安徽工业大学附属中学高中数学 3.函数的应用 用二分法求方程的近似解(2)教案 新人教A版必修1
- 格式:doc
- 大小:154.50 KB
- 文档页数:3
用二分法求方程的近似解一、教学内容分析本节选自《普通高中课程标准实验教科书·数学必修一》人教A版第三单元第一节第二课,主要是分析函数与方程的关系。
教材分三步来进行:第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应函数的零点的联系。
然后推广为一般方程与相应函数的情形;第二步,在用二分法求方程近似解的过程中,通过函数图像和性质来研究方程的解,体现方程和函数的关系;第三步,在函数模型的应用过程中,通过函数模型以及模型的求解,更全面的体现函数与方程的关系,逐步建立起函数与方程的联系。
本节课是这一小节的第二节课,即用二分法求方程的近似解。
它以上节课的“连续函数的零点存在定理”为确定方程解所在区间为依据,从求方程近似解这个侧面来体现“方程与函数的关系”;而且在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法的内容埋下伏笔;充分体现新课程“渗透算学方法,关注数学文化以及重视信息技术应用”的理念。
求方程近似解其中隐含“逼进”的数学思想,并且运用“二分法”来逼近目标是一种普通而有效的方法,其关键是逼近的依据。
二、学生学习情况分析同学们有了第一节课的基础,对函数的零点具备基本的认识;而二分法来自生活,是由生活中抽象而来的,只要我们选材得当,能够激发学生的学习兴趣,达到渗透数学思想关注数学文化的目的,学生也能够很容易理解这种方法。
其中运用“二分法”进行区间缩小的依据、总结出“运用二分法求方程的近似解”的步骤、将“二分法”运用到生活实际,是需要学生“跳跳”才能摘到的“桃子”。
三、设计理念本节课倡导积极主动、勇于探索的学习方式,应用从生活实际——理论——实际应用的过程,应用数形结合、图表、信息技术,采用教师引导——学生探索相结合的教学方法,注重提高学生数学的提出问题、分析问题和解决问题的能力,让学生经历直观感知、观察发现、抽象与概括、符号表示、运算求解、数据处理、反思与建构等思维过程。
课题:用二分法求方程的近似解教材:人民教育出版社《普通高中课程标准实验教科书A》必修1一、教学目标:1、知识与技能目标:会用二分法求函数零点或方程根的近似解;知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的数学思想2、过程与方法目标:从猜眼镜价格的实例引入新课,激发学生的学习兴趣;通过运用多媒体的教学手段,引领学生主动探索具体函数零点近似值的求法,体会二分法的具体过程和步骤。
3、情感、态度与价值观目标:通过本节课的学习,使学生经历逐渐逼近的思维过程,体验数学发现和创造的历程,体会数学知识与现实世界的联系,感受精确与相似的相对统一。
二、教学重点与难点1、重点:体会“二分法”的基本思想2、难点:对用二分法求函数零点近似解的一般步骤的概括和理解;对精确度要求的理解。
三、教学方法与手段本节课采用“问题教学”模式及“引导——探究”法,充分发挥多媒体的作用,通过创设问题情境,引导学生主动参与学习过程。
(1)、函数的零点:(2)、函数零点的求法:(3)、零点存在性定理:复习不仅是知识的回顾,更重要的是帮助学生构建清晰的知识脉络,以及为后面的学习作好铺垫。
由之前的例1,我们已经知道函数6x=xf在区间(2,3)内有零+x2(-ln)点。
如何找出这个零点?3、设置情境(请一位戴眼镜的同学上讲台,在一张纸上写出他的眼镜的价格,告知学生价格的范围,让学生猜价格。
)游戏:请你模仿李咏主持一下幸运52,请同学们猜一下下面这副眼镜的价格。
思考:如何做才能以最快的速度猜出它的价格?从实际生活提出问题体现数学源于生活,激发学生学习兴趣1、提问:利用我们猜价格的方法,你能否求解方程062ln =-+x x ?如果能求解的话,怎么去解?你能用函数的零点的性质吗? 问题链的设置,可以更好地引导学生利用猜价格时一分为二的思想解决问题,培养学生勇于探索、合作交流的精神。
2、借助EXCEL ,计算函数62ln )(-+=x x x f 的函数值,引导学生填写事先设置好的表格。
用二分法求方程的近似解“”教学设计(一)学习目标:(1)理解求方程近似解的二分法的基本思想与步骤;能够借助科学计算器用二分法求给定方程的满足一定精确度要求的近似解.(2)通过启发学生利用直观想象分析问题来培养学生的直观想象能力,加强学生对数学通性通法的学习,体验二分法的算法思想,培养学生自主探究的能力.(3)体验求方程近似解的二分法的探究形成过程,感受方程与函数之间的联系;通过了解数学家的史料来培养学生数学素养,并增强其学习数学的兴趣;体会由特殊到一般的认识规律,体会概括结论和规律的过程,培养学生认识事物的正确方法.(二)重点难点:重点理解二分法的基本思想,掌握运用二分法求函数零点的近似值的步骤和过程.难点理解精确度的概念,概括和理解求方程近似解的一般步骤(三)教学内容安排1.提出问题:(教师可以利用多媒体等手段展示问题)有一条5km长的电话线路(大约100多根电线杆),某一天线路发生了故障.想一想,维修线路的工人师傅如何迅速查出故障所在?教师可以鼓励学生讨论,研究此问题,并提出一个可行的方案. 2.新课导入:求下列函数的零点:(1)(2)学生回答计算的结果.教师总结:简单高次函数可以因式分解求出零点,不能因式分解的高次函数我们不能求出其零点,但是我们可以想办法来求零点的近似值.3.介绍数学史:介绍法国数学家伽罗瓦(e.galois,1811.10—1832.5)与挪威数学家阿贝尔(abel,nielshenrik,1802-1829)的事迹,并引出二分法.4.例题讲解:例题:求函数的一个正实数零点(精确到)此时应采取教师引导,学生合作探究的教学模式.教师需引导学生解决下列问题:(1)如何寻找零点的近似解?(即二分法的原理,操作方法)(2)分到何时才能满足误差要求?(即二分法的精度要求)找到解决这两个问题的方法之后,首先由师生共同选择初始区间,教师可以利用数轴演示二分法的原理;让学生讨论绝对误差与区间长度的关系.教师引导学生用表格演示二分法逐次计算的结果.最后由学生归纳二分法解题的一般步骤,教师做最后总结.(可以通过计算机作图来验证学生的计算结果) 5.练习巩固使用计算器,用二分法求函数的一个正零点的近似值(误差不超过0.01).教师巡视,学生作练习.要求同桌配合,一名同学负责作记录,另一名负责用计算器求值,尽快求解. 6.拓展加深由二分法到算法.(1)教师总结二分法的用途,拓展到算法,鼓励学生在学习前人算法的基础上,去寻求解决各类问题的算法.(2)介绍函数图象求解法. 7.归纳小结:教师总结二分法的解题步骤,让学生并领会、回顾本节所学的知识与方法,以逐步提高学生自我获取知识的能力,有利于发展教与学中存在的问题并能及时纠正. 8.布置作业:教材p100练习 2. 教材p102习题3.1 b组 1 (四)教学资源建议建议在教学过程中可以让学生使用计算器来计算相关的函数值,这样可以节省学生的计算时间.教师则可以利用多媒体教学手段协助学生发现、归纳方法,并且验证学生的计算结果.。
高一数学《用二分法求方程的近似解》教案高一数学《用二分法求方程的近似解》教案教学目标知识与技能通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感、态度、价值观体会数学逼近过程,感受精确与近似的相对统一.教学重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.教材分析本节课注重从学生已有的基础(一元二次方程及其根的求法,一元二次函数及其图象与性质)出发,从具体(一元二次方程的根与对应的一元二次函数的图象与轴的交点的横坐标之间的关系)到一般,揭示方程的根与对应函数零点之间的关系.在此基础上,再介绍求函数零点的近似值的“二分法”,并在总结“用二分法求函数零点的步骤”中渗透算法的思想,为学生后续学习算法内容埋下伏笔.教科书不仅希望学生在数学知识与运用信息技术的能力上有所收获,而且希望学生感受到数学文化方面的熏陶,所以在“阅读与思考”中,介绍古今中外数学家在方程求解中所取得的成就,特别是我国古代数学家对数学发展与人类文明的贡献.学情分析通过本节课的学习,使学生在知识上学会用“二分法”求方程的近似解,从中体会函数与方程之间的联系;在求解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难,所以希望学生具备恰当地使用信息技术工具解决这一问题的能力.这就要求学生除了能熟练地运用计算器演算以外,还要能借助几何画板4.06中文版中的“绘制新函数”功能画出基本初等函数的图象,掌握Microsoft Excel软件一些基本的操作.教学媒体分析多媒体微机室、Authorware7.02中文版、几何画板4.06中文版、Microsoft Excel、QBASIC语言应用程序教学方法动手操作、分组讨论、合作交流、课后实践教学环节设计流程图教学设计理念1.构建共同基础,提供发展平台;2.提供多样解法,适应个性选择;3.倡导积极主动、勇于探索的学习方式;4.注重提高学生的数学思维能力;5.发展学生的数学应用意识;6.与时俱进地认识“双基”;7.强调本质,注意适度形式化;8.体现数学的文化价值;9.注重信息技术与数学课程的整合;10.建立合理、科学的评价体系.教学过程与操作设计:环节教学内容设计师生双边互动信息技术应用中外历史上的方程求解在人类用智慧架设的无数座从未知通向已知的金桥中,方程的求解是其中璀璨的一座.虽然今天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月.由于实际问题的需要,我们经常需要寻求函数的零点(即的根),对于为一次或二次函数,我们有熟知的公式解法(二次时,称为求根公式).我国古代数学家已比较系统地解决了部分方程求解的问题,在《九章算术》,北宋数学家贾宪的《黄帝九章算法细草》,南宋数学家秦九韶的《数书九章》中均有记载.在十六世纪,已找到了三次和四次函数的求根公式,人们曾经希望得到一般的五次以上代数方程的根式解,但经过长期的努力仍无结果.1824年,挪威年轻数学家阿贝尔(N. H. Abel,1802-1829)成功地证明了五次以上一般方程没有根式解.1828年,法国天才数学家伽罗瓦(E.Galois,1811-1832)巧妙而简洁地证明了存在不能用开方运算求解的具体方程.人们认识到高于4次的代数方程不存在求根公式,因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中十分重要的课题.师:介绍中外历史上的方程求解问题,从高次代数方程解的探索历程引导学生认识引入二分法的意义,从而引入课题.生:感受到数学文化方面的熏陶,最大限度的调动学生的学习兴趣,提高学习的积极性和主动性.Authorware7.02课件展示这节课就让我们来共同学习一下§3.1.2《用二分法求方程的近似解》想一想我们已经知道,函数在区间(2,3)内有零点,且<0,>0.进一步的问题是,如何找出这个零点?做一做第一步:取区间(2,3)的中点2.5,用计算器算得(2.5)≈-0.084.因为(2.5)·<0,所以零点在区间(2.5,3)内.第二步:取区间(2.5,3)的中点 2.75,用计算器算得(2.75)≈0.512. 因为(2.5)·(2.75)<0,所以零点在区间(2.5,2.75)内.结论:由于(2,3) (2.5,3) (2.5,2.75),所以零点所在的范围确实越来越小了.如果重复上述步骤,那么零点所在的范围会越来越小(见下表和图)师:一个直观的想法是:如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.为了方便,下面我们通过“取中点”的方法逐步缩小零点所在的范围.师:引导学生分析理解求区间,的中点的方法.生:用计算器算得(2.5)≈-0.084(2.75)≈0.512几何画板4.06中文版演示计算结果师:这样,在一定精确度下,我们可以在有限次重复相同步骤后,将所得的零点所在区间内的任意一点作为函数零点的近似值,特别地,可以将区间端点作为零点的近似值.例如,当精确度为0.01时,由于|2.5390625-2.53125|=0.0078125<0.01,所以,我们可以将=2.53125作为函数零点的近似值,也即方程根的近似值.Authorware7.02课件展示议一议:你能说出二分法的意义及用二分法求函数零点近似值的步骤吗?1.二分法的意义对于在区间[,]上连续不断且满足·<0的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法(bisection).2.给定精确度,用二分法求函数零点近似值的步骤如下:(1)确定区间,,验证·<0,给定精确度;(2)求区间,的中点;(3)计算:1若=,则就是函数的零点;2若·<0,则令=(此时零点);3若·<0,则令=(此时零点);(4)判断是否达到精确度;即若<,则得到零点近似值(或);否则重复步骤2-4.结论: 由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解.思考:为什么由<,便可判断零点的近似值为(或)?师:阐述二分法的逼近原理,引导学生理解二分法的算法思想,明确二分法求函数近似零点的具体步骤.师:分析条件“·<0”、“精确度”、“区间中点”及“<”的意义.生:结合求函数在区间(2,3)内的零点,理解二分法的算法思想与计算原理.Authorware7.02课件展示由于计算量较大,而且是重复相同的步骤,因此,我们可以借助几何画板4.06中文版软件和Microsoft Excel软件来完成计算.我们还是以求函数的零点为例学生在教师引导下操作师:第一步:打开几何画板4.06中文版软件.第二步:点击工具栏中的“图表”,选中“绘制新函数(Ctrl+G)”,或在工作区中点击右键,选中“绘制新函数”.第三步:在弹出的对话框中输入,点击“确定”.几何画板4.06中文版环节教学内容设计师生双边互动信息技术应用第四步:观察函数图象,确定零点所在的大致区间为(2,3).几何画板4.06中文版第五步:打开Microsoft Excel软件第六步: 分别在单元格A1、B1、C1输入、、精确度,在C2输入0.5,分别在A2、A3输入2、2.5,选中这两个单元格后,按住鼠标左键并向下方拖动“填充柄”到单元格内出现填充值4时为止,完成自动填充.Microsoft Excel软件环节教学内容设计师生双边互动信息技术应用第七步: 在B2单元格点击“粘贴函数”,输入函数值公式“=lnA2+2*A2-6”,得到与A2相应的函数值.第八步:然后双击(或拖动)B2的“填充柄”,得到与第一列相应的函数值.生:观察所得函数值,所以零点在区间(2.5,3)内.第九步:重复上述操作:将A1、B1、C1复制到A7、B7、C7,把精确度设为0.25,在A8、B9分别输入2.5、2.75,选中这两个单元格后,按住鼠标左键并向下方拖动“填充柄”到单元格内出现填充值3.25时为止,完成自动填充.复制B2到B8,得到与A8相应的函数值,然后双击(或拖动)B8的“填充柄”,得到与第一列相应的函数值.生:观察所得函数值,所以零点在区间(2.5,2.75)内.Microsoft Excel软件环节教学内容设计师生双边互动信息技术应用结论:借助信息技术求方程近似解(函数零点)的步骤如下:1.利用函数性质或借助计算机、计算器画出函数图象,确定函数零点所在的大致区间;2.利用然后用Microsoft Excel软件逐步计算解答.第十步:重复上述过程,将精确度设为上次操作的一半,直到小于0.01为止,特别地,这时可以将区间端点作为零点的近似值.生:观察所得函数值,并且精确度为0.0078125<0.01,所以零点在区间(2.53125 ,2.5390625)内,*=2.53125可以为函数的零点.生:认真思考,运用所学知识寻求确定方程近似解的方法,并进行讨论、交流、归纳、概括、评析形成结论.Microsoft Excel软件例题:借助计算器或计算机用二分法求方程的近似解(精确度0.1) 解:(略). 打开几何画板打开Excel尝试练习:1. 借助计算器或计算机,用二分法求函数的零点(精确度0.1)2. 借助计算器或计算机,用二分法求方程的近似值(精确度0.01)师:首先利用几何画板4.06中文版软件画出函数图象,确定函数零点所在的大致区间,然后用Microsoft Excel软件逐步计算解答.生:独立完成解答,并进行交流、讨论、评析.Authorware7.02课件展示几何画板4.06中文版Microsoft Excel软件我们也可以借助QBASIC语言编写一定的程序来求方程的近似解.(精确到0.01)程序框图:师:介绍学生感兴趣的计算机编程问题,渗透算法的思想,为学生后续学习算法内容埋下伏笔.Authorware7.02课件展示环节教学内容设计师生双边互动信息技术应用程序语句:INPUT “,,=”;,,DO*=(+)/2=LOG()+2*-6=LOG(*)+2**-6IF *>0 THEN=*ELSE=*END IFLOOP UNTIL ABS(-) < OR =0PRINTEND打开QBASIC文件师:输入零点的大致区间和精确度,执行程序,检验程序运行结果的正确性.QBASIC语言应用程序1.有兴趣的同学可以自学QBASIC语言或其他计算机语言,编写程序,来检验做题结果正确与否.2.查找有关资料或利用Internet查找有关高次代数方程的解的研究史料,追寻阿贝尔(Abel)和伽罗瓦(Galois),增强探索精神,培养创新意识.3.谈谈通过学习求函数的零点和求方程的近似解,对数学有了哪些新的认识? 将你这节课的收获与感受写成一篇小报告或小论文的形式,发表在学校的数学论坛上.师:继续激发学生学习数学的热情;感受数学文化方面的熏陶;充分地利用学校资源进行后续学习和交流.Authorware7.02课件展示。
高一数学教案:用二分法求方程的近似解【】欢迎来到查字典数学网高一数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:高一数学教案:用二分法求方程的近似解希望能为您的提供到帮助。
本文题目:高一数学教案:用二分法求方程的近似解学习目标1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.旧知提示(预习教材P89~ P91,找出疑惑之处)复习1:什么叫零点?零点的等价性?零点存在性定理?对于函数,我们把使的实数x叫做函数的零点.方程有实数根函数的图象与x轴函数.如果函数在区间上的图象是连续不断的一条曲线,并且有,那么,函数在区间内有零点.复习2:一元二次方程求根公式? 三次方程? 四次方程?合作探究探究:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好.解法:第一次,两端各放个球,低的那一端一定有重球;第二次,两端各放个球,低的那一端一定有重球;第三次,两端各放个球,如果平衡,剩下的就是重球,否则,低的就是重球.思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求的零点所在区间?如何找出这个零点?新知:二分法的思想及步骤对于在区间上连续不断且0的函数,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).反思:给定精度,用二分法求函数的零点近似值的步骤如何呢?①确定区间,验证,给定精度②求区间的中点;[高考资源网]③计算:若,则就是函数的零点; 若,则令(此时零点); 若,则令(此时零点);④判断是否达到精度即若,则得到零点零点值a(或b);否则重复步骤②~④.典型例题例1 借助计算器或计算机,利用二分法求方程的近似解. 练1. 求方程的解的个数及其大致所在区间.练2.求函数的一个正数零点(精确到)零点所在区间中点函数值符号区间长度练3. 用二分法求的近似值.课堂小结①二分法的概念;②二分法步骤;③二分法思想.知识拓展高次多项式方程公式解的探索史料在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点近似解的方法,这是一个在计算数学中十分重要的课题.学习评价1. 若函数在区间上为减函数,则在上( ).A. 至少有一个零点B. 只有一个零点C. 没有零点D. 至多有一个零点2. 下列函数图象与轴均有交点,其中不能用二分法求函数零点近似值的是().3. 函数的零点所在区间为( ).A. B. C. D.4. 用二分法求方程在区间[2,3]内的实根,由计算器可算得,,,那么下一个有根区间为.课后作业1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为()A.-1B.0C.3D.不确定2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,则f(x)=0在[a,b]内()A.至少有一实数根B.至多有一实数根C.没有实数根D.有惟一实数根3.设函数f(x)=13x-lnx(x0)则y=f(x)()A.在区间1e,1,(1,e)内均有零点B.在区间1e,1,(1,e)内均无零点C.在区间1e,1内有零点;在区间(1,e)内无零点[高考资源网]D.在区间1e,1内无零点,在区间(1,e)内有零点4.函数f(x)=ex+x-2的零点所在的一个区间是()A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)5.若方程x2-3x+mx+m=0的两根均在(0,+)内,则m的取值范围是()A.m1B.01 D.06.函数f(x)=(x-1)ln(x-2)x-3的零点有()A.0个B.1个C.2个D.3个7.函数y=3x-1x2的一个零点是()A.-1B.1C.(-1,0)D.(1,0)8.函数f(x)=ax2+bx+c,若f(1)0,f(2)0,则f(x)在(1,2)上零点的个数为( )A.至多有一个B.有一个或两个C.有且仅有一个D.一个也没有9.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为()x -1 0 1 2 3ex 0.37 1 2.72 7.39 20.09唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
用二分法求方程的近似解一、内容与内容解析1.内容利用二分法求方程的近似解.2.内容解析对于区间[a,b]上的连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,进而得到近似解的方法叫做二分法.二分法是求方程近似解的常用方法,这种方法由“区间”端点对应的数,研究“点”对应的具体的数:通过不断缩小“区间”,由“区间”左端点对应的单调递增数列,以及右端点对应的单调递减数列,不断逼近这一系列“区间”组成的区间套中的具体点对应的数.二分法的本质仍然是通过数的运算研究问题.二分法通过不断缩小函数零点所在区间求方程的近似解,体现出用函数观点处理数学问题的思想和逐渐逼近的极限思想.从高中数学角度,二分法体现出函数在数学内部的应用.从高等数学角度,二分法所采用的使实数区间向某一个点收敛的方法,是证明有关连续性结论的基本思路.从函数零点与方程的解的关系,到函数零点存在定理,再到利用二分法求方程的近似解,学生经历了一个完整的利用函数研究问题和解决问题的过程.从中不但能体会到函数的工具性,还获得了从个别问题的解决过程提炼出一类问题的解决方法的经验,这对提高学生分析问题和解决问题能力,培养学生理性精神有一定的帮助.通过求具体方程的近似解了解二分法并总结其实施步骤,体现了由具体到一般的认知过程;在求方程的近似解的过程中,需要重复计算区间中点,以及中点的函数值,涉及到的较复杂的数据.因此本节课主要发展学生的数学抽象和数据处理核心素养.教学重点:用二分法求函数f(x)的零点的近似值的一般步骤.二、目标与目标解析1.目标(1)通过求具体方程的近似解了解二分法,体会函数在解方程方面的应用,渗透极限思想.(2)通过总结二分法的实施步骤,使学生经历由具体到一般的认知过程,发展数学抽象核心素养,提高分析问题和解决问题的能力.(3)根据具体函数图象,能够借助信息技术用二分法求方程的近似解,发展数据处理核心素养.2.目标解析达成上述目标的标志:(1)能够根据函数零点存在定理想到通过一分为二的逐渐缩小零点所在区间的办法,来求方程lnx+2x-6=0的近似解,知道二分法是求方程近似解的常用方法.(2)能够根据求方程lnx+2x-6=0的近似解的过程,提炼出利用二分法求函数f(x)的零点的近似值的一般步骤.(3)能够借助信息技术,用二分法求具体方程的近似解.三、教学问题诊断分析(1)学生已经学习了零点存在定理,容易想到通过逐渐缩小函数零点所在区间的办法来求方程的近似解,对二分法的理解不存在困难.(2)学生还没有算法的基本思想,对于求近似值的问题也接触较少,因此在总结用二分法求函数零点近似值的一般步骤时,得出步骤3中的“令b=c”、“令a=c”和步骤4中的“若|a-b|<ε,则得到零点的近似值为a或b”可能会有些困难.因此本节课的教学难点为:根据求方程lnx+2x-6=0的近似解的过程,提炼出利用二分法求函数f(x)的零点x0的近似值的一般步骤.破解这个难点的关键是,让学生用自己的语言准确描述求方程lnx+2x-6=0近似解的每一步,理解精确度的含义,搞清楚其中循环的部分,明确循环结束的条件.(3)在利用二分法求方程近似解的过程中,数值计算较为复杂,这对获得给定精确度的近似值增加了困难.因此,本节课的另一个教学难点为:利用二分法求方程在给定精确度下的近似解.要破解这个难点,需要恰当的使用信息工具.四、教学支持条件分析本节课的教学,需要利用GGB软件绘制函数图象,并进行函数值的计算.五、教学过程设计(一)引入问题、探讨方法引言:通过前一节课的学习,我们根据函数零点存在定理和函数单调性可以确定方程实数解的个数,今天进一步研究利用函数求方程的近似解.问题1:我们已经知道函数f(x)=lnx+2x-6在区间(2,3)内存在一个零点,如何求出这个零点?追问1:你能求出函数f(x)=lnx+2x-6零点的精确值吗?为什么?师生活动:学生根据经验给出判断,教师补充.预设的答案:学生的回答是否定的,原因是方程lnx+2x-6=0没有求根公式.教师补充:大多数方程都不能像一元二次方程那样用公式求出精确解,在实际问题中,往往只需求出满足一定精确度的近似解.(“精确度为ε”的含义是:“近似值与精确值之差(即误差)不大于ε”)追问2:当精确度为0.5时,你能得到一个符合要求的零点的近似值吗?师生活动:学生思考和回答,教师启发学生说明理由,给出区间的中点的定义.预设的答案:零点在区间(2,3)内,数轴上2和3之间的距离为1,它们的中点与零点的距离一定小于0.5,因此精确度为0.5时,可以取2.5作为一个零点的近似值.教师指出:一般地,称为区间(a,b)的中点.追问3:当精确度为0.5时,3可以看做零点的一个近似值吗?为什么?师生活动:学生思考和回答,教师引导和补充.预设的答案:由计算工具算得f(2.5)=-0.084,由f(2.5)f(3)<0可知,零点在区间(2.5,3)内,由数轴上2.5和3之间的距离为0.5可知,零点和3之间的距离小于0.5,因此,3可以看做零点的一个近似值.追问4:根据追问2和3的回答,当精确度缩小到0.01时,为了得到函数零点的近似解,我们至少需要将零点所在区间缩小到什么程度?你将采取怎样的办法来逐步缩小零点所在区间?师生活动:学生思考和回答,教师引导和补充.预设的答案:当精确度为0.01时,长度小于0.01的零点所在区间内的任意实数都可以是零点的近似值,为此至少需要将存在零点的区间长度缩小到小于0.01.根据追问2和3的回答,可以通过重复计算区间中点和区间端点函数值乘积的符号,将零点所在区间逐次减半,达到缩小零点所在区间的目的.教师总结:通过以上问题的思考和回答可知,如果能将零点所在的范围尽量缩小,那么在一定精确度的要求下,就可以得到符合要求的零点的近似值.为了方便,可以通过取区间中点的方法,逐步缩小零点所在的范围.具体地,就是通过重复计算区间中点和区间端点函数值乘积的符号,将零点所在区间逐次减半地缩小到长度小于精确度的范围。
《用二分法求方程的近似解》教学设计1.探索用二分法求方程近似解的思路并会画程序框图,渗透极限思想.2.能借助计算工具用二分法求方程近似解.3.通过提炼二分法的一般步骤,使学生经历由特殊到一般的归纳过程,了解二分法求方程近似解具有一般性,让学生感受算法的思想,并提升数学抽象核心素养. 教学重点:用二分法求方程近似解的思路与步骤.教学难点:用二分法求方程近似解的算法.PPT 课件,计算器.(一)整体感知,明确任务引导语:因为大多数方程都没有求根公式,所以这些方程都不能像一元二次方程那样用公式求出精确解.而在实际问题中,往往只需求出满足一定精确度的近似解.通过前一节课的学习,我们已经知道,求方程()0f x =的实数解,就是确定函数()y f x =的零点.根据函数零点存在定理并结合函数的单调性等性质,可以确定在某一区间内方程实数解的个数.进一步的问题是,如何求出这些实数解?本节课我们将研究这个问题.设计意图:确定了方程有实数解和解的个数后,自然会思考怎么求出这些实数解.引起学生思考,明确本节课要研究的内容.(二)新知探究1.探索方法,解决问题问题1:我们已经知道,函数()ln 26f x x x =+-在区间(2,3)内存在一个零点,其准确值无法求出,那么如何求出这个零点的近似值呢?师生活动:学生讨论交流,教师引导学生:将零点所在的范围尽量缩小.图1设计意图:学生通过重复相同的步骤,初步体会二分法的具体过程,为提炼二分法的一般步骤作铺垫.另外,通过具体的计算,列表展示函数值的变化趋势,结合图象的变化趋势,数形结合地使学生感受逼近和算法的思想.追问4:根据填好的表格,请你给出函数()ln26f x x x=+-在精确度为0.01的零点的近似值.师生活动:学生回答,教师予以补充完善.预设的答案:因为2.539 062 5 2.531 25.007 812 50.01=-,所以区间(2.531 25,2.5390<062 5)内任意一点都可以作为零点的近似值.为了方便,我们可以把区间的一个端点作为零点的近似值,所以可以将x=2.531 25作为函数()ln26=+-零点的近似值,也即方程f x x x+-=的近似值.x xln260设计意图:通过求具体函数()ln26f x x x=+-的零点在精确度0.01下的近似值,再次明确精确度的含义.在精确度ε限制下的近似值为所在满足精确度要求的区间中的任意值,即近似值有无数个,所以可以任取一个作为近似值.2.提炼方法,规范步骤问题2:像上面这种求函数()ln26f x x x=+-的零点近似值的方法,它的总体思路是什么?这种方法适用于那些函数?师生活动:学生交流后回答,教师予以补充完善.这里要注意的是,虽然我们是通过+-=这个不能用公式求解的方程,探索出了二分法,但并不意味着二分法只适用x xln260于不能用公式求零点的函数.学生可能会在这里产生惯性思维,教师要注意引导.预设的答案:根据精确度的定义,精确度是指近似值x *与其准确值x 的接近程度.近似值x *的误差不超过某个数ε,即*x x ε-<,就说它的精确度是ε.所以当a b ε-<时,零点x 0所在的区间[a ,b ]中任意一个值与x 0的误差都不超过a b -,当然也就不超过ε.所以区间[a ,b ]中任意一个值都是零点x 0满足精确度ε的近似值.设计意图:使学生进一步理解精确度的含义.3.初步应用,深化理解例2 借助信息技术,用二分法求方程237x x +=的近似解(精确度为0.1).师生活动:先由学生说出解决问题的思路,然后师生共同利用信息技术解答.预设的答案:解:原方程即2370x x +-=,令()237x f x x =+-,用信息技术画出函数()y f x =的图象(图2),并列出它的对应值表(表3).表3x0 1 2 3 4 5 6 7 8 y -6 -2 3 10 21 40 75 142 273观察图2或表3,可知()()120f f <,说明该函数在区间(1,2)内存在零点x 0.取区间(1,2)的中点1 1.5x =,用信息技术算得()1.50.33f ≈.因为()()1 1.50f f <,所以x 0∈(1,1.5). 再取区间(1,1.5)的中点2 1.25x =,用信息技术算得()1.250.87f ≈-.因为()()1.25 1.50f f <,所以x 0∈(1.25,1.5).同理可得,x 0∈(1.375,1.5),x 0∈(1.375,1.437 5).由于11.437 51.02.3 750.650-=<,所以,原方程的近似解可取为1.375.设计意图:通过例题实践利用二分法求函数零点近似值的步骤,学会用二分法求方程的近似解.(三)归纳小结,布置作业图2问题4:回顾本节课中用二分法求函数零点的近似值的一般步骤,你能体会到怎样的数学思想和方法?师生活动:学生讨论交流后回答,教师予以补充.预设的答案:二分法通过不断缩小函数零点所在区间求函数零点的近似值,体现了逐渐逼近的极限思想.在逐渐逼近的过程中,重复相同的步骤,这些相同的步骤可以抽象出来,体现了算法思想.设计意图:回顾本节课所学二分法的一般步骤,让学生体会其中蕴含的数学思想.问题5:通过本节课的学习我们可以看到,用二分法求方程的近似解,计算量较大,而且是重复相同的步骤.因此,可以通过设计一定的计算程序,借助信息技术完成计算.图3就是表示二分法求方程近似解过程的程序框图.有兴趣的同学,可以在此基础上用有关算法语言编写程序,利用信息技术求方程的近似解.图3师生活动:学生课后自行完成.设计意图:拓展学生思路,鼓励学生利用算法语言编程解决求方程近似解的问题.问题6:阅读教科书“阅读与思考—中外历史上的方程求解”,了解方程求解的发展过程是怎样的?二分法对于方程求解的重要性是什么?师生活动:学生课后自行完成.设计意图:让学生进一步了解二分法对于方程求解的重要意义,激发学生学习兴趣,提升学生数学人文素养.作业布置:教科书习题.(四)目标检测设计1.借助信息技术,用二分法求函数()32=++-在区间(0,1)内零点的1.10.9 1.4f x x x x近似值(精确度为0.1).设计意图:考查用二分法求函数零近似值的能力.2.借助信息技术,用二分法求方程3lg=-在区间(2,3)内的近似解(精确度为0.1).x x设计意图:考查用用二分法求方程解的近似值的能力.参考答案:1.0.625.2.2.625.。
课题:用二分法求方程的近似解(2)
课型:新授课
教学目标
继续了解函数的零点与对应方程根的联系,理解在函数的零点两侧函数值乘积小于0这一结论的实质;通过探究、思考,培养学生理性思维能力以及分析问题、解决问题的能力。
教学重点
“在函数的零点两侧函数值乘积小于0”的理解.
教学难点
“在函数的零点两侧函数值乘积小于0”的理解.
教具准备
多媒体课件、投影仪.
教学过程
一、创设情景,引入新课
师:观察二次函数f(x)=x2-2x-3的图象(如下图),我们发现函数f(x)=x2-2x-3在区间[-2,1]上有零点.计算f(-2)与f(1)的乘积,你能发现这个乘积有什么特点?在区间[2,4]上是否也具有这种特点呢?
引导学生探究,可以发现,在区间[-2,1]的端点上,f(-2)>0,
f(1)<0,即f(-2)·f(1)<0,函数f(x)=x2-2x-3在区间(-2,1)内有零点x=-1,它是方程x2-2x-3=0的一个根.同样,在区间[2,4]的端点上,f(2)<0,f (4)>0,即f(2)·f(4)<0,函数f(x)=x2-2x-3在(2,4)内有零点x=3,它是方程x2-2x-3=0的另一个根.
我们能从二次函数的图象看到零点的性质:
1.二次函数的图象是连续的,当它通过零点时(不是二重零点),函数值变号.
例如,函数y=x2-x-6的图象在零点-2的左边时,函数值取正号,当它通过第一个零点-2时,函数值由正变负,再通过第二个零点3时,函数值又由负变正.
2.相邻两个零点之间的所有函数值保持同号.
师:对任意函数,结论也成立吗?同学们可以任意画几个函数图象,观察图象,看看是否得出同样的结论.
二、讲解新课
1.零点的性质
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)= 0,这个c也就是方程f(x)=0的根.
求方程f(x)=0的实数根,就是确定函数y=f(x)的零点.一般地,对于不能用公式法求根的方程f(x)=0来说,我们可以将它与函数y=f(x)联系起来,利用函数的性质找出零点,从而求出方程的根.
2.应用举例
【例1】 教科书P 88例1.
本例是考查函数零点的个数.通过它要让学生认识到函数的图象及其基本性质(特别是单调性)在确定函数零点中的重要作用.
(1)函数f (x )=ln x +2x -6的图象可以让学生利用计算器或计算机画出.通过观察教科书上的图3.1-3,发现函数的图象与x 轴有一个交点,从而对函数有一个零点形成直观的认识.
(2)教科书上的表3-1,可以让学生用计算器或计算机得出,使学生通过动手实践获得对表3-1的认同感.通过观察表3-1,结合图象3.1-3,不难得出函数的一个零点在区间(2,
3)内.
(3)要说明函数仅有一个零点,除上述理由外,还必须说明函数在其定义域内是单调的.可以由增(减)函数的定义证明函数在(0,+∞)上是增函数,也可以由g (x )=ln x 、 h (x )=2x -6在(0,+∞)上是增函数,说明函数f (x )=g (x )+h (x )在(0,+∞)上是增函数.
【例2】 已知函数f (x )=ax 2+bx +1具有以下性质:
①对任意实数x 1≠x 2,且f (x 1)=f (x 2)时,满足x 1+x 2=2;
②对任意x 1、x 2∈(1,+∞),总有f (221x x +)>2
)()(21x f x f +. 则方程ax 2+bx +1=0根的情况是 ( )
A.无实数根
B.有两个不等正根
C.有两个异号实根
D.有两个相等正根
方法探究:(1)本题由条件①,知函数f (x )的对称轴为x =1;由条件②,知函数f (x )是凸函数,即a <0;再由函数f (x )的表达式,知f (x )的图象过点(0,1).根据这三点,可画出函数f (x )的草图,如下图,发现函数f (x )与x 轴交点的位置,可知f (x )=0有两个异号实根,故应选C.
(2)由条件②,知函数f (x )的图象开口向下,即a <0.又由x 1x 2=a
1<0,可知f (x )=0有两个异号实根,故应选C.
方法技巧:解析(2)的求解过程明显比解析(1)简捷,但却不如解析(1)直观,用数形结合思想解题可以使问题变得直观清晰,便于理解.但不难发现,如果解析(1)中的三个函数语言之中有1个没有转化(或错误地转化)为图形语言,那么本题就可能会错选.用数形结合思想解题,要注意由数到形,由形到数转化过程的等价性.
【例3】 研究方程|x 2-2x -3|=a (a ≥0)的不同实根的个数.
方法探究:纯粹从解方程角度来考虑,必须研究两个方程,讨论相当麻烦.从函数图象角
度分析,只需研究函数y =|x 2-2x -3|与y =a 的图象的交点的个数.
解:设y =|x 2-2x -3|和y =a ,利用Excel 、图形计算器或其他画图软件,分别作出这两
个函数的图象,它们的交点的个数,即为所给方程实根的个数.如下图,当a =0或a >4时,有两个实根;当a =4时,有三个实根;当0<a <4时,有四个实根.
方法技巧:有关实根个数的题目,通常都采用数形结合思想.做这类题目,必须遵循两个步骤:一是构造两个熟悉的函数,二是画出图象,关键点画图要准确.
三、课堂练习
教科书P88练习题1.(1)(2)
四、课堂小结
1.本节学习的数学知识:
零点的性质:在函数的零点两侧函数值乘积小于0;零点的确定.
2.本节学习的数学方法:
归纳的思想、函数与方程思想、数形结合思想.
五、布置作业
教科书P92习题3.1 1、2、3.
补充题:
1.定义在区间[-c,c]上的奇函数f(x)的图象如下图所示,令g(x)=af(x)+b,则下列关于函数g(x)的叙述正确的是
A.若a<0,则函数g(x)的图象关于原点对称
B.若a=-1,-2<b<0,则函数g(x)有大于2的零点
C.若a≠0,b=2,则函数g(x)有两个零点
D.若a≥1,b<2,则函数g(x)有三个零点
2.方程x2-2mx+m2-1=0的两根都在(-2,4)内,则实数m的取值范围为________.
3.已知二次函数f(x)=x2+2(p-2)x+3p,若在区间[0,1]内至少存在一个实数c,使得f(c)>0,则实数p的取值范围是________.
课后记:。