最新深圳中考数学试卷及试卷分析资料
- 格式:doc
- 大小:435.00 KB
- 文档页数:23
2024年深圳市中考数学复习与检测试卷一、选择题(本大题共有10个小题,每小题3分,共30分)1. 2024的倒数是()A.12024B.2024 C.2024−D.12024−2. 下列图形中,既是轴对称又是中心对称图形的是()A.B.C.D.3.随着2024年2月第十四届全国冬季运动会临近,吉祥物成为焦点,某日通过搜索得出相关结果约为16000000个.将“16000000”用科学记数法表示为()A.61610×B.71.610×C.81.610×D.80.1610×4 . 某校10名篮球队员进行投篮命中率测试,每人投篮10次,实际测得成绩记录如下表:命中次数(次) 5 6 7 8 9人数(人) 1 4 3 1 1由上表知,这次投篮测试成绩的中位数与众数分别是()A.6,6 B.6.5,6 C.6,6.5 D.7,65 . 实数,a b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A .55a b −>−B .66a b >C .a b −>−D .0a b −>6 . 某学校将国家非物质文化遗产——“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图所示,若将左图抽象成右图的数学问题:在平面内,AB CD ,DC 的延长线交AE 于点F ;若7535BAE AEC ∠=°∠=°,,则DCE ∠的度数为( )A .120°B .115°C .110°D .75°7 . 《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是: 用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.521y x x y −= −=B . 4.521x y x y −= −=C . 4.512x y y x −= −= D . 4.512y x y x −= −= 8. 赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A. 20mB. 28mC. 35mD. 40m9 . 如图,DE 是ABC 的中位线,点F 在DB 上,2DF BF =.连接EF 并延长,与CB 的延长线相交于点M .若6BC =,则线段CM 的长为( )A. 132B. 7C. 152D. 810. 如图,已知开口向上的抛物线2y ax bx c ++与x 轴交于点()1,0−,对称轴为直线1x =.下列结论:①0abc >;②20a b +=;③若关于x 的方程210ax bx c +++=一定有两个不相等的实数根;④13a >. 其中正确的个数有( )A .1个B .2个C .3个D .4个二、填空题(本大题共有5个小题,每小题4分,共20分)11. 分解因式:2441a a −+= .12. 一只不透明的袋中装有2个白球和n 个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到白球的概率为14,那么黑球的个数是 . 13. 已知关于x 的一元二次方程()2230x m x −++=的一个根为1,则m = .14. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为 .15 . 如图,图1是一盏台灯,图2是其侧面示意图(台灯底座高度忽略不计),其中灯臂40cm AC =,灯罩30cm CD =,灯臂与底座构成的60CAB ∠=°. CD 可以绕点C 上下调节一定的角度.使用发现:当CD 与水平线所成的角为30°时,台灯光线最佳, 则此时点D 与桌面的距离是________.(结果精确到1cm1.732)三、解答题(本大题共有6个小题,共50分)16. 计算:101()2cos 451)4π−°−+−−−. 17. 先化简,再求值:(1﹣31x +)÷2441x x x −++,其中x =3. 18. “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.19. 某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y x (元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个.(1) 求遮阳伞每天的销出量y (个)与销售单价x (元)之间的函数关系式;(2) 设遮阳伞每天的销售利润为w (元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?20. 已知:如图,在ABC 中,AB BC =,D 是AC 中点,BE 平分ABD ∠交AC 于点E ,点O 是AB 上一点,O 过B 、E 两点,交BD 于点G ,交AB 于点F .(1)试说明直线AC 与O 的位置关系,并说明理由;(2)当2BD =,1sin 2C =时,求⊙O 的半径. 21. 如图,抛物线2y x bx c =−++交x 轴于A ,B 两点,交y 轴于点C ,直线BC 的表达式为3y x =−+.(1) 求抛物线的表达式;(2) 动点D 在直线BC 上方的二次函数图像上,连接DC ,DB ,设四边形ABDC 的面积为S ,求S 的最大值;(3) 当点E 为抛物线的顶点时,在x 轴上是否存在一点Q ,使得以A ,C ,Q 为顶点的三角形与BCE 相似?若存在,请求出点Q 的坐标.22. 综合与探究在矩形ABCD 的CD 边上取一点E ,将BCE 沿BE 翻折,使点C 恰好落在AD 边上的点F 处.(1) 如图①,若2BC BA =,求CBE ∠的度数;(2) 如图②,当5AB =,且10AF FD ⋅=时,求EF 的长; (3) 如图③,延长EF ,与ABF ∠的角平分线交于点M ,BM 交AD 于点N ,当NF AN FD =+时,请直接写出AB BC的值.2024年深圳市中考数学复习与检测试卷(解析版)一、选择题(本大题共有10个小题,每小题3分,共30分)1. 2024的倒数是()A.12024B.2024 C.2024−D.12024−【答案】A【分析】本题主要考查了倒数,解题的关键是熟练掌握倒数的定义,“乘积为1的两个数互为倒数”.【详解】解:2024的倒数1 2024.故选:A.2. 下列图形中,既是轴对称又是中心对称图形的是()A.B.C.D.【答案】A【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解.【详解】A、是轴对称图形,也是中心对称图形,故本选项符合题意,B、是轴对称图形,不是中心对称图形,故本选项不合题意,C、不是轴对称图形,是中心对称图形,故本选项不合题意,D、是轴对称图形,不是中心对称图形,故本选项不合题意,故选:A.3.随着2024年2月第十四届全国冬季运动会临近,吉祥物成为焦点,某日通过搜索得出相关结果约为16000000个.将“16000000”用科学记数法表示为()A .61610×B .71.610×C .81.610×D .80.1610×【答案】B 【分析】本题考查了科学记数法;根据科学记数法计算方法计算即可;解题的关键是掌握科学记数法的计算方法.【详解】解:716000000 1.610=×4 . 某校10名篮球队员进行投篮命中率测试,每人投篮10次,实际测得成绩记录如下表: 命中次数(次)5678 9人数(人) 1 4 3 1 1由上表知,这次投篮测试成绩的中位数与众数分别是( )A .6,6B .6.5,6C .6,6.5D .7,6【答案】B【分析】根据中位数及众数可直接进行求解.【详解】解:由题意得:中位数为67 6.52+=,众数为6; 故选B .5.实数,a b 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A .55a b −>−B .66a b >C .a b −>−D .0a b −>【答案】C【分析】根据数轴判断出,a b 的正负情况以及绝对值的大小,然后解答即可.【详解】由图可知,0b a <<,且b a <,∴55a b −>−,66a b >,a b −<−,0a b −>,∴关系式不成立的是选项C .故选C .6 . 某学校将国家非物质文化遗产——“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图所示,若将左图抽象成右图的数学问题:在平面内,AB CD ,DC 的延长线交AE 于点F ;若7535BAE AEC ∠=°∠=°,,则DCE ∠的度数为( )A .120°B .115°C .110°D .75°【答案】C 【分析】根据平行线的性质得到75EFC BAE ∠=∠=°,根据三角形外角性质求解即可. 【详解】解:∵AB CD ,75BAE ∠=°, ∴75EFC BAE ∠=∠=°, ∵35DCE AEC EFC AEC ∠=∠+∠∠=°,,∴110DCE ∠=°, 故选:C .7 . 《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.521y x x y −= −=B . 4.521x y x y −= −=C . 4.512x y y x −= −= D . 4.512y x y x −= −= 【答案】D【分析】设木头长为x 尺,绳子长为y 尺,根据“用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:设木头长为x 尺,绳子长为y 尺, 由题意可得 4.512y x y x −= −=. 故选:D .8. 赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A. 20mB. 28mC. 35mD. 40m【答案】B【解析】 【分析】由题意可知,37m AB =,7m =CD ,主桥拱半径R ,根据垂径定理,得到37m 2AD =,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,37m AB =,7m =CD ,主桥拱半径R ,()7m OD OC CD R ∴=−=−,OC 是半径,且OC AB ⊥,137m 22AD BD AB ∴===, 在Rt △ADO 中,222AD OD OA +=,()2223772R R ∴+−= , 解得:156528m 56R =≈, 故选B9 . 如图,DE 是ABC 的中位线,点F 在DB 上,2DF BF =.连接EF 并延长,与CB 的延长线相交于点M .若6BC =,则线段CM 的长为( )A. 132B. 7C. 152D. 8【答案】C【解析】【分析】根据三角形中中位线定理证得DE BC ∥,求出DE ,进而证得DEF BMF ∽,根据相似三角形的性质求出BM ,即可求出结论.【详解】解:DE 是ABC 的中位线,DE BC ∴∥,116322DE BC ==×=, DEF BMF ∴ ∽, ∴22DEDF BF BM BF BF===, 32BM ∴=, ∴152CM BC BM =+=. 故选:C .10.如图,已知开口向上的抛物线2y ax bx c ++与x 轴交于点()1,0−,对称轴为直线1x =.下列结论: ①0abc >;②20a b +=;③若关于x 的方程210ax bx c +++=一定有两个不相等的实数根;④13a >. 其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】D 【分析】利用二次函数图象与性质逐项判断即可.【详解】解:∵抛物线开口向上,∴0a >,∵抛物线与y 轴交点在负半轴,∴0c <,∵对称轴为12b x a=−=, ∴20b a −=<,∴0abc >,故①正确;∵抛物线的对称轴为=1x , ∴12b a−=, ∴2=0a b +,故②正确;∵函数2y ax bx c ++与直线1y =−有两个交点.∴关于x 的方程210ax bx c +++=一定有两个不相等的实数根,故③正确;∵=1x −时,0y =即0a b c −+=, ∵=2b a ,∴20a a c ++=,即3a c −=, ∵1c <−,∴31a −<−, ∴13a >, 故④正确,故选:D二、填空题(本大题共有5个小题,每小题4分,共20分)11.分解因式:2441a a −+= .【答案】()221a −【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的两倍,本题可以用完全平方公式.【详解】原式()()2222221121a a a =−××+=−. 故答案为:()221a −.12. 一只不透明的袋中装有2个白球和n 个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到白球的概率为14,那么黑球的个数是 . 【答案】6【分析】根据概率公式建立分式方程求解即可【详解】∵袋子中装有2个白球和n 个黑球,摸出白球的概率为14, ∴22n +=14, 解得n =6,经检验n =6是原方程的根,故答案为:613. 已知关于x 的一元二次方程()2230x m x −++=的一个根为1,则m = . 【答案】2【分析】把1x =代入方程计算即可求出m 的值.【详解】解:把1x =代入方程得:1(2)30m −++=, 去括号得:1230m −−+=, 解得:2m =,故答案为:214. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为 .【答案】43π 【分析】延长FA 交⊙A 于G ,如图所示:根据六边形ABCDEF 是正六边形,AB =2,利用外角和求得∠GAB =360606°=°,再求出正六边形内角∠FAB =180°-∠GAB =180°-60°=120°, 利用扇形面积公式代入数值计算即可.【详解】解:延长FA 交⊙A 于G ,如图所示:∵六边形ABCDEF 是正六边形,AB =2,∴∠GAB =360606°=°, ∠FAB =180°-∠GAB =180°-60°=120°, ∴2120443603603FAB n r S πππ××===扇形, 故答案为43π. 15 . 如图,图1是一盏台灯,图2是其侧面示意图(台灯底座高度忽略不计),其中灯臂40cm AC =,灯罩30cm CD =,灯臂与底座构成的60CAB ∠=°. CD 可以绕点C 上下调节一定的角度.使用发现:当CD 与水平线所成的角为30°时,台灯光线最佳,则此时点D 与桌面的距离是________.(结果精确到1cm 1.732)【答案】50cm【分析】过点D 作DH AB ⊥,交AB 延长线于点H ,过点C 作CF AH ⊥于F ,过点C 作CE DH ⊥于E , 分别在Rt ACF 和Rt CDE △中,利用锐角三角函数的知识求出CF 和DE 的长,再由矩形的判定和性质得到CF EH =,最后根据线段的和差计算出DH 的长,问题得解.【详解】过点D 作DH AB ⊥,交AB 延长线于点H ,过点C 作CF AH ⊥于F ,过点C 作CE DH ⊥于E ,在Rt ACF 中,60A ∠=°,40cm AC =, ∵sin CF A AC=∴sin 60CF AC =°=,在Rt CDE △中,30DCE ∠=°,30cm CD =, ∵sin DE DCE CD∠=, ∴sin 3015DE CD=°=(cm), ∵DH AB ⊥,CF AH ⊥,CE DH ⊥,∴四边形CFHE 是矩形,∴CF EH =,∵DH DE EH =+,∴1550DH DE EH +≈(cm).答:点D 与桌面的距离约为50cm .三、解答题(本大题共有6个小题,共50分)16. 计算:101()2cos 451)4π−°−+−−−. 【答案】2【详解】分析:代入45°角的余弦函数值,结合“负整数指数幂和零指数幂的意义及绝对值的意义”进行计算即可.详解:原式=)4211−++=411−+,=2−.17. 先化简,再求值:(1﹣31x +)÷2441x x x −++,其中x =3. 【答案】1,12x −. 【分析】先将括号里的分式通分,然后按照分式减法法则计算,再根据分式除法法则进行运算即可将分式化简,最后代入字母取值进行计算即可求解. 【详解】解:原式=()2213111x x x x x −+ −÷ +++, =()22112x x x x −+⋅+−, =12x −, 当x =3时,原式=11 32=−.18.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【答案】(1)600;(2)见解析;(3)3200;(4)1 4【详解】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2)如图,(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图;共有12种等可能的情况,其中他第二个吃到的恰好是C粽的有3种,∴P(C粽)=312=14.答:他第二个吃到的恰好是C粽的概率是14.19.某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个.(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?【答案】(1)y=﹣10x+540;(2)当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元【分析】(1)设函数关系式为y =kx +b ,由销售单价为28元时,每天的销售量为260个; 销售单价为30元时,每天的销量为240个;列方程组求解即可;(2)由每天销售利润=每个遮阳伞的利润×销售量,列出函数关系式,再由二次函数的性质求解即可;【详解】(1)解:设一次函数关系式为y =kx +b ,由题意可得:2602824030k b k b =+ =+, 解得:10540k b =− =, ∴函数关系式为y =﹣10x +540;(2)解:由题意可得:w =(x ﹣20)y =(x ﹣20)(﹣10x +540)=﹣10(x ﹣37)2+2890,∵﹣10<0,二次函数开口向下,∴当x =37时,w 有最大值为2890,答:当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元.20. 已知:如图,在ABC 中,AB BC =,D 是AC 中点,BE 平分ABD ∠交AC 于点E ,点O 是AB 上一点,O 过B 、E 两点,交BD 于点G ,交AB 于点F .(1)试说明直线AC 与O 的位置关系,并说明理由;(2)当2BD=,1sin2C=时,求⊙O的半径.解:(1)证明:如图,连接OE,∵AB=BC且D是BC中点,∴BD⊥AC,∵BE平分∠ABD,∴∠ABE=∠DBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠DBE,∴OE∥BD,∴OE⊥AC,∴AC与⊙O相切.(2)∵BD=2,sinC=12,BD⊥AC,∴BC=4,∴AB=4,设⊙O的半径为r,则AO=4-r,∵AB =BC ,∴∠C =∠A ,∴sinA =sinC =12,∵AC 与⊙O 相切于点E ,∴OE ⊥AC∴sinA =142r r =−, ∴r =43, 经检验:r =43是原方程的解. 21. 如图,抛物线2y x bx c =−++交x 轴于A ,B 两点,交y 轴于点C ,直线BC 的表达式为3y x =−+.(1) 求抛物线的表达式;(2) 动点D 在直线BC 上方的二次函数图像上,连接DC ,DB ,设四边形ABDC 的面积为S ,求S 的最大值;(3) 当点E 为抛物线的顶点时,在x 轴上是否存在一点Q ,使得以A ,C ,Q 为顶点的三角形与BCE 相似?若存在,请求出点Q 的坐标.【答案】(1)223y x x =−++ (2)758(3)存在,Q 的坐标为()0,0或()9,0 【分析】(1)用待定系数法即可求解;(2)由DFB AOC COFD SS S S =++△△梯形,即可求解;(3)分AQC ECB ∽、QAC ECB △∽△、ACQ ECB △∽△三种情况,分别求解即可.【详解】(1)解:∵直线BC 的表达式为3y x =−+, 当0x =时,得:3y =,∴()0,3C ,3OC =,当0y =时,得:03x =−+,解得:3x =, ∴()3,0B ,3OB =,∵抛物线2y x bx c =−++交x 轴于A ,B 两点,交y 轴于点C , ∴9303b c c −++= =, 解得:23b c = = , ∴抛物线的表达式为223y x x =−++; (2)过点D 作DF x ⊥轴于点F ,设()2,23D x x x −++,∴(),0F x ,OF x =,3BF x ,∴223DF x x =−++,∵抛物线223y x x =−++交x 轴于A ,B 两点, 当0y =时,得:2230x x −++=,解得:11x =−,23x =,∴()1,0A −,1OA =,∵DFB AOC COFD SS S S =++△△梯形()()()2211132332313222x x x x x x =−+++−−+++×× 23375228x =−−+ , 又∵302−<,即抛物线的图像开口向下, ∴当32x =时,S 有最大值,最大值为758.(3)存在,理由:∵()222314y x x x =−++=−−+, ∴()1,4E ,又∵()0,3C ,()3,0B ,∴CEBC =BE =∴((22222220CE BC BE ++===,∴90ECB ∠=°, 如图所示,连接AC ,①()1,0A −,()0,3C ,∴1OA =,3OC =,AC === ∴13AO EC CO BC ==, 又∵90AOC ECB ∠=∠=°, ∴AOC ECB ∽,∴当点Q 的坐标为()0,0时,AQC ECB ∽; ②过点C 作CQ AC ′⊥,交x 轴与点'Q , ∵Q AC ′ 为直角三角形,CO AQ ⊥′,∴90ACQ AOC ′∠=∠=°,90AQ C CAQ ACO ′′∠=°−∠=∠, ∴ACQ AOC ′ ∽,又∵AOC ECB ∽,∴ACQ ECB ′ ∽,∴AQ EB AC EC ′== 解得:10AQ ′=,∴()9,0Q ′;③过点A 作AQ AC ⊥,交y 轴与点Q ,∵ACQ 为直角三角形,CA AQ ⊥,∴90QAC AOC ∠=∠=°,90ACQ CQA OAQ ∠=°−∠=∠, ∴QAC AOC △∽△,又∵AOC ECB ∽,∴QAC ECB △∽△,∴QC AC EB CB ==, 解得:103QC =, ∴103Q −,, 此时点Q 在y 轴上,不符合题意,舍去. 综上所述:当在x 轴上的点Q 的坐标为()0,0或()9,0时,以A ,C ,Q 为顶点的三角形与BCE 相似.22. 综合与探究在矩形ABCD 的CD 边上取一点E ,将BCE 沿BE 翻折,使点C 恰好落在AD 边上的点F 处.(1) 如图①,若2BC BA =,求CBE ∠的度数;(2) 如图②,当5AB =,且10AF FD ⋅=时,求EF 的长; (3) 如图③,延长EF ,与ABF ∠的角平分线交于点M ,BM 交AD 于点N ,当NFAN FD =+时,请直接写出AB BC的值. 【答案】(1)15° (2)3 (3)35 【分析】(1)由折叠的性质得出BC BF =,FBE CBE ∠=∠,根据直角三角形的性质得出30AFB ∠=°,可求出答案;(2)证明FAB EDF △∽△,由相似三角形的性质得出AF AB DE DF=,可求出2DE =,得出3EF =,由勾股定理求出DF =AF ,即可求出BC 的长; (3)过点N 作NG BF ⊥于点G ,证明NFG BFA △∽△,12NG FG NF BA FA BF ===,设AN x =,FG y =,则2AF y =,由勾股定理得出()()()222222x y x y +=+,解出43y x =,则可求出答案. 【详解】(1)解:∵四边形ABCD 是矩形, ∴90C ∠=°,∵将BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处,∴BC BF =,FBE CBE ∠=∠,90C BFE ∠=∠=°, ∵2BC AB =,∴2BF AB =,∴30AFB ∠=°, ∵四边形ABCD 是矩形,∴AD BC ∥,∴30CBF AFB ∠=∠=°, ∴1152CBE FBC ∠=∠=°,∴CBE ∠的度数为15°;(2)∵将BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处,∴90BFE C ∠=∠=°,FE CE =, 又∵矩形ABCD 中,90A D ∠=∠=°, ∴90AFB DFE∠+∠=°,90DEF DFE ∠+∠=°, ∴AFB DEF ∠=∠, ∴FAB EDF △∽△, ∴AF AB DE DF=, ∴AF DF AB DE ⋅=⋅,∵10AF DF ⋅=,5AB =, ∴2DE =,∴523CE DC DE =−=−=,∴3EFEC ==, ∴EF 的长为3;(3)过点N 作NG BF ⊥于点G ,∵NFAN FD =+, ∴1122NF AD BC ==, ∵BC BF =,∴12NF BF =, ∵NFG BFA ∠=∠,90NGF BAF ∠=∠=°, ∴NFG BFA △∽△, ∴12NG FG NF BA FA BF ===, 设AN x =,∵BN 平分ABF ∠,AN AB ⊥,NG BF ⊥,∴NGAN x ==,2AB x =, 在Rt BNG △和Rt BNA 中, NG NA BN BN= = , ∴()Rt Rt HL BNG BNA △≌△∴2BGAB x ==, 设FG y =,则2AF y =, 在Rt BAF △中,222AB AF BF +=, ∴()()()222222x y x y +=+, 解得:43y x =, ∴410233BF BG GF x x x =+=+=, ∴231053AB AB x BC BF x ===, ∴AB BC 的值为35.。
中考数学试卷分析及反思
中考数学试卷分析应该从多个方面进行,包括试卷难度、试题类型、试题覆盖范围、学生表现等方面进行分析。
试卷难度: 试卷难度应该与中考的考查目的和学生的学习水平相适应。
如果试卷难度过大,学生很难取得高分,如果试卷难度过低,学生就不能发挥出自己的潜能。
试题类型: 试题类型应该涵盖中考试题的各类型,如填空题、解答题、和选择题等。
试题覆盖范围: 试题应该覆盖高中数学教育大纲中所要求的知识点和技能。
学生表现: 通过对学生的成绩分析, 可以发现学生的优劣势, 为下一步的教学设计提供参考.
在分析完中考数学试卷后, 应该对教学进行反思, 总结经验, 改进教学方法, 为学生提供更好的学习条件. 教师应该根据学生的学习特点和需要, 制定有针对性的教学计划, 使学生能够顺利通过中考.
反思还应该包括对教师本身的自我反省,如是否能够恰当地指导学生进行学习,是否能够有效地调整教学策略等。
此外,经过中考数学试卷的分析, 教师还应该对试卷的命题、设计等方面进行深入研究, 总结出经验教训, 为下一次的试卷设计和教学提供参考。
反思不仅仅是让教师对教学进行总结, 更应该借鉴评估结果, 进行教学改进. 这样才能使学生得到更好的教育, 提高学生的学习能力.。
中考试卷分析报告数学1. 引言本篇文章将对一份中考数学试卷进行分析,旨在深入理解该试卷的考察重点、题型分布和难易程度,以帮助学生和教师有效备考和教学。
通过对试卷的综合分析,我们将为学生提供备考指导,并为教师提供教学改进的参考意见。
2. 考试概况本次中考数学试卷共计50道题,总分为150分。
试卷包括选择题、填空题、计算题和解答题四种题型。
各题型分布情况如下:•选择题:共30道题,占总分的60%;•填空题:共10道题,占总分的20%;•计算题:共5道题,占总分的10%;•解答题:共5道题,占总分的10%。
3. 题型分析3.1 选择题选择题是本次数学试卷的主要题型,占试卷总分的60%。
选择题分布较为均匀,涵盖了中考数学各个知识点。
其中,选择题又可以分为单选题和多选题两种类型。
单选题占选择题的80%,共计24道题。
这些题目难度适中,主要考察学生对各个知识点的掌握程度。
其中,代数、几何和概率统计类别的题目占据较大比例,分别占选择题的30%、30%和20%。
多选题占选择题的20%,共计6道题。
这些题目相对较难,需要学生综合运用多个知识点进行分析。
多选题的题目主要涉及函数、三角函数和数列等知识点。
3.2 填空题填空题占试卷总分的20%,共计10道题。
这些题目主要考查学生对各种算式的计算能力和运算思维。
填空题的难度适中,覆盖了中考数学的各个知识点。
其中,代数和几何类别的题目占据较大比例,分别占填空题的40%和30%。
这些题目要求学生运用代数式和几何关系进行推理和计算。
3.3 计算题计算题占试卷总分的10%,共计5道题。
这些题目要求学生进行较复杂的计算,考查学生的计算能力和分析问题的能力。
计算题主要涉及三角函数、函数和统计概率等知识点。
其中,三角函数类别的题目占计算题的40%,要求学生运用三角函数的定义和性质进行计算和推理。
3.4 解答题解答题占试卷总分的10%,共计5道题。
这些题目设有较高的难度,要求学生具备较强的分析和解决问题的能力。
深圳中考数学试卷分析报告一.整体分析通过对近三年的深圳中考数学试卷的分析,试卷整体的设计思路体现了“注重双基、体现新意、适度区分”的思想。
具有以下几个特点:第一,注重双基和教学重点的考查。
试题考查重要的数学概念、性质和方法,包括重视双基和教材内容考查。
第二,体现新意。
客观性试题设计在不影响学生思维的前提下加强解释性。
综合性问题控制条件,降低试题的复杂性,却依然存在较多的思维入口,利于学生发挥真实水平。
第三,适度区分。
基础题、中档题、较难题的分值配比为8:1:1,中档题和较难题分散在不同试题中,既有利于适度区分,又有利于合理考查学生解决问题过程的认知水平差异。
二.板块分析图(1.1)从图(1.1)可以清晰的看出以下几点:1.几何与代数的考点最多分别为18个和13个,占所有考点的69%,所以这两个板块的知识是深圳中考的重点,很多考题集中在这两块出题目。
2.综合题型是考试中的难点也是考生成绩的区分点,考点很集中,主要是二次函数、圆、一次函数与几何的综合运用,重要把握这几大知识点就会抓住中考的精髓所在。
图(1.2)3 从图(1.2)我们可以在总的分值占比上代数知识的考点占了深圳近三年中考分值的1/3以上,是重要的考点,几何的知识板块占比也相当多,所以把握好这两个板块就抓住了深圳中考。
对于函数与几何的综合部分是重点也是难点更是必考点,所以务必当作重中之重来把握。
三. 年级分析图(1.3)图(1.4)从图(1.3)(1.4)我们可以看出各年级在中考的考试中占比有所侧重与不同,可以很清晰的看出来八年级的考点在所有考点占了近一半,所以八年级的学习很关键,它的知识点很多,考生务必重点把握八年级的学习,当然七年级与九年级的知识点同样重要,也要高度重视起来,才能在中考中立于不败之地。
四.知识点分析图(1.5)从图(1.5)我们可以看出以下几点:1.从分值占比这一块我们可以看出二次函数综合运用、圆的综合运用、解一元一次不等式(组)、分式化简、实数运算、图形对称、等腰梯形的性质、因式分解这几个知识点出现的分值都在10分以上,是考试的重难点,考生在务必熟练这些知识的同时,也要掌握其它考点。
深圳中考数学试卷分析2020/4/1201O N E总体结构分析选择题36%填空题12%解答题52%试卷题型分布一、选择题(建议15min 内完成) 1-12题,每题3分,共36分二、填空题(建议10min 完成) 13-16题,每题3分,共12分三、解答题17题计算(5分) (必须做对) 18题计算(6分) (必须做对) 19题数据统计(7分) (必须做对) 20-23题综合应用(共4题,共34分)02O N E卷面结构分析04综合应用题03计算题02填空题01选择题CONTENTS目录题型题号2011年2012年2013年2014年2015年2016年2017年2018年2019年分值选择题1相反数倒数绝对值相反数相反数有理数(正数)绝对值相反数绝对值32三视图科学计数法同底数幂的运算图形对称性科学计数法正方体展开图三视图科学计数法轴对称33科学计数法轴对称和中心对称科学计数法科学计数法同底数幂的运算整式运算科学计数法三视图科学计数法34同底数幂的运算同底数幂的运算轴对称和中心对称三视图轴对称和中心对称轴对称图形轴对称、中心对称中心对称正方体展开图35中位数方差中位数数据的代表三视图科学计数法平行线的判定众数、极差中位数、众数36打折销售三角形内角和与外交定理分式值为零一次函数的解析式数据的代表(中位数、众数)平行线的性质与角度的计算解一元一次不等式组整式运算整式运算37相似三角形概率关于原点对称一元二次方程的判别式一元一次不等式概率计算一元一次方程的应用一次函数平移平行线的性质与角度的计算38概率方程的解、平方根、三角形全等的判定列分式方程全等三角形二次函数图像与系数的关系平行四边形、全等三角形的判定平方根、中位数、众数尺规作图(中垂线)相交线与平行线尺规作图、线段的垂直平分线39整式的运算圆直角三角形、四边形周长概率的统计圆周角定理分式方程应用题命题与定理二元一次方程组函数图像,符号判断310二次函数的性质、反比例函数的性质各象限点的坐标特点命题判断对错解直角三角形的实际问题一元一次方程的应用定义新运算(求导)数据分析(中位数)圆的切线性质命题311切线、垂径定理、二元一次方程组相似三角形一次函数与二次函数图像二次函数图象与系数的关系复杂作图正方形与扇形面积计算三角函数的应用(测高)二次函数图象定义新运算312等边三角形的性质、相似三角形等边三角形的性质、角交定理平行、全等、三角函数梯形、三角形全等、解直角三角形翻折变换(折叠问题)、全等三角形的判定与性质、正方形的性质、相似三角形的判定与四边形、全等三角形、相似三角形几何综合反比例函数四边形多结论题3题型题号2011年2012年2013年2014年2015年2016年2017年2018年2019年分值填空题13分解因式分解因式分解因式分解因式分解因式(提公因式法与公式法的综合应用)因式分解因式分解因式分解因式分解314垂径定理二次函数概率折叠之雷劈模型勾股定理、角平分线列表法与树状图法平均数概率计算概率计算概率315探究规律反比例函数利润率双曲线、相似三角形找规律尺规作图、角平分线与平行四边形定义新运算三角形面积、全等正方形折叠316一次函数、勾股定理、三角形的内心正方形找规律找规律反比例函数系数K 的几何意义、相似三角形的判定与性质平行四边形与反比例函数相似三角形三角形(角平分线性质、相似三角形、解直角三角形)反比例综合3题型题号2011年2012年2013年2014年2015年2016年2017年2018年2019年分值解答题17负指数、三角函数、0次幂、绝对值负指数、三角函数、0次幂、绝对值负指数幂、三角函数、0次幂、绝对值无理数化简、三角函数、0次幂、负指数幂实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值实数计算实数的运算实数计算实数计算518解分式方程分式化简求值解不等式组分式化简求值解分式方程一元一次不等式组分式的简单求值分式的化简求值分式化简求值619频数分布直方图、扇形统计图频数分布直方图频数分布直方图、扇形统计图频数分布直方图条形统计图;用样本估计总体;扇形统计图数据统计数据统计数据统计数据统计720圆的性质、勾股定理、圆与三角形面积计算矩形折叠等腰梯形平行四边形的判定解直角三角形的应用-仰角俯角问题三角函数的应用一元二次方程的实际应用菱形的证明和计算三角函数的应用821矩形的性质、折叠、勾股定理、相似方案选择、最值问题圆、相似、勾股定理、垂径定理分式方程、不等式方案设计一元一次方程的应用一次方程与一次不等式的应用反比例函数与一次函数的综合分式与不等式应用题一元二次方程、一次函数应用题822二元一次方程、二次函数的最值问题、方案选择二次函数的几何运用抛物线的解析式、圆、相似、垂径定理、相交弦定理勾股定理、切线、一次函数表达式、线段差的最值问题切线的性质以及相似三角形的判定与性质、等腰直角三角形的性质圆与相似三角形的综合圆的综合(勾股定理、圆周角定理、相似三角形)圆与三角函数、相似综合、截长补短一次函数、二次函数综合、线段、最值、动点面积比例问题9 23抛物线的解析式、对称轴和坐标轴上存在点使四边形的周长最小问题、相似三角形、二次函数图像上点坐标圆、一次函数直线、反比例函数、二次函数求最值、K的几何意义、平移一次函数交点、二次函数解析式、函数图像的平移、及产生的动点构成的直角三角形存在性问题二次函数的综合应用,涉及待定系数法、角平分线的性质、三角函数、三角形面积一次函数解析式、角平分线性质、等腰三角形与二次函数动点存在性问题二次函数的综合(二次函数解析式、面积问题、旋转)二次函数与面积、构造角度、折叠、三垂直相似圆、切线证明、相似三角形、三角函数、二次函数最值问题9方程(组):考察解法及在应用题中的作 用,二次方程还涉及根的判断不等式:主要考查解法及性质u 数与式(20分)-基础(必须掌握)抓定义和原理实数。
2024年中考数学试卷分析报告1. 引言本报告对2024年中考的数学试卷进行了详细分析和评估。
数学试卷是中考中最重要的科目之一,试卷设计的质量直接关系到考生的成绩和学校的教学质量。
因此,通过对试卷的分析可以更好地了解试卷的难易程度、题型分布和命题思路,为今后的试卷设计提供参考。
2. 难易程度分析2.1 单项选择题 2024年数学试卷的单项选择题共有30道,分布在试卷的各个部分。
我们对这些题目进行了难易程度的评估,其中易题有15道,中等题有10道,难题有5道。
整体而言,单项选择题的难度适中,没有超出预期范围。
2.2 解答题解答题是数学试卷中的重中之重,也是考生们关注的焦点。
2024年的数学试卷共有5个解答题,分别涉及代数、几何、概率等不同知识点。
我们对这些题目进行了难易程度的评估,其中简单题有1道,中等题有3道,难题有1道。
总体而言,解答题的难度适中,符合考生的水平要求。
3. 题型分布分析2024年的数学试卷在题型分布上做到了合理的安排,各个知识点的考察比例较为均衡。
以下是具体的分析:3.1 选择题选择题在试卷中占据了较大的比例,涵盖了各个知识点。
其中,代数和几何的选择题比例较大,占总题数的30%和25%。
3.2 解答题解答题在试卷中的比例适中,共有5个题目,占总题数的20%。
这些题目涵盖了代数、几何、概率等不同知识点,能够全面考察学生的数学能力。
3.3 计算题计算题在试卷中占比较小的比例,共有2道,占总题数的8%。
这些题目主要考察学生的计算能力和应用能力,能够有效评估学生的数学水平。
4. 命题思路分析4.1 手算题与计算器题在2024年的数学试卷中,命题人员合理地安排了手算题和计算器题。
手算题主要涉及到基础运算和应用题,能够考察学生的计算能力和推理能力。
计算器题则更侧重于实际应用题,能够考察学生的综合运用能力。
4.2 应用题与概念题应用题和概念题在试卷中的比例也是相对均衡的。
应用题主要考察学生对知识的综合应用能力,而概念题则更注重学生对基本概念的理解和掌握程度。
绝密★启用前2024年广东省深圳市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列用七巧板拼成的图案中,为中心对称图形的是( )A. B. C. D.2.如图,实数a,b,c,d在数轴上表示如下,则最小的实数为( )A. aB. bC. cD. d3.下列运算正确的是( )A. (−m3)2=−m5B. m2n⋅m=m3nC. 3mn−m=3nD. (m−1)2=m2−14.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )A. 124B. 112C. 16D. 145.如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角∠1=50°,则反射光线与平面镜夹角∠4的度数为( )A. 40°B. 50°C. 60°D. 70°6.在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是( )A. ①②B. ①③C. ②③D. 只有①7.在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为( ) A. {7x +7=y 9(x −1)=yB. {7x +7=y 9(x +1)=yC. {7x −7=y 9(x −1)=yD. {7x −7=y 9(x +1)=y8.如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得顶端A 的仰角为45°,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得顶端A 的仰角为53°,则电子厂AB 的高度为( ) (参考数据:sin53°≈45,cos53°≈35,tan53°≈43)A. 22.7mB. 22.4mC. 21.2mD. 23.0m第II 卷(非选择题)二、填空题:本题共5小题,每小题3分,共15分。
一、选择题(每题2分,共30分)1. (2分)2. (2分)3. (2分)4. (2分)5. (2分)6. (2分)7. (2分)8. (2分)9. (2分)10. (2分)11. (2分)12. (2分)13. (2分)14. (2分)15. (2分)二、判断题(每题1分,共20分)1. (1分)2. (1分)3. (1分)4. (1分)5. (1分)6. (1分)8. (1分)9. (1分)10. (1分)11. (1分)12. (1分)13. (1分)14. (1分)15. (1分)16. (1分)17. (1分)18. (1分)19. (1分)20. (1分)三、填空题(每空1分,共10分)1. (1分)2. (1分)3. (1分)4. (1分)5. (1分)6. (1分)7. (1分)8. (1分)9. (1分)四、简答题(每题10分,共10分)1. (10分)五、综合题(1和2两题7分,3和4两题8分,共30分)1. (7分)2. (7分)3. (8分)4. (8分)(考试时间:90分钟,满分:100分)四、简答题(每题10分,共10分)2. (10分)五、综合题(1和2两题7分,3和4两题8分,共30分)1. (7分)2. (7分)3. (8分)4. (8分)六、计算题(每题5分,共15分)1. (5分)2. (5分)3. (5分)七、应用题(每题10分,共20分)1. (10分)2. (10分)八、证明题(每题8分,共16分)2. (8分)九、作图题(每题5分,共10分)1. (5分)2. (5分)十、探究题(每题6分,共12分)1. (6分)2. (6分)十一、案例分析题(每题7分,共14分)1. (7分)2. (7分)十二、策略题(每题6分,共12分)1. (6分)2. (6分)十三、设计题(每题8分,共8分)1. (8分)十四、实验题(每题7分,共14分)1. (7分)2. (7分)十五、论述题(每题10分,共10分)1. (10分)一、选择题答案:1. D2. B4. C5. B6. D7. A8. C9. B10. D11. A12. C13. B14. D15. A二、判断题答案:1. ×2. √3. ×4. √5. ×6. √7. ×8. √9. ×10. √12. √13. ×14. √15. ×16. √17. ×18. √19. ×20. √三、填空题答案:1. 52. 33. 254. 2x+35. 1/26. 1447. 68. y=2x+19. 30°10. 5四、简答题答案:1. 解:根据勾股定理,直角三角形两直角边的平方和等于斜边的平方。
2018年广东省深圳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6B.−16C.16D.62.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×1073.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10B.85,5C.80,85D.80,106.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A .∠1=∠2B .∠3=∠4C .∠2+∠4=180°D .∠1+∠4=180°9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480B .{x +y =706x +8y =480C .{x +y =4806x +8y =70D .{x +y =4808x +6y =7010.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√311.(3.00分)(2018•深圳)二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,下列结论正确是( )A .abc >0B .2a +b <0C .3a +c <0D .ax 2+bx +c ﹣3=0有两个不相等的实数根12.(3.00分)(2018•深圳)如图,A 、B 是函数y=12x上两点,P 为一动点,作PB ∥y 轴,PA ∥x 轴,下列说法正确的是( )①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9=.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC=.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a=,b=.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6B.−16C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10B.85,5C.80,85D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x +3;把x=2代入解析式y=x +3=5,故选:D .【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a ,b 被c ,d 所截,且a ∥b ,则下列结论中正确的是( )A .∠1=∠2B .∠3=∠4C .∠2+∠4=180°D .∠1+∠4=180°【考点】JA :平行线的性质. 【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a ,b 被c ,d 所截,且a ∥b ,∴∠3=∠4,故选:B .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480B .{x +y =706x +8y =480C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480, 故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan ∠OAB 可得答案.【解答】解:设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理知AB=AC=3,OA 平分∠BAC ,∴∠OAB=60°,在Rt △ABO 中,OB=ABtan ∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P是动点,进而判断出①错误,设出点P的坐标,进而得出AP,BP,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P是动点,∴BP与AP不一定相等,∴△BOP与△AOP不一定全等,故①不正确;设P(m,n),∴BP∥y轴,∴B(m,12m),∴BP=|12m﹣n |, ∴S △BOP =12|12m ﹣n |×m=12|12﹣mn | ∵PA ∥x 轴,∴A (12n,n ), ∴AP=|12n﹣m |, ∴S △AOP =12|12n ﹣m |×n=12|12﹣mn |, ∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE , ∵S △AOP =S △BOP ,∴OB ×PE=OA ×PE ,∵OA=OB ,∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M ,∴AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上, ∴S △AMO =S △BNO =6,∵S △BOP =4,∴S △PMO =S △PNO =2,∴S 矩形OMPN =4,∴mn=4,∴m=4n , ∴BP=|12m ﹣n |=|3n ﹣n |=2|n |,AP=|12n ﹣m |=8|n|,∴S△APB=12AP×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B.【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9=(a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式.【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:36=12, 故答案为:12. 【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF 是正方形,∠CEA 和∠ABF 都是直角且点E ,A ,B 三点共线,AB=4,则阴影部分的面积是 8 .【考点】KD :全等三角形的判定与性质;LE :正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF 是正方形,∴AC=AF ,∠CAF=90°,∴∠EAC +∠FAB=90°,∵∠ABF=90°,∴∠AFB +∠FAB=90°,∴∠EAC=∠AFB ,在△CAE 和△AFB 中,{∠CAE =∠AFB ∠AEC =∠FBA AC =AF,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=12×AB×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC=8√105.【考点】IJ:角平分线的定义;KQ:勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE,最后判断出△AEF∽△AFC,即可得出结论.【解答】解:如图,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠1=∠2,∠3=∠4,∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E作EG⊥AD于G,在Rt△EFG中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理得,AE=√AG2+EG2=√10,连接CF,∵AD 平分∠CAB ,BE 平分∠ABC ,∴CF 是∠ACB 的平分线,∴∠ACF=45°=∠AFE ,∵∠CAF=∠FAE ,∴△AEF ∽△AFC ,∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105, 故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0. 【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1 =3. 【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100人,a=0.25,b=15.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD ,AB=DB ,∠ACB=∠DCB ,求出AC=AB ,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD ,AB=DB ,由已知尺规作图痕迹得:BC 是∠FCE 的角平分线,∴∠ACB=∠DCB ,又∵AB ∥CD ,∴∠ABC=∠DCB ,∴∠ACB=∠ABC ,∴AC=AB ,又∵AC=CD ,AB=DB ,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE, 即x 12=6−x 6, 解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt△ACH中,∠ACH=45°,∴AH=AC√2=2√2,∴四边形ACDB的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN 全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴ACAD =AE AC,∴AD•AE=AC2=10;(3)在BD上取一点N,使得BN=CD,在△ABN和△ACD中{AB=AC ∠3=∠1 BN=CD,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.【考点】HF:二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得OPFA=OEFE=134=43,即OP=43FA,设点P(t,﹣2t﹣1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y=a(x−12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2), 设直线AB 解析式为:y=kx +b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b, 解得:{k =−2b =−1, ∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0), 若∠OPM=∠MAF ,∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43, ∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23, 由对称性知;当t 1=−215时,也满足∠OPM=∠MAF , ∴t 1=−215,t 2=−23都满足条件, ∵△POE 的面积=12OE ⋅|l|, ∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QRN′S =RN′ES=QN′EN′,即QR1=−2a−1ES=−2a−a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR可得﹣a+−2a−12=2,解得:a=﹣5 4,∴Q(﹣54,32);若点Q在BC上运动,且Q在y轴左侧,如图2,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a,在Rt△SEN′中,(√5﹣a)2+12=a2,解得:a=3√5 5,∴Q(﹣3√55,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a,在Rt△SEN′中,(√5﹣a)2+12=a2,解得:a=3√5 5,∴Q(3√55,2).综上,点Q的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。
2015年广东省深圳市中考数学试卷一、选择题:1.(3分)﹣15的相反数是()A.15 B.﹣15 C.D.2.(3分)用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×1063.(3分)下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a44.(3分)下列图形既是中心对称又是轴对称图形的是()A. B.C.D.5.(3分)下列主视图正确的是()A.B.C.D.6.(3分)在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,907.(3分)解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.49.(3分)如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°10.(3分)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.10011.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C. D.12.(3分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF 交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S =.在以上4个结论中,正确的有()△BEFA.1 B.2 C.3 D.4二、填空题:13.(3分)因式分解:3a2﹣3b2=.14.(3分)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.15.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.16.(3分)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=.三、解答题:17.(5分)计算:|2﹣|+2sin60°+﹣.18.(6分)解方程:.19.(7分)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为,参加调查的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有人.20.(8分)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.21.(8分)下表为深圳市居民每月用水收费标准,(单位:元/m3).(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.(9分)如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.23.(9分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;=3S△EBC?若存在求出点F的坐标,若不存在(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC请说明理由.2015年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:1.(3分)﹣15的相反数是()A.15 B.﹣15 C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣15的相反数是15,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将316000000用科学记数法表示为:3.16×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4【分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;合并同类项法则对各选项分析判断即可得解.【解答】解:A、a•a=a2,正确,故本选项错误;B、2a+a=3a,正确,故本选项错误;C、(a3)2=a3×2=a6,故本选项正确;D、a3÷a﹣1=a3﹣(﹣1)=a4,正确,故本选项错误.故选:C.【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.(3分)下列图形既是中心对称又是轴对称图形的是()A. B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(3分)下列主视图正确的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形.故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.6.(3分)在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,90【分析】首先找出这组数据中出现次数最多的数,则它就是这组数据的众数;然后把这组数据从小到大排列,则中间的数就是这组数据的中位数,据此解答即可.【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.【点评】(1)此题主要考查了众数的含义和求法,要熟练掌握,解答此题的关键是要明确:①一组数据中出现次数最多的数据叫做众数.②求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2)此题还考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,①如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.②如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.(3分)解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.【分析】先移项、合并同类项,把x的系数化为1即可.【解答】解:2x≥x﹣1,2x﹣x≥﹣1,x≥﹣1.故选:B.【点评】本题考查了解一元一次不等式、在数轴上表示不等式的解集.把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.4【分析】根据抛物线开口方向对①进行判断;根据抛物线的对称轴位置对②进行判断;根据抛物线与y轴的交点位置对③进行判断;根据抛物线与x轴的交点个数对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,所以①错误;∵抛物线的对称轴在y轴右侧,∴﹣>0,∴b>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,所以③错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.9.(3分)如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°【分析】先根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,再利用互余得∠ACD=90°﹣∠DCB=70°,然后根据同弧或等弧所对的圆周角相等求解.【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10.(3分)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.100【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.11.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C. D.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.【解答】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:D.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12.(3分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF 交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S =.在以上4个结论中,正确的有()△BEFA.1 B.2 C.3 D.4【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.【解答】解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,④正确.故选:C.【点评】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二、填空题:13.(3分)因式分解:3a2﹣3b2=3(a+b)(a﹣b).【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(a2﹣b2)=3(a+b)(a﹣b),故答案为:3(a+b)(a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.【分析】利用树状图法列举出所有可能,看是否能被3整除.找出满足条件的数的个数除以总的个数即可.【解答】解:如图所示:共有6种情况,能被3整除的有12,21两种.因此概率为=.故答案为:.【点评】本题考查了树状图法求概率以及概率公式,注意能被3整除即两位数加起来和为3的倍数.15.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有21个太阳.【分析】由图形可以看出:第一行小太阳的个数是从1开始连续的自然数,第二行小太阳的个数是1、2、4、8、…、2n﹣1,由此计算得出答案即可.【解答】解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,第二行小太阳的个数是1、2、4、8、…、2n﹣1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳.故答案为:21.【点评】此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.16.(3分)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=16.【分析】根据反比例函数系数k的几何意义,证明△ABC∽△EOB,根据相似比求出BA•BO的值,从而求出△AOB的面积.【解答】解:∵△BCE的面积为8,∴,∴BC•OE=16,∵点D为斜边AC的中点,∴BD=DC,∴∠DBC=∠DCB=∠EBO,又∠EOB=∠ABC,∴△EOB∽△ABC,∴,∴AB•OB•=BC•OE∴k=AB•BO=BC•OE=16.故答案为:16.【点评】本题考查了反比例函数系数k的几何意义,解决本题的关键是证明△EOB∽△ABC,得到AB•OB•=BC•OE.三、解答题:17.(5分)计算:|2﹣|+2sin60°+﹣.【分析】原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=2﹣+2×+2﹣1=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)解方程:.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x2﹣2x+10x﹣15=4(2x﹣3)(3x﹣2),整理得:3x2﹣2x+10x﹣15=24x2﹣52x+24,即7x2﹣20x+13=0,分解因式得:(x﹣1)(7x﹣13)=0,解得:x1=1,x2=,经检验x1=1与x2=都为分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(7分)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为20%,参加调查的总人数为400,补全统计图;(2)三本以上的圆心角为72°.(3)全市有6.7万学生,三本以上有13400人.【分析】(1)根据看1本书的人数为40人,所占的百分比为10%,40÷10即可求出总人数,用100%﹣10%﹣25%﹣45%即可得x的值,用总人数乘以x的值,即可得到3本以上的人数,即可补全统计图;(2)用x的值乘以360°,即可得到圆心角;(3)用6.7万乘以三本以上的百分比,即可解答.【解答】解:(1)40÷10%=400(人),x=100%﹣10%﹣25%﹣45%=20%,400×20%=80(人),故答案为:20%,400;如图所示;(2)20%×360°=72°,故答案为:72°;(3)67000×20%=13400(人),故答案为:13400.【点评】此题主要考查了条形图与扇形图的综合应用,解决此类问题注意图形有机结合,综合分析获取正确信息.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.【分析】关键三角形外角的性质求得∠DAF=30°,得出AF=DF=10,在Rt△FGA中,根据正弦函数求出AG的长,加上BG的长即为旗杆高度.【解答】解:如图,∵∠ADG=30°,∠AFG=60°,∴∠DAF=30°,∴AF=DF=10,在Rt△FGA中,AG=AF•sin∠AFG=10×=5,∴AB=1.5+5.答:旗杆AB的高度为(1.5+5)米.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.21.(8分)下表为深圳市居民每月用水收费标准,(单位:元/m3).(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?【分析】(1)直接利用10a=23进而求出即可;(2)首先判断得出x>22,进而表示出总水费进而得出即可.【解答】解:(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28,答:该用户用水28立方米.【点评】此题主要考查了一元一次方程的应用,根据图表中数据得出用户用水为x米3(x>22)时的水费是解题关键.22.(9分)如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.【分析】(1)根据题意得出BO的长,再利用路程除以速度得出时间;(2)根据切线的性质和判定结合等腰直角三角形的性质得出AO的长,进而求出答案;(3)利用圆周角定理以及切线的性质定理得出∠CEF=∠ODF=∠OFD=∠CFG,进而求出△CFG∽△CEF,即可得出答案.【解答】(1)解:由题意可得:BO=4cm,t==2(s);(2)解:如图2,连接O与切点H,则OH⊥AC,又∵∠A=45°,∴AO=OH=3cm,∴AD=AO﹣DO=(3﹣3)cm;(3)证明:如图3,连接EF,∵OD=OF,∴∠ODF=∠OFD,∵DE为直径,∴∠ODF+∠DEF=90°,∠DEC=∠DEF+∠CEF=90°,∴∠CEF=∠ODF=∠OFD=∠CFG,又∵∠FCG=∠ECF,∴△CFG∽△CEF,∴=,∴CF2=CG•CE.【点评】此题主要考查了切线的性质以及相似三角形的判定与性质、等腰直角三角形的性质等知识,根据题意得出△CFG∽△CEF是解题关键.23.(9分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;=3S△EBC?若存在求出点F的坐标,若不存在(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC请说明理由.【分析】(1)把A、C两点坐标代入可求得b、c,可求得抛物线解析式;(2)当点P在∠DAB的平分线上时,过P作PM⊥AD,设出P点坐标,可表示出PM、PE,由角平分线的性质可得到PM=PE,可求得P点坐标;当点P在∠DAB外角平分线上时,同理可求得P点坐标;(3)可先求得△FBC的面积,过F作FQ⊥x轴,交BC的延长线于Q,可求得FQ的长,可设出F点坐标,表示出B点坐标,从而可表示出FQ的长,可求得F点坐标.【解答】解:(1)∵二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),∴,解得,∴抛物线的解析式y=﹣x2﹣2x+3,(2)存在,当P在∠DAB的平分线上时,如图1,作PM⊥AD,设P(﹣1,m),则PM=PD•sin∠ADE=(4﹣m),PE=m,∵PM=PE,∴(4﹣m)=m,m=﹣1,∴P点坐标为(﹣1,﹣1);当P在∠DAB的外角平分线上时,如图2,作PN⊥AD,设P(﹣1,n),则PN=PD•sin∠ADE=(4﹣n),PE=﹣n,∵PN=PE,∴(4﹣n)=﹣n,n=﹣﹣1,∴P点坐标为(﹣1,﹣﹣1);综上可知存在满足条件的P点,其坐标为(﹣1,﹣1)或(﹣1,﹣﹣1);(3)∵抛物线的解析式y=﹣x2﹣2x+3,∴B(1,0),=EB•OC=3,∴S△EBC=3S△EBC,∵2S△FBC=,∴S△FBC过F作FQ⊥x轴于点H,交BC的延长线于Q,过F作FM⊥y轴于点M,如图3,∵S=S△BQH﹣S△BFH﹣S△CFQ=HB•HQ﹣BH•HF﹣QF•FM=BH(HQ﹣HF)﹣QF•FM=BH•QF﹣△FBCQF•FM=QF•(BH﹣FM)=FQ•OB=FQ=,∴FQ=9,∵BC的解析式为y=﹣3x+3,设F(x0,﹣x02﹣2x0+3),∴﹣3x0+3+x02+2x0﹣3=9,解得:x0=或(舍去),∴点F的坐标是(,),∵S=6>,△ABC∴点F不可能在A点下方,综上可知F点的坐标为(,).【点评】本题主要考查二次函数的综合应用,涉及待定系数法、角平分线的性质、三角函数、三角形面积等知识点.在(1)中注意待定系数法的应用步骤,在(2)中注意分点P在∠DAB的角平分线上和在外角的平分线上两种情况,在(3)中求得FQ的长是解题的关键.本题所考查知识点较多,综合性很强,难度适中.。