第三章几何光学
- 格式:doc
- 大小:984.00 KB
- 文档页数:16
第三章 几何光学1.证明反射定律符合费马原理证明:设界面两边分布着两种均匀介质,折射率为1n 和2n (如图所示)。
光线通过第一介质中指定的A 点后到达同一介质中指定的B 点。
(1)反正法:如果反射点为'C ,位于ox 轴与A 和B 点所著称的平面之外,那么在ox 轴线上找到它的垂足点"C 点,.由于'''''',AC AC BC BC >>,故光线'AC B 所对应的光程总是大于光线''AC B 所对应的光程而非极小值,这就违背了费马原理。
故入射面和反射面在同一平面内。
(2)在图中建立坐xoy 标系,则指定点A,B 的坐标分别为11(,)x y 和22(,)x y ,反射点C 的坐标为(,0)x 所以ACB 光线所对应的光程为:1n ∆=根据费马原理,它应取极小值,所以有112(sin sin )0d n i i dx ∆==-=即: 12i i =2.根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等。
证:如图所示,有位于主光轴上的一个物点S 发出的光束经薄透镜折射后成一个明亮的实象点'S 。
设光线SC 为电光源S 发出的任意一条光线,其中球面AC 是由点光源S 所发出光波的一个波面,而球面DB 是会聚于象点'S 的球面波的一个波面,所以有关系式SC SA =,''S D S B =.因为光程''''SCEFDS SABS SC CE nEF FD DSSA nAB BS⎧∆=++++⎪⎨∆=++⎪⎩ 根据费马原理,它们都应该取极值或恒定值,这些连续分布的实际光线,在近轴条件下其光程都取极大值或极小值是不可能的,唯一的可能性是取恒定值,即它们的光程相等。
3.睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板,平板的厚度d 为30cm 。
求物体PQ 的像''P Q 与物体PQ 之间的距离2d 为多少?解:根据例题3.1的结果'1(1)PP h n=-'130(1)101.5PP cm =⨯-=题2图' 1.5n =4.玻璃棱镜的折射棱角A 为060,对某一波长的光其折射率n 为1.6。
计算:(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角。
解:(1)等腰棱镜的折射率可以表示为0sin 2sin2An A θ+=其中0θ为最小偏向角,可以由上式解出最小偏向角01100000602sin [sin ]2sin [1.6sin ]60253.136046.2622A n A θ--=-=⨯-=⨯-=(2)偏向角为最小时,入射角可以表示为0'00'0146166053.0822Ai θ++===从棱镜向外透射的最大入射角为 '21s i ni n =, '1021sin 38.681.6i -== '000'226038.682119i A i =-=-=又根据折射定律12sin 1sin i i n= 10'0'1sin (sin 2119)3534i -==所以5.一种恒偏向棱镜,它相当于两个000306090--棱镜与一个000454590--棱镜按图示方式组合在一起,白光沿i 方向入射,我们旋转这个棱镜来改变1θ,从而使任意一种波长的光可以依次循着图示的路径传播,出射光线为r 。
求证:如果1sin 2πθ=,则21θθ=,且光束i 与r 相互垂直。
(这就是恒偏向棱镜名字的由来)证:(1)根据光的折射定律 12sin sin θθ= 其中2i 为光通过第一个界面的折射角'22i i =根据折射定律 22sin sin n i θ=所以 21θθ=, 由于光线入射的两界面相互垂直和21θθ=,所以光束i 与r 相互垂直。
6.高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm,求像的位置及高度,并做光路图。
解:若光线从左向右传播,如图所示'12,10s cm f =-=-根据凹透镜的成像公式''111s s f+=得: 60cm s -='由ss y y ''-=得:25cm y -=' 7.一个5cm 高的物体放在球面镜前10cm 处成1cm 高的虚象。
求(1)此透镜的曲率半径;(2)此镜是凸面镜还是凹面镜?解:根据面镜公式 ''0y y s s+=得:'51010s+=-, '2s cm = 根据面镜的成像公式'112s s r +=, 112102r+=-⇒ 5r c m = 所以此镜是凸面镜8.某观察者通过一块薄玻璃板去看在凸面镜中他自己的像。
他移动着玻璃板,使得在玻璃板中与凸面镜中所看到的他眼睛的像重合在一起。
若凸面镜的焦距为10cm ,眼睛距凸面镜的顶点的距离为40cm'40,10s cm f cm =-=根据面镜成像公式''111s s f+= 由上式可得 '8s cm ='()8402422s s L cm +-+===9.物体位于凹面镜轴线上焦点之外,在焦点与凹面镜之间放一个与轴线垂直的两表面互相平行的玻璃板,其厚度为1d ,折射率为n ,试证明:放入该玻璃板后使像移动的距离与把凹面镜向物体移动(1)d n n-的一段距离的效果相同。
证明:物体经过玻璃板成的像位置在过去物体的前边,两者的距离等于'1(1)(1)d n pp d n n-=-=物体经过玻璃板所成的像对于凹透镜来说是虚物,那么放入该玻璃板后使像移动的距离与把凹面镜向物体移动(1)d n n-的一段距离的效果相同。
10.欲使由无穷远发出的近轴光线通过透明球体并成像在右半球面的顶点处,问这透明球体的折射率为多少?解:光线从向右传播, s =-∞ '2s r = 根据近轴光线条件下球面折射的物像公式'''n n n n s s r --=⇒''2n n nr r-=⇒ '22n n == 11.有一折射率为1.5、半径为4cm 的玻璃球,物体在距离表面6cm 处,求:(1)从物所成的像到球心之间的距离;(2)求像的横向放大率。
解:(1)玻璃球可以看做是一个透镜,它的等效焦距为' 1.5462(1)2(1.51)nR f cm n ⨯===--玻璃球体透射的成像公式为''111s s f -= 可得: '15s cm =(2)横向放大率 '151.564s s β===+ 12.一个折射率为1.53、直径为20cm 的玻璃球内有两个气泡。
看上去一个恰好在球心,另一个从最近的方向看去,好象在表面与球心连线的中点。
求两气泡的实际位置。
解:若光线向人眼的方向传播10r cm =- '110s cm =- '25s cm =- '1n = 1.53n =根据物像公式'11''n n n ns s r--=得: 110s cm =-同样有'22''n n n ns s r--=,1 6.047s cm =- B13.直径为1m 的球形鱼缸的中心处有一条小鱼,若玻璃缸壁的影响可以忽略不计,求缸外观察者看到的小鱼的表观位置和横向放大率。
解:(1)若光线向人眼的方向传播,根据物像公式''''0.5n n n ns s r r ss r m--====-又因为可得(2)近轴物的横向放大率 ''151.331.33151s n s n β=⋅=⨯= B14.玻璃棒一端成半球形,其曲率半径为2cm 。
将它水平地浸入折射率为1.33的水中,沿着棒的轴线离球面顶点8cm 处的水中有一物体,利用计算和作图法求像的位置及横向放大率,并作光路图。
解:(1)设光线从左向右传播50.1=n 33.1'=n cm s 8-= cm r 2=根据近轴光线条件下球面折射的物像公式r n n s n sn -=-''' 得: cm s 46.18'=(2)根据横向放大率的公式 25.133.185.18'''≈⨯--=⋅==n n s s y y β(3)光路图入下15.有两块玻璃透镜的两表面均各为凸球面及凹球面,其曲率半径为10cm 。
一物点在主轴上距镜20cm 处,若物和镜均浸在水中,分别用作图法和计算法求像的位置。
设玻璃的折射率为1.5,水的折射率为1.33。
解:(1)设光线从左向右传播,其中33.112==n n 5.1=n cm s 20-= 凸透镜的物方焦距为cm r nn r n n n f 12.39)33.15.1(21033.1)(22111-≈-⨯⨯-=----=凸透镜的像方焦距为cm r nn r n n n f 12.39)33.15.1(21033.1)(22112'≈-⨯⨯=---=根据高斯公式 1''=+s fsf 得:cm sff s 92.402012.39112.391''-=---=-=(2)凸透镜的物方焦距为cm r nn r n n n f 12.39)33.15.1(2)10(33.1)(22111≈-⨯-⨯-=----=凸透镜的像方焦距为cm r nn r n n n f 12.39)33.15.1(2)10(33.1)(22112'-≈-⨯-⨯=---=根据高斯公式 1''=+s fsf 得:cm sf f s23.132012.39112.391''-=---=-=(3)用作图法确定像的位置A16.一凸透镜在空气中的焦距为40cm ,在水中时焦距为136.8cm ,问此透镜的折射率为多少(水的折射率为1.33)?若将此透镜置于2CS 中(2CS 的折射率为1.62),其焦距又是多少?解:根据透镜的焦距公式 '21212n f n n n nr r =--+当透镜在空气中时,121n n =='112111(1)()n f r r =-- 当透镜在水中时,12 1.33n n =='2121 1.3311()1.33n f r r -=- 由上两式可解得541n .=,'12111111(1)40(1.541)21.6r r f n -===-⨯- 当透镜置于2CS 中时'3121 1.6211 1.54 1.6210.08()1.62 1.6221.634.992n f r r --=-=⨯=- 可解得 '3437.4f cm =-17.两片极薄的表玻璃,曲率半径分别为20cm 和25cm 。