相似三角形的判定与性质知识梳理及例题分析
- 格式:doc
- 大小:307.00 KB
- 文档页数:7
相似三角形及其判定一、知识导航1、相似三角形定义2、相似三角形判定二、典例精讲:精讲一、相似三角形定义:定义:对应角相等、对应边成比例的三角形,叫做相似三角形.相似用符号“S”表示,读作“相似于”,相似三角形对应边的比值叫做相似比(或相似系数).①记两个三角形相似时,和记两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上②全等是特殊的相似,相似比是1:1.全等要求形状相同与大小相等,而相似只是形状相同③由相似的定义,得相似三角形对应角相等,对应边成比例.④相似三角形有传递性:若AABC s AABC,AABC s AABC,则AABC AABC111222222333111333精讲二、相似三角形的判定:1、预备定理:平行于三角形一边的直线与另外两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、相似三角形的判定定理★判定定理1、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.例1、(1)如图,B,C,D三点共线,且AB丄BD,DE丄BD,AC丄CE.求证:A ABC s A CDE.D(2)如图B,C,D三点共线,且ZB=ZD=ZACE,求证:AABC s ACDE.变式:1、如图,A ABC中,Z ACB=60。
,点P是A ABC内一点,使得Z APB=Z BPC=Z CPA,求证:AAPC s ACPB.2、已知A PQR是等边三角形,ZAPB=120。
,指出图中的相似三角形并证明.例2、(1)已知:如图,A ABC的高AD,BE相交于点F,求证:AF-FD=BF-FE.⑵如图,已知在RtAABC中,ZACB=90°,CD是RtAABC的高.求证:CD2=AD-BD;BC2=AB-BD;AC2二AD-AB.变式:如图,已知在RtAABC中,ZACB=90°,CD是RtAABC的高.若E是AC的中点,ED的延长线与CB的延长线相交于点F.求证:DF2=BF-CF.★判定定理2、如果一个三角形的两边与另一个三角形的两边对应成比例,且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.例3、(1)如图,已知AD-AB二AE-AC.贝y:①AADE s AACB;②AAEB s AADC正确的是;相似依据是.(2)如图,四边形ABEG、GEFH、HFCD都是边长为2的正方形.①求证:AAEF s ACEA;②求ZAFB+ZACB的值.(3)如图,A ABC是等边三角形,D为CB延长线上一点,E为BC延长线上点.①当BD、BC和CE满足什么条件时,A ADB s A EAC?②当A ADB s A EAC时,求Z DAE的度数.A变式:1、如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①②③④四个三角形.OA-OC二OB-OD,则①②③④哪些对应相似,请写出.2、如图,已知Z BAE=Z CAD,AB=18,AC=48,AE=15,AD=40.3、如图,在A ABC和A ADB中,Z ABC=Z ADB=90。
相似三角形的性质【知识梳理】判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(简述为:两角对应相等,两三角形相似)判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(简述为:两边对应成比例且夹角相等,两三角形相似)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
(简述为:三边对应成比例,两三角形相似)【例题精讲】1、如图,∠ABD=∠C,AD=2, AC=8,求AB。
2、如图,在四边形ABCD中,∠B=∠ACD,AB=6,BC=4,AC=5,CD=172,求AD的长。
3、一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米,此时一棵水衫树的影长为10.5米,这棵水衫树高为( )A.7.5米 B.8米 C.14.7米 D.15.75米4、如图是一面镜子,则有__ _∽__ __。
(第4题) (第5题)5、如图,某测量工作人员眼睛A 与标杆顶端F 、电视塔顶端E 在同一直线上,已知此人眼睛距地面1.6米,标杆高为3.2米,且BC =1米,CD =5米,求电视塔的高ED 。
A 【夯实基础】1.如图所示,矩形ABCD ,E 、F 分别为CD 、BC 上的点,且∠AEF=90°,则一定有( ) A .△ADE ∽△ECF B .△AEF ∽△ABF C .△EFC ∽△AFE D .△ADE ∽△AEF2.如图,已知ABC ∆,P 是边AB 上的一点,连结CP ,以下条件中不能判定ABC ACP ∆∆~的是( ) A 、B ACP ∠=∠ B 、ACB APC ∠=∠ C 、AC 2=AP •AB D 、BCABCP AC =APBC3.已知:如图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出ABP∆与ECP∆相似的是()A、EPCAPB∠=∠ B、90=∠APE C、P是BC的中点 D、BP:BC=2:34.ABC∆中,D是AB上一个固定点,E是AC上的一个动点.若使ADE∆与ABC∆相似,则这样的点E有() A、1个 B、2个 C、3个 D、很多5.如图,若点D为ABC∆中AB边上一点,且ACDABC∠=∠,AD=2cm,BC=4cm,则AC的长为()A、12cmB、22cmC、3cmD、2cm6.下列说法①所有等腰三角形都相似;②有一个底角相等的两个等腰三角形相似;③有一个角相等的两个等腰三角形相似;④有一个角为60°的两个直角三角形相似,其中正确的说法是()A.②,④ B.①,③ C.①,②,④ D.②,③,④7.△ABC中,D是AB上一固定点,E是AC上的一个动点,若使△ADE与△ABC相似,则这样的点E有()。
相似三角形知识点及典型例题知识点归纳:1、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
简述为:两角对应相等,两三角形相似。
(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两三角形相似。
(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
简述为:三边对应成比例,两三角形相似。
(6)判定直角三角形相似的方法:①以上各种判定均适用。
②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下: (1)(AD)2=BD·DC, (2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。
注:由上述射影定理还可以证明勾股定理。
即(AB)2+(AC)2=(BC)2。
典型例题:例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE 2=EF·EG证明:如图,连结EC ,∵AB =AC ,AD ⊥BC ,∴∠ABC =∠ACB ,AD 垂直平分BC∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2,即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CEEF∴EC 2=EG· EF ,故EB 2=EF·EG 【解题技巧点拨】本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。
一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等A 'B 'C 'CB A中考要求知识点睛相似三角形的性质及判定2.相似三角形的对应边成比例ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AM k A B B C A C A M ====''''''''(k 为相似比).图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AH k A B B C A C A H ====''''''''(k 为相似比).图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk===(k 为相似比).应用比例的等比性质有A 'B 'C 'CB AM 'MA 'B 'C 'C BAH 'H AB C C 'B 'A 'D 'D A 'B 'C B AAB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++. 图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AH k A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法欲证AB BCBE BF =,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△.A 'B 'C 'CB AH 'H AB C C 'B 'A '欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个顶点.因此只需证ABC DEF △∽△. 3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
相似三角形中考考点归纳与典型例题相似三角形是初中数学中常出现的重要概念,它是几何学中研究两个三角形之间形状关系的一个重要内容。
掌握相似三角形的性质和应用是解决几何问题的基础。
相似三角形的重要性质:1. 定义:如果两个三角形的对应角相等,对应边成比例,则它们是相似三角形。
记作ΔABC ~ ΔDEF。
其中A、B、C是ΔABC的顶点,D、E、F是ΔDEF的顶点。
2. 判定定理:(1) AA相似定理:如果两个三角形的两个对应角相等,则它们是相似的。
(2) AAA相似定理:如果两个三角形的三个对应角相等,则它们是相似的。
3. 边比例关系:相似三角形的对应边成比例。
即对于ΔABC ~ΔDEF,有AB/DE = BC/EF = AC/DF。
4. 高比例关系:相似三角形的高线成比例。
即对于ΔABC ~ΔDEF,有h1/h2 = AB/DE = BC/EF = AC/DF。
5. 相似三角形的性质:(1) 对应角相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。
(2) 对应边成比例,即AB/DE = BC/EF = AC/DF。
(3) 相似三角形的顶角相等,边比例相等,它们的面积比例也相等。
(4) 相似三角形的高线间成比例。
相似三角形的典型例题:例题1:如图,在直角三角形ABC中,∠B = 90°,BM是AC的中线,求比值AB/BC。
解:由与直角三角形的垂直关系可知∠A = ∠CBM,∠C = ∠ABM。
所以∠ABC ~ ∠CBM。
根据相似三角形的性质可得AB/BC = CB/BM = 2/1,即AB/BC = 2。
例题2:如图,上底AE = 4cm,下底BC = 8cm,连结CD,且CD = AE,点F是AE的中点,连接BF,求比值∠AFB/∠ACD。
解:由AE = CD可得∠A = ∠C。
又由BF = FE可得∠B = ∠AFE。
所以∠AFB ~ ∠ACD。
根据相似三角形的性质可得∠AFB/∠ACD = AB/AD= BC/CD = 2。
知识精要一、相似三角形的概念一个三角形的三个角与另一个三角形的三个角对应相等,且它们各有的三条边对应成比例,那么这两个三角形相似。
对应边的比值叫做相似比。
即△AB C ∽△DEF ,我们可以得到:【注意事项1、2、】相似具有连贯性:即两个三角形分别与第三个三角形相似,那么这两个三角形也相似。
相似三角形的预备定理:平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似。
(∥) 【请用所上节课所学习的知识+定义证明】基本图形之一:(请添加条件,使之相似)2、判定定理:(1)如果一个三角形的两角与另一个三角形的两角对应相等,那么这两三角形相似。
已知:∠A=∠A ’ ;∠B=∠B ’ 求证:△ABC ∽△A ’B ’C ’CBB'基本图形之二:(请给图标上字母,并写出所有的相似三角形)角1=角221角1=角221(2)如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两三角形相似。
已知:∠A=∠A ’ ;''''AB ACA B A C求证:△ABC ∽△A ’B ’C ’ CBB'基本图形之三:(请给图标上字母及条件,并写出所有的相似三角形)(3)如果一个三角形的三边与另外一个三角形的三边对应成比例,那么这两三角形相似。
(4)直角三角形相似的判定定理:如果一个直角三角形的斜边及一条直角边与另一个三角形的斜边及直角边对应成比例,那么这两直角三角形相似。
(HL)【自己画图,写出已知、求证,并证明】【二、相似三角形的性质1、性质一:相似三角形对应角相等,对应边成比例相似三角形对应高的比,对应中线的比,对应角平分线的比及周长比都等于相似比。
【要求自行证明】、【总结】2、性质二:相似三角形的面积的比等于相似比的平方 【自行证明】热身练习1、下列条件中,不能判断ABC ∆与DEF ∆相似的是( ) A .∠A=50°,∠B=70°,∠D=50°,∠F=70°B .2,3AB BC ==,∠B=40°,4,9DE EF ==,∠E=40° C .4,5,6,6,7.5,9AB BC AC DE EF DF ======D .,AB AC =∠A=50°,DE DF =,∠E=50°2、下列命题正确的是( )A .有一个角是40°的两个等腰三角形B .有一个角是100°的两个等腰三角形C .面积相等的两个直角三角形D .两边之比为3:5的两个直角三角形3、如图:△ABC 中,∠ACB=90°,C D ⊥AB,垂足为D ,且 2.5,0.9AD cm DB cm ==,求: (1)CD 的长 (2):ACD CBD S S ∆∆BD A4、如图:D 是△ABC 的AB 边上一个动点,D E ∥BC 交AC 于E ,D F ∥AC 交BC 于F ,已知AD:DB=1:2,求三角形ADE 、三角形DBF 、平行四边形DFCE 的面积之比BDA5、如图:平行四边形ABCD 中,E 是BA 延长线上一点,EC 交AD 于F ,已知:1:2EA AB =,2AEF S ∆=,求平行四边形ABCD 的面积BD6、梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,已知9,25AOF COB S S ∆∆==,求梯形ABCD 的面积CB7、已知梯形的两底边长分别为4和6,高是3,求梯形两腰的延长线的交点到较长底边的距离 【要求自己画图】精解名题1、已知等腰三角形ABC 中,AB=AC ,D 为CB 延长线上一点,E 为BC 延长线上一点,且满足2AB DB CE =⋅(1)求证:△ADB ∽△EAC(2)若∠BAC=40°,求∠DAE 的度数B D2、已知G 是△AB C 的重心,且在中线AD 上,延长AD 到H ,使得DH=GD ,K 是BG 的中点 求证:△FK G ∽△GHC【析】注意从对应点所给于的信息。
《相似三角形应用举例》知识清单一、相似三角形的定义和性质相似三角形是指对应角相等,对应边成比例的三角形。
相似三角形具有以下重要性质:1、对应角相等:两个相似三角形的对应角大小完全相同。
2、对应边成比例:相似三角形的对应边长度之比相等。
3、周长之比等于相似比:两个相似三角形的周长之比等于它们的相似比。
4、面积之比等于相似比的平方:相似三角形的面积之比等于相似比的平方。
二、相似三角形的判定方法1、两角对应相等的两个三角形相似。
如果两个三角形的两个角分别对应相等,那么这两个三角形相似。
例如,在三角形 ABC 和三角形 A'B'C' 中,如果∠A =∠A',∠B =∠B',那么三角形 ABC 相似于三角形 A'B'C'。
2、两边对应成比例且夹角相等的两个三角形相似。
当两个三角形的两组对应边成比例,并且这两组对应边的夹角相等时,这两个三角形相似。
3、三边对应成比例的两个三角形相似。
若两个三角形的三条边对应成比例,那么它们相似。
三、相似三角形在实际生活中的应用举例1、测量高度例如,要测量一棵大树的高度,但我们无法直接测量。
此时,可以在同一时刻,在树旁立一根已知长度的杆子,测量杆子的影子长度和树的影子长度。
因为太阳光线是平行的,所以树和杆子与各自影子构成的三角形相似。
设杆子高度为 h1,影子长度为 s1,树的高度为 h2,影子长度为 s2,根据相似三角形的性质,有 h1 / h2 = s1 / s2,从而可以计算出树的高度 h2。
2、测量距离在不能直接测量两点之间的距离时,可以利用相似三角形。
比如,要测量一条河的宽度。
可以在河的一侧选定一个点 A,在河的对岸选定一个点 B,然后在河的这一侧再选定一个点 C,使得点 C、A、B 共线。
接着,在点 C 处向点 B 所在的方向走出一段距离 CD,使得∠ADC =∠ABC。
因为∠A 是公共角,所以三角形 ADC 和三角形ABC 相似。
可编辑修改精选全文完整版相似三角形知识点总结1. 比例线段的有关概念:b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。
把线段AB分成两条线段AC和BC,使AC2=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。
2. 比例性质:3. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3。
②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
4. 相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似5. 相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方一.选择题:1、下列各组数中,成比例的是( )A .-7,-5,14,5B .-6,-8,3,4C .3,5,9,12D .2,3,6,122、如果x:(x+y)=3:5,那么x:y =( )A. B. C. D. 3、如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( ) A 、21 B 、31 C 、32 D 、41 4、下列说法中,错误的是( )(A )两个全等三角形一定是相似形 (B )两个等腰三角形一定相似 (C )两个等边三角形一定相似 (D )两个等腰直角三角形一定相似5、如图,RtΔABC 中,∠C=90°,D 是AC 边上一点,AB =5,AC =4,若ΔABC∽ΔBDC,则CD = . A .2 B .32 C .43 D .94二、填空题6、已知a =4,b =9,c 是a b 、的比例中项,则c = .7、如图,要使ΔABC∽ΔACD,需补充的条件是 .(只要写出一种)8、如图,小东设计两个直角,来测量河宽DE ,他量得AD =2m ,BD =3m ,CE =9m ,则河宽DE 为ABCD(第7题)238332589、一公园占地面积约为8000002m ,若按比例尺1∶2000缩小后,其面积约为 2m .10、如图,点P 是R tΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点P 作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条. 三、解答题11、如图18—95,AB 是斜靠在墙壁上的长梯,梯脚B 距墙80cm ,梯上点D 距墙70cm ,BD 长55cm .求梯子的长.12、如图,已知AC⊥AB,BD⊥AB,AO =78cm ,BO =42cm ,CD =159cm ,求CO 和DO .13、如图,在正方形网格上有111C B A ∆∽222A C B ∆,这两个三角形相似吗?如果相似,求出222111A C B A C B ∆∆和的面积比.CBAP(第10题)14、已知:如图,在△ABC 中,点D 、E 、F 分别在AC 、AB 、BC 边上,且四边形CDEF 是正方形,AC =3,BC =2,求△ADE、△EFB、△ACB 的周长之比和面积之比.15、如图所示,梯形ABCD 中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P 的位置,使得以P,A,D 为顶点的三角形与以P,B,C 为顶点的三角形相似.16、如图,□ABCD 中,:2:3AE EB =,DE 交AC 于F . (1)求AEF ∆与CDF ∆周长之比;(2)如果CDF ∆的面积为220cm ,求AEF ∆的面积.PAB DCABECDF。
相似三角形知识点梳理相似三角形是指两个或者更多个三角形的对应边成比例,并且对应角相等。
在数学中,相似三角形是一个重要的概念,它不仅在几何学中有广泛应用,而且在物理学、工程学等领域也有重要作用。
下面是关于相似三角形的知识点的详细梳理。
1.相似三角形的定义:两个三角形相似,意味着它们的对应角相等,并且对应边成比例。
也就是说,如果两个三角形的对应角相等,并且它们的对应边成比例,那么这两个三角形是相似的。
2.相似三角形的性质:a.对应角相等:相似三角形的对应角相等,即对应角角度相等。
b.对应边成比例:相似三角形的对应边成比例,即对应边的长度之比相等。
例如,如果两个相似三角形的边长比为a/b,那么它们的各边的比例为a/b。
3.相似三角形的判定方法:a.AA判定法:如果两个三角形的两个角分别相等,则它们是相似三角形。
b.SAS判定法:如果两个三角形的两边成比例,并且它们夹角相等,则它们是相似三角形。
c.SSS判定法:如果两个三角形的三边成比例,则它们是相似三角形。
4.相似三角形的性质:a.相似三角形的高和底边之比等于高和底边对应的边之比。
b.相似三角形的面积之比等于边长之比的平方。
c.相似三角形的内角之比等于边长之比的平方。
5.相似三角形的应用:a.实际问题中的尺寸比较:相似三角形的边长比例可以用来比较不同尺寸的物体之间的大小关系。
例如,可以用相似三角形的原理来比较建筑物的高度,或者计算地球与月球之间的距离。
b.利用相似三角形进行测量:可以利用相似三角形的原理来测量高度、距离等不可测量的物理量。
例如,在无法直接测量一棵树的高度时,可以使用相似三角形的原理来间接测量树的高度。
c.相似三角形的证明:在证明几何定理和性质时,常常会用到相似三角形的概念。
通过证明相似三角形,可以推导出其他几何定理和性质。
相似三角形是几何学中重要的概念,它是许多几何问题的基础。
通过研究相似三角形,我们可以更好地理解几何学中的其他概念和定理,并将它们应用到实际问题中。
相似三角形的判定与性质知识梳理及例题分析
1.相似三角形的概念:
在和中,如果,,,,我们就说
和相似,记作∽,就是它们的相似比(注意:要把表示对应顶点的字母写在对应的位置上).
思考:在中,点是边的中点,,交于点,与有什么关系?
猜想:与相似. 证明:在与中,
∴,.
过点作,交于点
在中,,
,∴.
又,
∴
∴,
∴∽(对应角相等,对应边的比相等的两三角形相似),相似比为.
改变点在上的位置,可以进一步猜想以上两个三角形依然相似.
2.相似三角形的判定
定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.
小结:判定三角形相似的方法:(1)相似三角形的定义;(2)由平行线得相似.
思考:对比三角形全等判定的简单方法
(),看是否也有简便的方法?
已知:在和中,.
求证:∽.
证明:在线段(或它的延长线)上截取,过点作,交于点,
根据前面的结论可得∽.
∴又,
∴∴
同理:
∴≌
∴∽
相似三角形的判定定理:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.可简单说成:三边对应成比例,两三角形相似.
思考:若,,与是否相似呢?
相似三角形的判定定理:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似可简单说成:两边对应成比例且夹角相等,两三角形相似.
进一步引申:若,,与是否相似呢?不一定
问:全等中的边边角不能用,那么边边角也不能证相似,反例同全等.
例1.根据下列条件,判断与是否相似,并说明理由:
(1),,;,,.
(2),,;,,.
解:(1),∴
又∴∽
问:这两个相似三角形的相似比是多少?(答:是)
(2),,
∴
与的三组对应边的比不等,它们不相似.
问:要使两三角形相似,不改变的长,的长应当改为多少?(答:) 例2.要做两个形状相同的三角形框架,其中一个三角形框架的三边的长分别为4、5、6,另一个三角形的一边长为2,怎样选料可使这两个三角形相似?
注:此题没说2与哪条边是对应边,所以要进行分类讨论.可以是:
,3;或,;或,.
注:当两三角形相似而边不确定时,要注意分类讨论.
相似三角形的判定定理:如果一个三角形的两个角与另一个三角形的两个角对应相等的,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.
3.三角形相似的判定的应用
例3.如图,弦和弦相交于内一点,求证:.
证明:连接,.
在
∴∽∴.
例4.已知:如图,在中,于点.
(1)求证:∽∽;
(2)求证:;;(此结论称之为射影定理)
(3)若,求.
(4)若,求.
分析:(1)利用两角相等证相似;
(2)把相似三角形的相似比的比例式改为乘积式即可;
(3)利用射影定理和勾股定理直接求;
(4)利用上面的定理和方程求.
进一步引申:在中,于点,这个条件可以放在圆当中,是直径,是圆上任意一点,
于点,则可得到双垂直图形.
例.已知:∽,分别是两个三角形的角平分线.
求证:.
4.相似三角形的性质
(1)相似三角形的对应角相等,对应边的比相等,都等于相似比.
(2)相似三角形对应高的比,对应角的平分线的比,对应中线的比都等于相似比.
(3)相似三角形周长的比等于相似比;相似多边形周长的比等于相似比.
证明:如果∽,相似比为,那么.
因此,,.
从而,.
同理可得相似多边形对应周长的比也等于相似比.
如图,已知:∽,相似比为.分别作出与
的高和
和都是直角三角形,
并且,
∽
相似多边形面积的比等于相似比的平方.对于两个相似多边形,可以把他们分成若干个相似三角形证明.
例5.如图,在和中,,,,的周长是24,面积是48,求
的周长和面积.
解:在和中,,
又∽,相似比为.
的周长为,的面积是.
例6.已知点P在线段AB上,点O在线段AB的延长线上.以点O为圆心,OP为半径作圆,点C是圆O上的一点.
(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;
(2)如果AP=m(m是常数,且),BP=1,OP是OA、OB的比例中项.当点C在圆O上运动时,求的
值(结果用含m的式子表示);
(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.
分析:此题第1问:利用两边的比相等,夹角相等证相似.
即,
第2问:设
∵是的比例中项,
∴是的比例中项
即
∴
解得
又∵
第3问:∵,,即
当时,两圆内切;当时,两圆内含;当时,两圆相交.
例7.如图,已知中,,,,,点在上,(与点不重合),点在上.
(1)当的面积与四边形的面积相等时,求的长.
(2)当的周长与四边形的周长相等时,求的长.
(3)在上是否存在点,使得为等腰直角三角形?要不存在,请说明理由;若存在,请求
出的长.
解:(1),
∽
(2)∵的周长与四边形的周长相等
∽
(3)在线段上存在点,使得为等腰直角三角形.
过作于,则,设交于
若,则.
∵∽
若,同理可求.
若,
∽
∴在线段上存在点,使得为等腰直角三角形,此时,或.
三、总结归纳:
1、相似三角形的判定:
(1)相似三角形的定义;
(2)平行得相似;
(3)三边的比相等;
(4)两边的比相等,夹角相等;
(5)两角对应相等.
三角形相似判定的方法较多,要根据已知条件适当选择.
2
3、相似三角形的常见图形及其变换:
4、证明四条线段成比例的常用方法:
(1)线段成比例的定义
(2)三角形相似的预备定理
(3)利用相似三角形的性质
(4)利用中间比等量代换
(5)利用面积关系
证明题常用方法归纳:
(1)通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这
几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相
似,然后由相似三角形对应边成比例即可证的所需的结论.
(2)若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直
线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.
(3)若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成比例.以上步骤可以不断
的重复使用,直到被证结论证出为止.。