点P的坐标为,周长为.22.(10分)某校开展了“美丽校园”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:校园安全,D:卫生保洁”四个主题活动,每个学生限选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图和扇形统计图.(1)本次随机调查的学生人数是人;被调查学生中,选择C主题的人数是人,请补全条形统计图;(2)在扇形统计图中,“D”主题对应扇形的圆心角为度;(3)若该校共有3000名学生,试估计该校参与“文明礼仪”主题的学生人数.23.(10分)计算(1)一个等腰三角形的一边长为8cm,周长为30cm,求其它两边的长.(2)一个多边形的内角和是外角和的3倍,求它的边数.24.(10分)新能源汽车因其废气排放量比较低,被越来越多的家庭所喜爱,某汽车专卖店销售甲、乙两种型号的新能源汽车,某月的第一周售出1辆甲型车和3辆乙型车,销售额为65万元;第二周售出4辆甲型车和5辆乙型车,销售额为155万元.(1)求每辆甲型车和乙型车的售价各为多少万元?(2)某公司准备向该汽车专卖店购买甲、乙两种型号的新能源汽车共8辆,其购车费用不少于145万元,且不超过153万元,问有哪几种购车方案?从公司节约的角度考虑,你会选择哪种购车方案?25.(10分)如图,在△ABC中,AB=BC,∠ABC=90°,D是边AC上一点,连接DB,过点C作CE⊥BD交BD于点E.(1)如图1,若∠DBC=4∠DCE,BE=2,求AC的长;(2)如图2,在EC上截取EF=EB,连接AF交BD于点G,求证:CF=2EG;26.(10分)如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO =∠DBO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长;(3)在(1)中,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,(如图3),当H在FC上移动,点G在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.重庆市育才中学2023-2024学年八年级上学期数学月考同步练习(10月份)(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)如图图片是公能中学初一年级班徽设计比赛的四幅作品,其中是轴对称图形的是()A.B.C.D.【答案】D2.(4分)下列四个图形中,线段BE是△ABC中AC边上的高的图形是()A.B.C.D.【答案】C3.(4分)下列长度的三条线段首尾顺次相接能组成三角形是()A.1,2,3 B.2,4,7 C.3,4,8 D.2,3,4【答案】D4.(4分)如图,△ABC≌△BAD,如果AB=6,BD=5,AD=4,则AC的长是()A.6 B.5 C.4 D.不能确定【答案】B5.(4分)若一个n边形从一个顶点最多能引出5条对角线,则n是()A.5 B.8 C.9 D.10【答案】B6.(4分)一副三角板按如图所示叠放在一起,则图中∠α的度数是()A.60°B.65°C.70°D.75°【答案】D7.(4分)下列命题中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形三条角平分线交点在三角形的外部C.三角形的三条高都在三角形内部D.三角形的一条中线将三角形分成两个面积相等的三角形【答案】D8.(4分)如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19【答案】D9.(4分)如图,在四边形ABCD中,BD平分∠ABC,且AD=CD,若∠CBD=α,则∠ADC一定等于()A.3αB.90°+2αC.135°﹣2αD.180°﹣2α【答案】D10.(4分)有两个整数x,y,把整数对(x,y)进行操作后可得到(x+y,y),(x﹣y,y),(y,x)中的某一个整数对,将得到的新整数对继续按照上述规则操作下去,每得到一个新的整数对称为一次操作.若将整数对(2,32)按照上述规则进行操作,则以下结论正确的个数是()①若m次操作后得到的整数对仍然为(2,32),则m的最小值为2;②三次操作后得到的整数对可能为(2,﹣30);③不管经过多少次操作,得到的整数对都不会是(﹣3,18).A.3个B.2个C.1个D.0个【答案】A二.填空题(共8小题,满分32分,每小题4分)11.(4分)起重机的吊臂中有三角形结构,这是利用了三角形的稳定性.【答案】见试题解答内容12.(4分)如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=130°.【答案】130.13.(4分)如图,∠1是六边形ABCDEF的一个外角.若∠1=70°,则∠A+∠B+∠C+∠D+∠E的度数为610°.【答案】610°.14.(4分)如图所示,将△ABC沿着DE翻折,B点落到了B′点处.若∠1+∠2=80°,则∠B′=40°.【答案】见试题解答内容15.(4分)如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=12cm2,则阴影部分的面积为3cm2.【答案】见试题解答内容16.(4分)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE=4.【答案】见试题解答内容17.(4分)已知关于x的不等式组的整数解仅有4个,则a的取值范围是11≤a<13.【答案】11≤a<13.18.(4分)一个两位自然数m,若各位数字之和小于等于9,则称为“完美数”.将m的各个数位上的数字相加所得的数放在m的前面,得到一个新数m′,那么称m′为m的“前置完美数”;将m的各个数位上的数字相加所得的数放在m的后面,得到一个新数m n,那么称m n为m的“后置完美数”.记,例如:m=12时,m′=312,m n=123,.请计算F(32)=23;已知两个“完美数”m=10a+b(6≤a≤9,0≤b≤9),n=10x+y(1≤x≤9,0≤y≤9),若F(m)是一个完全平方数,且2m+F(n)﹣8y=140,则n的最大值为45.【答案】23,45.三.解答题(共8小题,满分78分)19.(10分)已知:如图,E,B,F,C四点在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:ED=AC.【答案】证明△ABC≌△DEF20.(8分)尺规作图并完成证明:如图,点C是BD上一点,AB=CD,BC=DE,∠BAE=∠DEA.(1)尺规作图:作∠ACE的平分线,交AE于点F;(2)证明:CF⊥AE证明:∵∠BAE=∠DEA,∴AB∥DE,∴∠B=∠D.在△ABC和△CDE中,∵,①BC=DE∴△ABC≌△CDE(SAS).∴CE=CA.又∵CF是∠ACE的角平分线,∴CF⊥AE(等腰三角形的三线合一).【答案】∠BAE=∠DEA,∠B=∠D,BC=DE,CE=CA,等腰三角形的三线合一.21.(10分)如图所示,在平面直角坐标系中,已知A(1,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC,并作出关于y轴对称的△A1B1C1;(2)已知P为y轴上一点,若△ACP的周长最小,则点P的坐标为(0,),周长为+.【答案】(0,),+.22.(10分)某校开展了“美丽校园”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:校园安全,D:卫生保洁”四个主题活动,每个学生限选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图和扇形统计图.(1)本次随机调查的学生人数是60人;被调查学生中,选择C主题的人数是18人,请补全条形统计图;(2)在扇形统计图中,“D”主题对应扇形的圆心角为54度;(3)若该校共有3000名学生,试估计该校参与“文明礼仪”主题的学生人数.【答案】(1)60,18;(2)54;(3)750人.23.(10分)计算(1)一个等腰三角形的一边长为8cm,周长为30cm,求其它两边的长.(2)一个多边形的内角和是外角和的3倍,求它的边数.【答案】其它两边的长为11cm,11cm或8cm,14cm;八边形24.(10分)新能源汽车因其废气排放量比较低,被越来越多的家庭所喜爱,某汽车专卖店销售甲、乙两种型号的新能源汽车,某月的第一周售出1辆甲型车和3辆乙型车,销售额为65万元;第二周售出4辆甲型车和5辆乙型车,销售额为155万元.(1)求每辆甲型车和乙型车的售价各为多少万元?(2)某公司准备向该汽车专卖店购买甲、乙两种型号的新能源汽车共8辆,其购车费用不少于145万元,且不超过153万元,问有哪几种购车方案?从公司节约的角度考虑,你会选择哪种购车方案?【答案】(1)每辆甲型车的售价为20万元,每辆乙型车的售价为15万元;(2)有两种方案:①购买甲种型号的新能源汽车5辆,购买乙种型号的新能源汽车3辆;②购买甲种型号的新能源汽车6辆,则购买乙种型号的新能源汽车2辆;从公司节约的角度考虑,选择购买甲种型号的新能源汽车5辆,购买乙种型号的新能源汽车3辆费用较少.25.(10分)如图,在△ABC中,AB=BC,∠ABC=90°,D是边AC上一点,连接DB,过点C作CE⊥BD交BD于点E.(1)如图1,若∠DBC=4∠DCE,BE=2,求AC的长;(2)如图2,在EC上截取EF=EB,连接AF交BD于点G,求证:CF=2EG;(3)如图3,若CD=CB,AC=8,点M是直线BC上一动点,连接MD,将线段MD绕点D顺时针旋转90°得到线段M′D,点P是线段BC的中点,点Q是线段BD上一个动点,连接PQ,M′Q,当PQ+M′Q最小时,请直接写△PBQ的面积.【答案】(1)4;(3)2.26.(10分)如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO =∠DBO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长;(3)在(1)中,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,(如图3),当H在FC上移动,点G在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.【答案】(2)8。
安徽省阜阳市界首市初中月考联考2024-2025学年八年级上学期10月月考数学试题一、单选题1.在平面直角坐标系中,点()3,0P -在( )A .x 轴上B .y 轴上C .第二象限D .第三象限 2.小明在高架桥上试驾一辆新能源汽车,以每小时80千米的速度匀速行驶,行驶的路程随时间的变化而变化,在这个变化过程中,自变量是( )A .汽车B .路程C .速度D .时间3.当1x =-时,函数y 的值是( )A .1B .-1 CD 4.如图,某小区有3处健身休闲广场123,,S S S ,为加强对健身休闲广场的管理,小区物业将其中的2处位置用坐标表示为()()122,3,1,4S S -,则第3处健身休闲广场3S 的位置用坐标表示为( )A .()2,1-B . 2,1C . −1,1D .()1,15.已知函数()32y m x n =---是正比例函数,则m ,n 的值为( )A .3,2m n ≠=-B .3,2m n ==C .3,2m n ==-D .3,2m n ≠= 6.要得到直线3y x =-+,可把直线y x =-( )A .向下平移3个单位长度B .向上平移3个单位长度C .向左平移3个单位长度D .向右平移3个单位长度7.下列关于一次函数24y x =-+的图象的说法中,正确的是( )A .函数图象经过第二、三、四象限B .函数图象与x 轴的交点坐标为(2-,0)C .当0x >时,4y <D .y 的值随着x 值的增大而增大8.在同一平面直角坐标系中,一次函数y ax b =+与y bx a =+(a ,b 为常数,0a ≠,0b ≠)的图象可能是( )A .B .C .D .9.关于x 的一次函数()212y m x m =++-,若y 随x 的增大而增大,且图象与y 轴的交点在x 轴下方,则实数m 的取值范围是( )A .12m <-B .12m >-C .122m -<<D .2m >10.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发.设普通列车行驶的时间为x (小时)两车之间的距离为y (千米),y 与x 之间的函数关系的图象大致如图所示,则下列说法错误的是( )①动车的速度是270千米/小时;②点B 的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时.A .①②B .①④C .②③D .②④二、填空题11.函数33y x =+的自变量x 的取值范围是. 12.点()27,1A a a +-在第一、三象限的角平分线上,则a =.13.如图,在平面直角坐标系中,线段AB 经过原点()()()2302O A m B n C CD AB --⊥,,,,,,,于点D .若8AB =,则线段CD 的长为.14.定义:对于给定的一次函数y ax b =+(a ,b 为常数,且0a ≠),把形如()()00ax b x y ax b x ⎧+≥⎪=⎨-+<⎪⎩的函数称为一次函数y ax b =+的“相对函数”.(1)若点()2,M m -在一次函数41y x =-+的“相对函数”图象上,则m 的值是; (2)若点(),3N n 在一次函数52y x =-的“相对函数”图象上,则n 的值是.三、解答题15.已知点()23,1P m m -+的横坐标与纵坐标的和是16,求点P 的坐标.16.如图,在平面直角坐标系中,已知(2,2),(2,0),(3,3),(,)A B C P a b -是三角形ABC 的边AC 上的一点,把三角形ABC 平移后得到三角形DEF ,点P 的对应点为(2,4)P a b '--.(1)写出D ,E ,F 三点的坐标;(2)画出三角形DEF ;(3)求三角形DEF 的面积.17.已知y 与2x -成正比例,当1x =-时,3y =.(1)求y 与x 的函数表达式;(2)若(1)中的函数图象经过第二象限内的点P ,且点P 到y 轴的距离是2,求点P 的坐标. 18.在平面直角坐标系中,一只蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断地平移,每次平移1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:3A :,7A :,24A :; (2)写出点2025A 的坐标.19.某超市出售一种散装花生,其售价y (元)与花生质量x (千克)之间的关系如表:其中售价中的0.2元是包装袋的价钱.(1)在这个变化过程中,自变量与因变量各是什么?(2)求出售6千克花生时的售价;(3)求出y 与x 之间的函数表达式.20.在平面直角坐标系中,给出如下定义:点M 到x 轴、y 轴的距离的较大值称为点M 的“长距”,点N 到x 轴、y 轴的距离相等时,称点N 为“完美点”.(1)若点()21,1P m --是“完美点”求m 的值;(2)若点()31,4Q n +-的“长距”为5,且点Q 在第三象限内,点D 的坐标为()512n --,,试说明点D 是“完美点”.21.如图所示,在同一个坐标系中,一次函数11y k x b =+和y kx b =+的图象分别与x 轴交于点A 、点B ,两直线相交于点C .已知点A 坐标为()10-,,点B 坐标为()20,,观察图象并回答下列问题:(1)关于x 的方程110k x b +=的解是______;关于x 的不等式0kx b +<的解集是______;(2)直接写出:关于x 的不等式组1100kx b k x b +>⎧⎨+>⎩的解集是______; (3)若点C 坐标为()13,, ①关于x 的不等式11k x b kx b +>+的解集是______;②请求出ABC V 的面积.22.某校八年级学生外出社会实践活动,为了提前做好准备工作,学校安排小车送义工队前往,同时其余学生乘坐客车去目的地,小车到达目的地后立即返回,客车在目的地等候,如图是两车距学校的距离y (千米)与行驶时间x (小时)之间的函数图像.(1)填空:目的地距离学校_________千米,小车出发去目的地的行驶速度是___________千米/时;(2)当两车行驶3小时后在途中相遇,求点P 的坐标;(3)在第(2)题的条件下,求客车到达目的地所用时间.23.如图,直线6y x =-+与x 轴交于点A ,与y 轴交于点B ,直线CD 与y 轴交于点()0,2C ,与直线AB 交于点D ,过点D 作DE x ⊥轴于点()3,0E .(1)分别求出点A ,D 的坐标;(2)求出直线CD 的函数表达式;(3)若点P 是线段OA 上一动点,点P 从原点O 开始,以每秒1个单位长度的速度向点A 运动(点P 与点O ,A 不重合),过点P 作x 轴的垂线,分别与直线AB CD ,交于点M ,N .设MN 的长为s ,点P 的运动时间为t ,求出s 与t 之间的函数表达式(写出自变量的取值范围)。
2024-2025学年度上学期八年级单元检测数学试题第I 卷一、单项选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥中的斜拉索桥,那么你能推断出斜拉索大桥中运用的数学原理是( )A. 三角形不稳定性B. 三角形的稳定性C. 四边形的不稳定性D. 四边形的稳定性2. 如图,用三角板作ABC 的边AB 上的高线,下列三角板的摆放位置正确的是( )A B.C. D.3. 已知三条线段的长分别是3,7,m ,若它们能构成三角形,则整数m 的最大值是( )A. 11B. 10C. 9D. 74. 如图,在ABC 和ABD △中,已知AC AD =,则添加以下条件,仍不能判定ABC ABD △≌△的是( )的.A. BC BD =B. ABC ABD ∠=∠C. 90C D ∠=∠=°D. CAB DAB ∠=∠5. 如图,点F ,A ,D ,C 在同一直线上,EF BC ∥,且EF BC =,DE AB ∥.已知3,11,AD CF ==则AC 的长为()A. 5B. 6C. 7D. 6.56. 在下列条件中:①A B C ∠+∠=∠,②::1:2:3A B C ∠∠∠=,③90AB ∠=°−∠,④12A B C ∠=∠=∠,⑤23A B C ∠=∠=∠中,能确定ABC 是直角三角形的条件有( ) A. 2个 B. 3个 C. 4个 D. 5个7. 如图,小林从P 点向西直走 12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了96米回到点P . 则α=( )A. 30°B. 45°C. 60°D. 90°8. 窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.如图是从某窗棂样式结构图案上摘取的部分.已知//385BC DE ∠°,,则1234∠∠∠∠+++的度数是( )A. 320°B. 265°C. 245°D. 225°9. 如图,在ABC 中,延长CA 至点F ,使得AF CA =,延长AB 至点D ,使得2BD AB =,延长BC 至点E ,使得3CE CB =,连接EF 、FD 、DE ,若36DEF S =△,则ABC S ( )A. 1B. 2C. 3D. 410. 如图,在ABC ,AB AC =,D 为BC 上的一点,28BAD ∠=°,在AD 的右侧作ADE ,使得AE AD =,DAE BAC ∠=∠,连接CE 、DE ,DE 交AC 于点O ,若CE AB ∥,则DOC ∠的度数为( )A. 124°B. 102°C. 92°D. 88°二、填空题 (本题共5小题,每小题3分,共15分. )11. 如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上_____根木条.12. 如图,正八边形和正五边形按如图方式拼接在一起,则CAB ∠=______°.13. 如图,在ABC 中,AD 是高线,AE BF 、是角平分线,它们相交于点5070O BAC C EAD ∠=°∠=°∠,,,度数为_________.为14. 如图,在 3×3的方格图中,每个小方格的边长都为1,则1∠与2∠的关系是__________________.15. 如图,在平面直角坐标系中,将直角三角形的直角顶点放在点()3,3P 处,两直角边分别与坐标轴交于点A 和点B ,则OA OB +的值为___________.三、解答题:(本题共 8 小题,解答应写出文字说明、证明过程或演算步骤. 共75分) 16. 如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求C ∠的度数.17. 如图,F 、C 是AD 上两点,且AF CD =,点E 、F 、G 在同一直线上,且BC GF ,BC EF =.求证:ABC DEF ≌△△18. 如图,在ABC 和DCB △中,AC 与BD 相交于点O ,AB DC =,AC BD =.求证:ABO DCO △≌△.19. 已知一个多边形的内角和与外角和相加等于2160°.(1)求这个多边形的边数及对角线的条数.(2)这个多边形剪去一个角后,所形成的新多边形有几条边?内角和是多少?20. 在ABC 中, A B C ∠∠∠,,的对边分别为a , b , c .(1)化简代数式:a b c b a c +−+−−=; (2)若AB AC AC =,边上的中线BD 把ABC 的周长分为15和6两部分,求底边BC 的长. 21. 如图,在ABC 中.(1)如果7cm AB =,5cm AC =,BC 是能被3整除的偶数,求这个三角形的周长.(2)如果BP 、CP 分别是∠和ACB ∠的角平分线.①当50A ∠=°时,求BPC ∠的度数.②当A n ∠=°时,求BPC ∠的度数.22. 如图1,一张三角形ABC 纸片,点D 、E 分别是ABC 边上两点.研究(1):如果沿直线DE 折叠,使A 点落在CE 上,则BDA ′∠与A ∠的数量关系是 ;研究(2):如果折成图2的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系还成立吗?若成立,请说明理由; 若不成立,直接写出他们的关系.研究(3):如果折成图3的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系是 .23. 如图,在ABC 和CDE 中,AC BC =,CD CE =,ACB DCE ∠=∠,连接AD ,BE 交于点M .(1)如图1,当点B ,C ,D 在同一条直线上时,可以得到图中一对全等三角形,即_____≌_____; (2)当点D 不直线BC 上时,如图2位置,且ACB DCE α∠=∠=.①求证:AD BE =;②求EMD ∠的大小(用含α的代数式表示).的在。
2023-2024学年江苏省镇江市八年级上学期10月月考数学试题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.如图,,点与与分别是对应顶点,且测得,则长为()A.B.C.D.3.如图,已知,,增加下列条件:①;②;③;④.其中能使的条件有()A.4个B.3个C.2个D.1个4.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.的三条中线的交点B.三条角平分线的交点C.三条高所在直线的交点D.三边的中垂线的交点5.如图:是中边的垂直平分线,若厘米,厘米,则的周长为()厘米.A.16B.18C.26D.286.如图,是中的平分线,,交于点E,,交于点F,若,则的面积是()A.4B.6C.8D.107.公元前6世纪,古希腊哲学家泰勒斯这样测得轮船到海岸的距离:如图所示,在海边灯塔上进行测量,直立一根可以原地转动的竖竿(垂直于地面),在其上一点A处连接一个可以绕A转动并固定在任意位置上的横杆,先转动横杆使其转向船的位置B,再转动竖竿,使横杆对准岸上的一点C,然后测量D,C的距离,即得D,B的距离,哲学家得到的依据是()A.B.C.D.8.如图,在中,,平分交于点平分交于点交于点.则下列说法正确的个数为()①;②,③若,则;④;⑤.A.2个B.3个C.4个D.5个9.如图,与关于直线l对称,则∠B的度数为___.10.小明从镜子中看到对面电子钟如图所示,这时的时刻应是_____.11.已知图中的两个三角形全等,则______°.12.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“AAS”需要添加条件_______________.13.如图,AD=BD,AD⊥BC,垂足为D,BF⊥AC,垂足为F,BC=6cm,DC=2cm,则AE=_____cm.14.如图,在中,的平分线交于点.若,则的面积是___________.15.如图,在中,的垂直平分线分别交于点的垂直平分线分别交于点,则的周长为_____.16.如图,小敏做了一个角平分仪ABCD,其中,,将仪器上的点A与的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是的平分线此角平分仪的画图原理是:根据仪器结构,可得≌,这样就有则说明这两个三角形全等的依据是______17.如图,四边形中,,,对角线,若,则的面积为_____________.18.如图,在中,,,,点在直线上.点从点出发,在三角形边上沿的路径向终点运动;点从点出发,在三角形边上沿的路径向终点运动.点和分别以单位秒和单位秒的速度同时开始运动,在运动过程中,若有一点先到达终点时,该点停止运动,另一个点要继续运动,直到两点都到达相应的终点时整个运动才能停止.在某时刻,分别过和作于点,于点,则点的运动时间等于_____秒时,与全等.19.如图,,,.(1)求证:;(2)若,AE平分,求的度数.20.在如图所示的正方形网格中,已有两个正方形涂黑,请再将其中的一个空白正方形涂黑,使涂黑部分图形是一个轴对称图形(最少三种不同方法).21.如图:已知和两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即,且P到两条公路的距离相等.22.如图,是的平分线.垂直平分于点P,于点F,于点E.(1)求证:;(2)若,则.23.小明在做数学作业时,遇到这样一个问题:如图,,,请说明的道理.小明动手测量一下,发现确实相等,但不能说明道理,请你帮助说明其中的理由.24.(1)如图①,,射线在这个角的内部,点、在的边、上,且于点于点,证明:;(2)迁移应用:如图②,点在的边、上,点在内部的射线上,分别是的外角,已知,猜想与的关系,并说明理由.25.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连接AD,AE,△ADE的周长为12cm.(1)求BC的长;(2)分别连接OA,OB,OC,若△OBC的周长为26cm,求OA的长.26.如图,已知中,厘米,厘米,点D为的中点.如果点P在线段上以4厘米/秒的速度由B点向C点运动.同时,点Q在线段上由C点以a厘米/秒的速度向A点运动.设运动的时间为t秒.(1)若以D,B,P为顶点的三角形和以P,C,Q为顶点的三角形全等,试求a、t的值;(2)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动.设运动的时间为t秒;直接写出秒时点P与点Q第一次相遇.27.(1)如图1,在四边形中,分别是边、上的点,且.求证:;(2)如图2,在四边形中,分别是边上的点,且,(1)中的结论是否仍然成立?(3)如图3,在四边形中,分别是边延长线上的点,且(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.。
山东省济南市历城第三中学2024—2025学年上学期八年级10月月考数学试题一、单选题1.小青坐在教室的第4列第3行,用()4,3表示,小明坐在教室的第3列第1行应当表示为( )A .()1,3B .()3,1C .()1,1D .()3,3 2.如图,在平面直角坐标系xOy 中,被一团㙠水覆盖住的点的坐标有可能是( )A .(2,4)-B .(2,4)-C .(2,4)--D .(2,4) 3.在平面直角坐标系中,点(4,3)A -到x 轴距离为( )A .4B .4-C .3D .3-4.下列图象中,表示y 是x 的函数的有( )A .①②③④B .①④C .①②③D .②③ 5.在平面直角坐标系中,点(1,2)P -关于y 轴对称的点的坐标是( )A .(1,2)B .(1,2)--C .(1,2)-D .(2,1)- 6.已知()()121,,1,y y -是直线3y x =-+上的两点,则12,y y 的大小关系是( ) A .12y y > B .12y y < C .12y y = D .无法确定7.在一次“寻宝”游戏中,寻宝人已经找到两个标志点A (1-,2)和B (2,1),则藏宝处点C 的坐标应为( )A .(1,1-)B .(1,0)C .(1-,1)D .(0,1-) 8.在平面直角坐标系中,若点()25,4A a a --在x 轴上.则点A 的坐标为( )A .30,2⎛⎫ ⎪⎝⎭B .()5,1-C .()30,D .()03,9.一次函数23y x =-+的图象向上移2个单位长度后,与y 轴相交的点坐标为( ) A .()0,5 B .()0,1 C .()5,0 D .()1,010.将第一象限的“小旗”各点的横坐标保持不变,纵坐标分别乘以1-,符合上述要求的图形是( )A .B .C .D .11.关于一次函数1y x =+,下列说法正确的是( )A .图象经过第一、二、三象限B .图象与x 轴交于点(01),C .函数值y 随自变量x 的增大而减小D .当1x >-时,0y <12.已知点A 的坐标为(1,2),直线AB ∥x 轴,且AB =5,则点B 的坐标为( )A .(5,2)或(4,2)B .(6,2)或(-4,2)C .(6,2)或(-5,2)D .(1,7)或(1,-3)13.声音在空气中传播的速度(简称声速)v (m /s )与空气温度t (C ︒)满足一次函数的关系(如下表所示),则下列说法错误的是( )A .温度越高,声速越快B .当空气温度为20C ︒时,声速为342m /sC .声速v (m /s )与温度t (℃)之间的函数关系式为33305v t =+D .当空气温度为40C ︒时,声速为350m /s14.直线y ax b =+经过第一、二、四象限,则直线y bx a =+的图像只能是图中的( )A .B .C .D .15.一次函数332y x =-+的图像如图所示,当30y -<<时,x 的取值范围是( )A .4x >B .02x <<C .04x <<D .24x <<16.某航空公司规定,旅客乘机所携带行李的质量()kg x 与其托运费用y (元)的关系如图所示的一次函数图象确定,那么旅客可免费携带行李的最大质量为( )A .30kgB .25kgC .20kgD .18kg17.平面直角坐标系中,点A (3,3),B (2,1),经过点A 的直线a ∥x 轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .()0,1-B .()1,2--C .()2,1--D .()2,318.如图,已知点A 的横坐标为3-,过点A 作x 轴的垂线交x 轴于点B ,连接AO ,现将ABO V 沿AO 折叠,点B 落在第一象限的B '处,AB '边所在直线交y 轴于点C ,交x 轴于点D ,若C 的坐标为()0,5,则点A 的坐标为( )A .()3,6-B .()3,7-C .()3,8-D .()3,9-19.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,54t =或154. 其中正确的结论有( )A .1个B .2个C .3个D .4个20.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如 1,0 , 2,0 , 2,1 ,()3,2,()3,1,()3,0,()4,0,……,根据这个规律探索可得第2024个点的坐标是( )A .()63,5B .()63,6C .()64,7D .()64,6二、解答题21.在平面直角坐标系中,已知点()2,27M m m --,点(),3N n .(1)若点M 在x 轴上,求m 的值和点M 坐标;(2)若点M 到x 轴,y 轴距离相等,求m 的值;(3)若MN y ∥轴,且2MN =,求n 的值.22.如图,ABC V 中,点()()()2,1,3,4,5,2A B C ---.在所给直角坐标系中解答下列问题:(1)在图中画出ABC V 关于y 轴对称的111A B C △;(2)111A B C △的面积是.(3)在x 轴上找一点P ,使得1PA PB +的值最小,则点P 的坐标为.23.某公司要印刷产品宣传材料.甲印刷厂提出:每份材料收1元印制费,另收1500元制版费;乙印刷厂提出:每份材料收2.5元印制费,不收制版费.(1)分别写出两印刷厂的收费y (元)与印制数量x (份)之间的关系式;(2)印制800份宣传材料时,选择哪家印刷厂比较合算?(3)该公司拟拿出3000元用于印制宣传材料,找哪家印制厂印制宣传材料能多一些? 24.如图,已知点A 的坐标为(-3,-4),点B 的坐标为(5,0).(1)求证:OA =OB .(2)求△AOB 的面积.(3)求原点O 到AB 的距离.25.甲、乙两人同时从同一公路上的A 、B 两地同时出发前往C 地,两人离A 地的路程()km y 与行驶的时间()h x 之间的函数图像如图所示.(1)分别求出y 甲、y 乙与x 之间的函数表达式;(2)甲追上乙用了多少时间?(3)乙出发多久和甲相距5km .26.阅读理解:在平面直角坐标系中,()111,P x y ,()222,P x y ,如何求12PP的距离.如图,在12Rt PP Q △,()()2222212122121PP PQ P Q x x y y =+=-+-,所以12PP =.因此,我们得到平面上两点()111,P x y ,()222,P x y 之间的距离公式为12PP =(1)已知点()2,6P ,()3,6Q --,试求P 、Q 两点间的距离;(2)已知点(),5M m ,()1,2N 且5MN =,求m 的值;(3)的最小值.27.如图,正比例函数2y x =的图象与一次函数y kx b =+的图象交于点(),4A m ,一次函数图象与y 轴的交点为()0,2C ,与x 轴的交点为D .(1)求一次函数解析式;(2)一次函数y kx b =+的图象上是否存在一点P ,使得3ODP S =△,若存在,求出点P 的坐标;若不存在,说明理由;(3)如果在一次函数y kx b =+的图象存在一点Q ,使OCQ △是等腰三角形,请直接写出点Q 的坐标.。
2023-2024学年江苏省南通市南通重点中学八年级(上)10月月考数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列四个图形中,是轴对称图形的是( )A. B. C. D.2.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD3.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE的长为( )A. 0.5cmB. 1cmC. 1.5cmD. 2cm4.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB 于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧5.已知等腰三角形一个内角等于50∘,则它的顶角度数为( )A. 50∘B. 80∘C. 50∘或80∘D. 100∘6.如图,AD是▵ABC的边BC上的中线,AB=7,AC=5,则AD的值可以是( )A. 5B. 6C. 7D. 87.如图,▵ABC中,BI、CI分别平分∠ABC、∠ACF,DE过点I,且DE//BC,BD=8cm,CE=5cm,则DE等于( )A. 2cmB. 3cmC. 4cmD. 5cm8.如图,已知▵ABC的面积为12,BP平分∠ABC,AP⊥BP于点P,则▵BCP的面积( )A. 10B. 8C. 6D. 49.如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对称点B′恰好落在CD 上,若∠BAD =α,则∠ACB 的度数为( )A. 45∘B. α−45∘C. 12αD. 90∘−12α10.如图,已知▵ABC 中,AB =AC =8,∠BAC =90∘,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交A B 、AC 于点E 、F ,当∠EPF 在▵ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),给出以下四个结论:①AE =CF ;②▵EPF 是等腰直角三角形;③S 四边形A E P F =12S ▵A B C ;④BE +CF =EF ;⑤▵BEP 与▵PFC 的面积和无法确定.上述结论中始终正确的有( )A. ①②③B. ①②⑤C. ①③⑤D. ②③④二、填空题(本大题共7小题,共21.0分)11.正方形是轴对称图形,它共有_______条对称轴.12.在平面直角坐标系中,已知点A (m ,3)与点B (4,n )关于y 轴对称,则(m +n )2023的值为_______.13.如图,已知△ABC 是等边三角形,BC =BD ,∠CBD =90°,则∠1的度数是_______.14.如图,已知▵ABC的周长是13,BO、CO分别平分∠ABC和∠ACB,OD⊥BC于D,且△ABC的面积为13,则OD长为___________.15.如图,▵ABC的顶点均在格点上,A(3,4)、B(1,0)、C(7,0),利用网格线在图中找一点P,使得PA=PB= PC,则点P的坐标为______.16.如图所示,在▵ABC中,DE、MN是边AB、AC的垂直平分线,其垂足分别为D、M,分别交BC于E、N,且DE和MN交于点F,若∠BFC=110∘,则∠EAN的度数为_______.17.如图,在四边形ABCD中,AB=AD,AC=7,∠DAB=∠DCB=90∘,则四边形ABCD的面积为______.三、解答题(本大题共9小题,共72.0分。
广东省珠海市香洲区凤凰中学2024-2025学年八年级上学期10月月考数学试题一、单选题1.以下是清华大学、北京大学、上海交通大学、中国人民大学四个大学的校徽,其中是轴对称图形的是( )A .B .C .D .2.若三角形的三边长分别是4、9、a ,则a 的取值可能是( )A .3B .4C .5D .63.如图,是用直尺和圆规作一个角等于已知角的示意图,说明COD C O D '''△≌△的依据是( )A .SSSB .SASC .ASAD .AAS4.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB =AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD 的是( )A .∠B =∠C B .AD =AE C .BD =CE D .BE =CD5.将一副三角板按图所示方式叠在一起,则图中α∠的度数是( )A .60°B .75°C .90°D .135°6.如图,ABC AED ≌△△,点E 在线段BC 上,150∠=︒,则AED ∠的大小为( )A .60︒B .56︒C .62︒D .65︒7.如图,射线OC 是∠AOB 的角平分线,D 是射线OC 上一点,DP ⊥OA 于点P ,DP =4,若点Q 是射线OB 上一点,OQ =3,则△ODQ 的面积是( )A .3B .4C .5D .68.如图,在△ABC 中,DE 垂直平分BC 交AB 于点E ,若BD=5,△ABC 的周长为31,则△ACE 的周长为( )A .18B .21C .26D .289.如图,ABC ∠的平分线BF ,与ABC V 的外角ACG ∠的平分线相交于点F ,过点F 作DF BC ∥交AB 于点D ,交AC 于点E ,若8c m BD =, 2.5cm DE =,则CE 的长为( )cm .A .4.5B .5C .5.5D .610.如图,在Rt V AEB 和Rt V AFC 中,∠E =∠F =90°,BE =CF ,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于点N ,∠EAC =∠F AB .有下列结论:①∠B =∠C ;②CD =DN ;③CM =BN ;④V ACN ≌V ABM .其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题11.若等腰三角形的两边长分别为3和5,则等腰三角形的周长为.12.如图,ABC DEC ≌△△,B 、C 、D 在同一直线上,且5CE =,7AC =,则BD 的长为.13.如图,在3×3的方格中,每个小方格的边长均为1,则1∠与2∠的数量关系是.14.如图,点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=20,则△PMN 的周长为.15.在△ABC 中,已知AD 是BC 边上的高,∠BAD =80°,∠CAD =50°,则∠BAC =.三、解答题16.一个多边形的内角和比其外角和的3倍多180︒,求这个多边形的边数.17.如图.在ABC ∆和AEF ∆中,AE AB =,AC AF =,CAF BAE ∠=∠.求证:ABC AEF ∆≅∆.18.如图,在ABC V 中,50A ∠=︒,60C ∠=︒,DE 是AB 的垂直平分线,DE 分别交AB AC 、于点D 和E .(1)尺规作图:求作DE (保留作图痕迹,不写作法);(2)连接EB ,求EBC ∠的度数.19.如图,在ABC V 中,AD 平分BAC ∠,90C ∠=︒,DE AB ⊥于点E ,点F 在AC 上,BD DF =.(1)若50B ∠=︒,求CDF ∠的度数;(2)若20AB =,14AF =,求CF 的长.20.在Rt ABC △中,90ABC ∠=︒,点D 是CB 延长线上一点,点E 是线段AB 上一点,连接DE .AC DE =,BC BE =.(1)求证:AB BD =;(2)BF 平分ABC ∠交AC 于点F ,点G 是线段FB 延长线上一点,连接DG ,点H 是线段DG 上一点,连接AH 交BD 于点K ,连接KG .①ABG ∠=______.②当KB 平分AKG ∠时,求证:AK DG KG =+.21.AB CD ∥,BAD ∠,ADC ∠的平分线AE ,DE 相交于点E .(1)如图1,E ∠=______;(2)如图2,过点E 作直线AB ,AD ,DC 的垂线,垂足分别为F ,G ,H ,证明:EF EG EH ==;(3)如图3,过点E 的直线与AB ,DC 分别相交于点B ,C (B ,C 在AD 的同侧)求证:E为线段BC 的中点;22.如图,在长方形ABCD 中,AB=4cm ,BC=6cm ,点E 为AB 中点,如果点P 在线段BC 上以每秒2cm 的速度由点B 向点C 运动,同时,点Q 在线段CD 上由点C 向点D 运动.设运动时间为t 秒.(1)当t=2时,求△EBP 的面积(2)若点Q 以与点P 不同的速度.....运动,经过几秒△BPE 与△CQP 全等,此时点Q 的速度是多少?(3)若点Q 以(2)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿长方形ABCD 的四边运动,求经过多长时间点P 与点Q 第一次...在长方形ABCD 的哪条边上相遇?23.阅读理解,自主探究:“一线三垂直”模型是“一线三等角”模型的特殊情况,即三个等角角度为90︒,于是有三组边相互垂直.所以称为“一线三垂直模型”.当模型中有一组对应边长相等时,则模型中必定存在全等三角形.(1)问题解决:如图1,在等腰直角ABC V 中,90ACB ∠=︒,AC BC =,过点C 作直线DE ,AD DE ⊥于D ,BE DE ⊥于E ,求证:ADC CEB △≌△;(2)问题探究:如图2,在等腰直角ABC V 中,90ACB ∠=︒,AC BC =,过点C 作直线CE ,AD CE ⊥于D ,BE CE ⊥于E , 3.2cm AD =, 2.3cm DE =,求BE 的长;(3)拓展延伸:在平面直角坐标系中,()52A ,,点B 在第一、第三象限的角平分线l 上.点CV为等腰直角三角形;在y轴上,ABC①如图3,当90CBA∠=︒时,求点C的坐标;②直接写出其他符合条件的C点的坐标.。
山东省济南市2023-2024学年八年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.5米B.63.下列各组数中,互为相反数的是(A.-2与12-B.-4.如图,有一个面积为1的正方形,经过一次正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次了如图所示的形状,若继续次后形成的图形中所有的正方形的面积和是(A.2024B.20235.下列各式中,正确的是(A.164=±B.6.如图,矩形ABCD的边点为圆心,对角线AC长为半径画弧,交数轴于点A .2πB .3π8.实数a b ,在数轴上的位置如图所示,化简A .2a b -B .a 9.按如图所示的程序计算,若开始输入的A .2B .310.如图,圆柱的高为8cm ,底面半径为吃食,要爬行的最短路程是(15.若21(2)x y z -+-+三、解答题17.求下列各式中的x 的值:(1)16x 2=81(2)(x+1)3=﹣27.18.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.(1)求风筝的垂直高度(2)如果小明想风筝沿23.计算:(1)如图1,当点D 在边BC 上时,①请写出BD 和CE 之间的数量关系____________,位置关系_____________;②线段CE ,CD ,BC 之间的数量关系是______________________________;(2)如图2,当点D 在边BC 的延长线上且其他条件不变时,(1)中CE ,CD ,BC 之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)如图3,当点D 在边CB 的延长线上且其他条件不变时,若6BC =,1CE =,求线段DE 的长.。
山东省德州市德城区第九中学2023-2024学年八年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.以下数据分别是3根小木棒的长度.用这3根小木棒的长度为边不能搭成三角形的是()A .3cm ,4cm ,5cmB .5cm ,7cm ,7cmC .5cm ,7cm ,12cmD .6cm ,8cm ,10cm2.如图,四个图形中,线段BE 是ABC 的高的图是()A .B .C .D .3.具备下列条件的ABC ,不是直角三角形的是()A .ABC ∠-∠=∠B .2A B C∠=∠=∠C .::3:2:1A B C ∠∠∠=D .22A B C∠=∠=∠4.下列说法不正确...的是()A .多边形的内角和随多边形边数的增加而增加B .多边形的外角和等于360°C .若一个多边形的内角和是外角和的2倍,则这个多边形是六边形D .若正多边形的一个外角等于150°,那么它是正十五边形5.如图,一扇窗户打开后,用窗钩AB 可将其固定,这里运用的几何原理是()A .三角形的稳定性B .两点之间线段最短C .两点确定一条直线D .垂线段最短6.如图,在ABC 中,点D ,E 是边BC 上的两点,BD CE =,BAD CAE ∠=∠,下列条件中不能判定ABD ACE ≅ 的是()A .BC ∠=∠B .BEA BAE ∠=∠C .AB AC =D .AD AE =7.将正六边形与正五边形按如图所示方式摆放,公共顶点为O ,且正六边形的边AB 与正五边形的边DE 在同一条直线上,则∠BOE 的度数是()A .48°B .54°C .60°D .72°8.如图,小明从A 点出发,沿直线前进16米后向左转45°,又向左转45°,…,照这样走下去,共走路程为()A .96米B .128米C .160米D .192米9.如图,在MPN △中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为()A .3B .4C .5D .610.如图,AD 是ABC 的中线,CE 是ACD 的中线,DF 是DEC 的中线,若2DEF S =△,则ABC S 等于()A .16B .14C .12D .1011.如图(1)所示,已知线段a ,1∠,求作ABC ,使BC a =,1ABC BCA ∠∠∠==,张蕾的作法如图(2)所示,则下列说法中一定正确的是()A .作ABC 的依据为ASAB .弧EF 是以AC 长为半径画的C .弧MN 是以点A 为圆心,a 为半径画的D .弧GH 是以CP 长为半径画的12.如图,在Rt ABC 中,90CAB ∠=︒,AB AC =,D 为AC 的中点,过点C 作CF BD ⊥交BD 的延长线于点F ,且AE AF ⊥,AH BF ⊥,下列说法:AF AE =①;AEB AFC ∠=∠②;CF EH =③;2AB AH =④;A FCB S BF AH =⋅四边形⑤.正确的有()个A .2B .3C .4D .5二、填空题15.如图所示,20A ∠=︒16.如图,在△ABC 中,∠则∠1﹣∠2的度数是三、解答题19.一个等腰三角形的周长是28cm .(1)已知腰长是底边长的3倍,求各边的长;(2)已知其中一边长为6cm ,求各边的长.20.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.21.如图锐角ABC ,若40ABC ∠=︒,70ACB ∠=︒,点D 、E 在边AB 、AC 上,CD 与BE 交于点H .(1)若BE AC ⊥,CD AB ⊥,求BHC ∠的度数.(2)若BE 、CD 平分ABC ∠和ACB ∠,求BHC ∠的度数.22.如图,已知AD ∥BC ,AD =CB ,AE =FC ,求证:∠D =∠B23.如图,四边形ABCD 中,90A C ∠=∠=︒,BE ,DF 分别是ABC ∠,ADC ∠的平分线(1)1∠与2∠有什么关系,为什么?(2)BE 与DF 有什么位置关系?请说明理由.24.如图,AB =AC ,AD =AE ,∠BAC =∠DAE .(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.25.已知,在ABC 中,AB =(1)如图①,若AB AC ⊥,则BD 与AE 的数量关系为,BD ,CE 与DE 的数量关系为(2)如图②,当AB 不垂直于AC 时,(1)中的结论是否成立?请说明理由.(3)如图③,若只保持BDA AEC ∠=∠,7cm BD EF ==,10cm DE =,点以2cm /s 的速度由点D 向点E 运动,同时,点C 在线段EF 上以cm /s x 向点F 运动,它们运动的时间为(s)t .是否存在x ,使得ABD △与EAC 求出相应的t 与x 的值;若不存在,请说明理由.。
b
c
1
2 D B
A
C
E
浙江省宁波市宁海县2018-2019学年八年级10月月考
数学试题
一、选择题(每题3分,共36 分) 1、下列说法中不正确的是 ( ) A 、同位角相等,两直线平行 B 、两直线平行,内错角相等
C 、同旁内角互补,两直线平行
D 、两直线被第三条直线所截,同旁内角互补 2、两直线被第三条直线所截,则必有 ( )
A 、同位角相等
B 、内错角相等
C 、同旁内角互补
D 、以上都不对
3、正三角形是轴对称图形,它的对称轴有 ( ) A 、1条 B 、2条 C 、3条 D 、无数条
4、如图,直线AB ∥CD ,P 是AB 上的动点,当点P 的位置变化时,三角形PCD 的面积将( )
A 、变大
B 、变小
C 、不变
D 、变大变小要看点P 向左还是向右移动
第4题图 第5题图 第6题图
5、如图,ABC △中,B C ∠∠,的平分线相交于点O ,过O 作DE BC ∥,若5B
D E C +=,则DE 等于( )
A .7
B .6
C .5
D .4
6、如图,AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155度,则∠DBC 的度数为( )。
A 、155度
B 、50度
C 、45度
D 、25度 7、如图,直线a b ,被直线c 所截,如果a b ∥,那么( ) A .12∠>∠ B .12∠=∠
C .12∠<∠
D .12180∠+∠=
8. 如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,
交BC 于D ,若BC=10,AC=6,则△ACD 的周长为( ) A 、16 B 、14 C 、20 D 、
18
B C
9.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )
A. 第一次向左拐,第二次向右拐
B. 第一次向右拐,第二次向左拐
C. 第一次向右拐,第二次向右拐
D. 第一次向左拐,第二次向左拐 10、已知等腰三角形的一边长为4,另一边长为8,则它的周长是( ) A 、12 B 、16 C 、20 D 、16或20
11.下面给出的几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一边上的高也是这边上中线的三角形;④有一个角为60°的等腰三角形.•其中是等边三角形的个数是( )
A .4个
B .3个
C .2个
D .1个
12、学习了“平行线”后,张明想出了过己知直线外一点画这条直线 的平行线的新方法,他是通过折一张半透明的纸得到的{如图(1)~(4)}:
从图中可知,张明画平行线的依据有( )
①两直线平行,同位角相等; ②两直线平行,内错角相等; ③同位角相等,两直线平行; ④内错角相等,两直线平行.
A.①② B.②③ C.③④ D.①④
二,填空题(共8小题,每小题3分,共24分)
13.如图,安装某管道,需经过两次拐弯,若要求拐弯后的管道与拐弯前的管道平行, 第一次拐弯处的∠B =142°,那么第二次拐弯处的∠C = .
第14题图 第15题图
14.如图,若l 1∥l 2,∠1=45°,则∠2=_____.
15.如图,∠1=82°,∠2=98°,∠3=80°,则∠4的度数为_____.
30 30 50 130 50 130 50 130
16.用吸管吸易拉罐内的饮料时,如图,, 则 (易拉罐的上下底面互相平行)
17.在△ABC 中,如果∠B=65°,∠A 的外角等于130°,那么△ABC_____等腰三角形.(填“是”或“不是”)
18.等腰三角形的一边长是3cm ,周长是12cm ,则腰长是_______cm . 19.如图1,在△ABC 中,AB=AC ,BD ,CE 分别是∠ABC ,∠ACB 的平分线,且DE ∥BC ,∠A=36°,则图中等腰三角形共有_______个.
20、我们知道等腰三角形是轴对称图形,你认为它有____条对称轴.对
于等腰三角形对称轴的问题,芳芳、丽丽、园园有了不同的看法。
芳芳:“我认为等腰三角形的对称轴是顶角平分线所在的直线.” 丽丽:“我认为等腰三角形的对称轴是底边中线所在的直线.” 园园:“我认为等腰三角形的对称轴是底边高线所在的直线.” 你认为她们谁说的对呢?请说明你的理由__________________ 。
三,解答题(共7题,共60分)
温馨提示:解答题必须将解答过程清楚地表述出来!
21、如图,∠1=100°,∠2=100°,∠3=120°,填空:(8分)
解:∵∠1=∠2=100°(已知)
∴m ∥n ( )
∴∠ =∠ ( ) 又∵∠3=120°(已知) ∴∠4=120度
22、已知,如图13-2,∠1=∠2,CF ⊥AB ,DE ⊥AB ,说明:FG ∥BC 。
(8分)
解:∵CF ⊥AB ,DE ⊥AB (已知)
∴∠BED =900,∠BFC =900
( ) ∴∠BED =∠BFC
∴ED ∥FC ( ) ∴∠1=∠BCF ( ) 又∵∠1=∠2(已知) ∴∠2=∠BCF
∴FG ∥BC ( ) 23、(8分)如图,AB ∥CD ,BF ∥CE ,则∠B 与∠C 有什么关系? 请说明理由。
1101=∠=2
∠ 2
1
a b
m n
4
3 图13-2
2
1
G
F
E
D C B
A
24(8分)已知等腰三角形的底边和一腰长是方程组24
37x y x y +=⎧⎨
+=⎩
的解,
求这个三角形的各边长
25.(8分)如图,D 是△ABC 的BA 边延长线上的一点,AE 是∠DAC 的平分线,AE//BC ,
试说明∠B=∠C 。
26.如图,已知△ABC 中,点D 、E 在BC 上,AB =AC ,AD =AE .
请说明BD =CE 的理由.(8分)
27.(本题12分)学完第2章“特殊的三角形”后,老师布置了一道思考题: 如图,点M 、N 分别在正三角形ABC 的BC,CA 边上,且BM=CN,AM,BN 交于点Q . (1)判断ABM ∆与BCN ∆是否全等,并说明理由. (2)判断BQM ∠是否会等于60,并说明理由. (3) 若将题中的点M ,N 分别移动到BC ,CA 的延长线上, 且BM=CN,是否能得到60BQM =∠?请说明理由.
A
B C
D
E。