2019年北京市各区一模数学试题分类汇编——圆
- 格式:pdf
- 大小:216.20 KB
- 文档页数:8
压轴题专题东城区28.给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点 P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,22M⎛⎫⎪⎪⎝⎭,22N⎛-⎝⎭.在A(1,0),B(1,1),)C三点中, 是线段MN关于点O的关联点的是;(2)如图3, M(0,1),N122⎛⎫-⎪⎪⎝⎭,点D是线段MN关于点O的关联点.①∠MDN的大小为°;②在第一象限内有一点E),m,点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线23y x=-+上,当∠MFN≥∠MDN时,求点F的横坐标Fx的取值范围.28. 解:(1)C ; --------------2分 (2)① 60°;② △MNE 是等边三角形,点E 的坐标为);--------------5分③ 直线2y =+交 y 轴于点K (0,2),交x 轴于点()T 0.∴2OK =,OT =∴60OKT ∠=︒.作OG ⊥KT 于点G ,连接MG .∵()M 0,1, ∴OM =1.∴M 为OK 中点 . ∴ MG =MK =OM =1.∴∠MGO =∠MOG =30°,OG ∴3.2G ⎫⎪⎪⎝⎭, ∵120MON ∠=︒, ∴ 90GON ∠=︒.又OG ,1ON =, ∴30OGN ∠=︒. ∴60MGN ∠=︒.∴G 是线段MN 关于点O 的关联点.经验证,点)E在直线2y x =+上. 结合图象可知, 当点F 在线段GE 上时 ,符合题意. ∵G F E x x x ≤≤,∴F x 分 西城区28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ). 已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r .(1)如图,当r①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A +是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k =r 的取值范围.(3)若存在r的值使得直线y b =+与⊙C 有公共点,且公共点时⊙C依附点”,直接写出b 的取值范围.x【解析】(1(2)①如图,当1r =时,不妨设直线QM 与⊙C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥,x∵(1,0)Q -,(1,0)C ,1r =, ∴2CQ =,1CM =, ∴MQ =此时2MQk CQ== ②如图,若直线QM 与⊙C 不相切,设直线QM 与⊙C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,x∴()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=, ∵2CQ =, ∴2MQ NQ DQk DQ CQ CQ+===,∴当k =DQ =此时1CD =, 假设⊙C 经过点Q ,此时2r =, ∵点Q 早⊙C 外,∴r 的取值范围是12r <≤. (3)b <<. 海淀区28.在平面直角坐标系xOy 中,对于点P 和C ,给出如下定义:若C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在C 上,则称P 为C 的反射点.下图为C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,A 的反射点是____________;②点P 在直线y x =-上,若P 为A 的反射点,求点P 的横坐标的取值范围;(2)C 的圆心在x 轴上,半径为2,y 轴上存在点P 是C 的反射点,直接写出圆心C 的横坐标x 的取值范围.28.解(1)①A 的反射点是M ,N . ………………1分②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D作⊥DH x 轴于点H ,如图.可求得点D的横坐标为. 同理可求得点E ,F ,G的横坐标分别为2,2,2. 点P 是A 的反射点,则A 上存在一点T ,使点P 关于直线OT 的对称点'P 在A 上,则'OP OP =.∵1'3≤≤OP ,∴13≤≤OP . 反之,若13≤≤OP ,A 上存在点Q ,使得OP OQ =,故线段PQ 的垂直平分线经过原点,且与A 相交.因此点P 是A 的反射点.∴点P 的横坐标x的取值范围是≤x -x 4分(2)圆心C 的横坐标x 的取值范围是44≤≤x -. ………………7分 丰台区28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x . 已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.28.解:2分(2)点A 和⊙G 的“中立点”在以点O 为圆心、半径为1的圆上运动. 因为点K 在直线y =- x +1上, 设点K 的坐标为(x ,- x +1),则x 2+(- x +1)2=12,解得x 1=0,x 2=1.所以点K 的坐标为(0,1)或(1,0). ………5分(3)(说明:点N 与⊙C 的“中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动.圆P 与y 轴相切时,符合题意.) 所以点N 的横坐标的取值范围为-6≤x N ≤-2. ………8分石景山区28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图....(1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B 在直线y = 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.28.解:(1)25π; ………………… 2分 (2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图,xy xy∴AB CD ⊥,45DCA ∠=°.①当0b >时,则点B 在第二象限. 过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =,∴2BE AE ==.∴22B-(,. ②当0b <时,则点'B 在第四象限.同理可得'22B -().综上所述,点B的坐标为22-(,或22-(. ………………… 6分(3)5m -≤或11m ≥. ………………… 8分 朝阳区28. 对于平面直角坐标系xOy 中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为线段AB 的伴随点.(1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是 ; ②在直线y =2x +b 上存在线段AB 的伴随点M 、N , 且MN =求b 的取值范围;(2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.28. 解:(1)①线段AB 的伴随点是: 23,P P . …………………2分②如图1,当直线y =2x +b 经过点(-3,-1)时,b =5,此时b 取得最大值.…………………………………………4分如图2,当直线y =2x +b 经过点(-1,1)时,b =3,此时b 取得最小值.……………………………………………5分∴ b 的取值范围是3≤b ≤5. ……………………………………6分(2)t 的取值范围是-12.2t ≤≤…………………………………………8分燕山区28.在Rt △ABC 中, ∠ACB =90°,CD 是AB 边的中线,DE ⊥BC 于E , 连结CD ,点P 在射线图1图2CB 上(与B ,C 不重合).(1)如果∠A =30°①如图1,∠DCB = °②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;( 2 )如图3,若点P 在线段CB 的延长线上,且∠A =α (0°<α<90°) ,连结DP , 将线段DP 绕点逆时针旋转 α2得到线段DF ,连结BF , 请直接写出DE 、BF 、BP 三者的数量关系(不需证明).28.解:(1) ①∠DCB=60°…………………………………1′②补全图形CP=BF …………………………………3′△ DCP ≌△ DBF …………………………………6′(2)BF-BP=2DE ⋅tan α…………………………………8′门头沟区28. 在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”. (1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式. (2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O有交点,画出示意图直接.....写出半径r 的取值范围.28.(本小题满分8分)解: (1)①)5,3()5,1(21C C 或. ……………………………………………2分 ②由图可知,B )3,5( ∵A (1,3) ∴AB =4∵ABC ∆为等腰直角三角形 ∴BC =4∴)1,5()7,5(21-C C 或设直线AC 的表达式为(0)y kx b k =+≠ 当)7,5(1C 时,⎩⎨⎧=+=+753b k b k ⎩⎨⎧==∴21b k2+=∴x y …………………………………3分 当)1,5(2-C 时,⎩⎨⎧-=+=+153b k b k ⎩⎨⎧=-=∴41b k 4+-=∴x y …………………………………4分 ∴综上所述,直线AC 的表达式是2+=x y 或4+-=x y(2)当点F 在点E 左侧时:大兴区28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图.图图2如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N .(1)点N 的横坐标为 ;(2)已知一直角为点,,N M K 的“平横纵直角”, 若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围.28.(1)9 ………………………………………………………………… 1分 (2)方法一:MK ⊥MN ,∴要使线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合,也就是使以FN 为直径的圆与OC 有两个交点,即m r >.29=r ,29<∴m . 又0>m , 290<<∴m . ………………………………………………4分 方法二:0>m ,∴点K 在x 轴的上方.过N 作NW ⊥OC 于点W ,设OM x =,OK y =, 则 CW =OC -OW =3,WM =9x -. 由△MOK ∽△NWM , 得,∴9y x x m=-. ∴x m x m y 912+-=.当m y =时,219m x x m m=-+, 化为0922=+-m x x . 当△=0,即22940m -=, 解得92m =时, 线段OC 上有且只有一点M ,使相应的点K 与点F 重合.0>m ,∴ 线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合时,m 的取值范围为290<<m . (4)分(3)设抛物线的表达式为:)12)(3(-+=x x a y (a ≠0),又 抛物线过点F (0,m ),a m 36-=∴.m a 361-=∴.m x m x x m y 1625)29(361)12)(3(3612+--=-+-=∴. …………………………………5分过点Q 做QG ⊥x 轴与FN 交于点RFN ∥x 轴 ∴∠QRH =90°tan BG BQG QG∠=,2516QG m =,152BG =∴,又4560QHN ︒≤∠≤︒,∴3045BQG ︒≤∠≤︒∴当30BQG ∠=︒时,可求出3524=m ,………………………………… 6分 当45BQG ∠=︒时,可求出524=m . ……………………………………7分m ∴的取值范围为245m ≤≤. …………………………………8分 平谷区28. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (),则以AB 为边的“坐标菱形”的最小内角为_______; (2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O ,点P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.28.解:(1)60; ····························· 1 (2)∵以CD 为边的“坐标菱形”为正方形,∴直线CD 与直线y =5的夹角是45°. 过点C 作CE ⊥DE 于E .∴D (4,5)或()2,5-. ············ 3 ∴直线CD 的表达式为1y x =+或3y x =-+. ·· 5(3)15m ≤≤或51m -≤≤-. (7)怀柔区28. P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PAPB ≤3,则点P 为⊙C 的“特征点”. (1)当⊙O 的半径为1时.①在点P 1(2,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ; ②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.yx–1–2–3–4–512345–1–2–3–4–512345O28.(1)①P 1(2,0)、P 2(0,2)…………………………………………………………………2分②如图, 在y=x+b 上,若存在⊙O 的“特征点”点P ,点O 到直线y=x+b 的距离m ≤2. 直线y=x+b 1交y 轴于点E ,过O 作OH ⊥直线y=x+b 1于点H. 因为OH=2,在Rt △DOE 中,可知OE=22. 可得b 1=22.同理可得b 2=-22.∴b 的取值范围是:22 ≤b ≤22. …………………………………………………6分(2)x>3或 3-<x . …………………………………………………………………………8分延庆区28.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点. 已知:点C (3,4)(1)下列各点中, 与点C 互为反等点; D (-3,-4),E (3,4),F (-3,4)(2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围;(3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点,求r 的取值范围.28.(1)F ……1分(2) -3≤p x ≤3 且p x ≠0 ……4分(3)4 < r ≤5 ……7分顺义区点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”. 例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'.(1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由;(3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.28.(1)是.图2∴两抛物线曲似,曲似比是12.………… 3分(2)假设存在k值,使⊙O与直线BC相切.则OA=OC=2k,又∵OD=k,AD=k2,并且OD2+AD2= OA2,∴k2+(k 2)2=(2k)2.∴k=(舍负)由对称性可取k=综上,k=………………………… 6分(3)m的取值范围是m>1,k与m之间的关系式为k 2=m2-1 .……… 8分。
2019年北京市东城区中考数学一模试卷一、选择题(每小题2分,共16分)1.下列立体图形中,主视图是圆的是()A. B. C. D.【答案】D【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的主视图是矩形,故B不符合题意;C、圆台的主视图是梯形,故C不符合题意;D、球的主视图是圆,故D符合题意,故选D.【点睛】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.2.2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数不少于16 000 000人次,将16 000 000用科学记数法表示应为()A. 16×104B. 1.6×107C. 16×108D. 1.6×108【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将16 000 000用科学记数法表示应 1.6×107,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n 的值.3.已知实数a ,b 在数轴上的位置如图所示,下列结论中正确的是( )A. a b >B. a b <C. 0ab >D. a b ->【答案】D 【解析】【分析】由数轴得出a <-1<0<b <1,根据a 、b 的范围,即可判断各选项的对错. 【详解】由数轴得出a <-1<0<b <1,则有A 、a <b ,故A 选项错误;B 、|a|>|b|,故B 选项错误;C 、ab <0,故C 选项错误;D 、-a >b ,故D 选项正确, 故选D.【点睛】本题考查了实数与数轴,解决本题的关键是结合数轴,灵活运用相关知识进行判断.4.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是( )A. 50°B. 60°C. 70°D. 80°【答案】A 【解析】 【分析】利用平行线的性质解决问题即可. 【详解】如图,∵a ∥b ,∴∠1=∠3=80°,由翻折不变性可知:∠2=∠4=12(180°﹣80°)=50°, 故选A .【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识.5.一个多边形的每个内角均为120°,则这个多边形是( ) A. 四边形 B. 五边形C. 六边形D. 七边形【答案】C 【解析】由题意得,180°(n -2)=120°n ⨯, 解得n =6.故选C.6.如果a 2+3a ﹣2=0,那么代数式(23139a a ++-)23a a-⋅ 的值为( ) A. 1 B.12 C.13D.14【答案】B 【解析】 【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把已知等式代入计算即可求出值. 【详解】原式=2231(3)(3)3a a a a a a a-⋅=+-+,由a 2+3a ﹣2=0,得到a 2+3a =2,则原式=12,故选B.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.7.弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:当重物质量为5kg(在弹性限度内)时,弹簧总长L(cm)是()A. 22.5B. 25C. 27.5D. 30【答案】B【解析】【分析】根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=5时,代入函数解析式求值即可.【详解】设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,将(0.5,16)、(1.0,17)代入,得:0.51617k bk b+=⎧⎨+=⎩,解得:k2b15=⎧⎨=⎩,∴L与x之间的函数关系式为:L=2x+15;当x=5时,L=2×5+15=25(cm)故重物为5kg时弹簧总长L是25cm,故选B.【点睛】此题主要考查根据实际问题列一次函数关系式,解决本题的关键是得到弹簧长度的关系式,难点是得到x千克重物在原来基础上增加的长度.8.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A. 2017年第二季度环比有所提高B. 2017年第三季度环比有所提高C. 2018年第一季度同比有所提高D. 2018年第四季度同比有所提高【答案】C【解析】【分析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.二、填空题(每小题2分,共16分)9.x的取值范围是.【答案】x2≥。
2019年北京市各区一模数学试题分类汇编——新定义(房山)28.在平面直角坐标系xOy中,⊙C的半径为r,给出如下定义:若点P的横、纵坐标均为整数,且到圆心C的距离d≤r,则称P为⊙C的关联整点.(1)当⊙O的半径r=2时,在点D(2,-2),E(-1,0),F(0,2)中,为⊙O的关联整点的是;(2)若直线4=-+上存在⊙O的关联整点,且不超过7个,求r的取值范围;y x(3)⊙C的圆心在x轴上,半径为2,若直线4=-+上存在⊙C的关联整点,求圆心C的横坐标t的取y x值范围.(门头沟)28.对于平面直角坐标系xOy 中的线段MN 和点P ,给出如下定义:点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点.如果以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,我们就称点P 是线段MN 的“关联点”. 如图,M (1,2),N (4,2).(1) 在点P 1(1,3),P 2(4,0),P 3(3,2)中,线段MN 的“关联点”有 ;(2) 如果点P 在直线1y x =+上,且点P 是线段MN 的“关联点”,求点P 的横坐标x 的取值范围; (3) 如果点P 在以O (1,1-)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,直接写出⊙O 半径r 的取值范围.备用图(密云)28.在平面直角坐标系xOy 中,已知P (x 1,y 1)Q (x 2,y 2),定义P 、Q 两点的横坐标之差的绝对值与纵坐标之差的绝对值的和为P 、Q 两点的直角距离,记作d (P ,Q ).即d (P ,Q )=|x 2-x 1|+|y 2-y 1| 如图1,在平面直角坐标系xoy 中,A (1,4),B (5,2),则d (A ,B )=|5-1|+|2-4|=6.(1)如图2,已知以下三个图形: ①以原点为圆心,2为半径的圆;②以原点为中心,4为边长,且各边分别与坐标轴垂直的正方形;③以原点为中心,对角线分别在两条坐标轴上,对角线长为4的正方形.点P 是上面某个图形上的一个动点,且满足(,)2d O P = 总成立.写出符合题意的图形对应的序号____________.(2)若直线(3)y k x =+ 上存在点P 使得(,)2d O P =,求k 的取值范围.(3)在平面直角坐标系xoy 中,P 为动点,且d (O ,P )=3,M 圆心为M (t ,0),半径为1. 若M上存在点N 使得PN =1,求t 的取值范围.图1备用图1(平谷)28.对于平面直角坐标系xoy中的图形P,Q,给出如下定义:M为图形P上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q间的“非常距离”,记作d(P,Q).已知点A(4,0),B(0,4),连接AB.(1)d(点O,AB)=(2)⊙O半径为r,若d(⊙O,AB)=0,求r的取值范围;(3)点C(-3,-2),连接AC,BC,⊙T的圆心为T(t,0),半径为2,d(⊙T,△ABC),且0<d <2,求t的取值范围.(石景山)28. 在平面直角坐标系xOy 中,正方形ABCD 的顶点分别为(0,1)A ,(1,0)B -,(0,1)C -, (1,0)D .对于图形M ,给出如下定义:P 为图形M 上任意一点,Q 为正方形ABCD 边上任意一点,如果P ,Q 两点间的距离有最大值,那么称这个最大值为图形M 的“正方距”,记作d (M ). (1)已知点(0,4)E , ①直接写出()d E 点的值;②直线4y kx =+(0)k ≠与x 轴交于点F ,当()d EF 线段取最小值时,求k 的取值范围;(2)⊙T 的圆心为(,3)T t ,半径为1.若()6d T <,直接写出t 的取值范围.(通州)28. 在平面直角坐标系xOy 中,已知点A (0,2),B (2,2),点M 为线段AB 上一点.(1)在点()2,1C ,()2,0D ,()1,2E 中,可以与点M 关于直线y x =对称的点是____________;(2)若x 轴上存在点N ,使得点N 与点M 关于直线y x b =+对称,求b 的取值范围.(3)过点O 作直线l ,若直线y x =上存在点N ,使得点N 与点M 关于直线l 对称(点M 可以与点N 重合),.请你直接写出点N 横坐标n 的取值范围.(延庆)28.对于图形M ,N ,给出如下定义:在图形M 中任取一点A ,在图形N 中任取两点B ,C (A ,B ,C 不共线),将∠BAC 的最大值α(0°<α<180°)叫做图形M 对图形N 的视角. 问题解决:在平面直角坐标系xOy 中,已知T (t ,0),⊙T 的半径为1; (1)当t =0时,①求点D (0,2)对⊙O 的视角α;②直线1l 的表达式为2y x =+,且直线1l 对⊙O 的视角为α,求(2)直线2l 的表达式为y x t =+,若直线2l 对⊙T 的视角为α,且60°≤α≤90°,直接写出t 的取值范围.(燕山)28.对于平面直角坐标系xOy 中的点P 和⊙M (半径为r ),给出如下定义:若点P 关于点M 的对称点为Q ,且r ≤P Q ≤3r ,则称点P 为⊙M 的称心点. (1) 当⊙O 的半径为2时,① 如图1,在点A (0,1),B (2,0),C (3,4)中,⊙O 的称心点是 ; ② 如图2,点D 在直线3y x =上,若点D 是⊙O 的称心点,求点D 的横坐标m 的取值范围;(2) ⊙T 的圆心为T (0,t ),半径为2,直线313y x =+与x 轴,y 轴分别交于点E ,F .若线段..EF 上的所有点都是⊙T 的称心点,直接写出t 的取值范围.图2y=3xOxy1备用图1yxO1yxOA BC图1(西城)28.在平面直角坐标系xOy 中,对于两个点,P Q 和图形W ,如果在图形W 上存在点M ,N (M 、N 可以重合)使得PM =QN ,那么称点P 与点Q 是图形W 的一对平衡点. (1)如图1,已知点(0,3)A ,(2,3)B . ①设点O 与线段AB 上一点的距离为d ,则d 的最小值是____,最大值是____;图1②在1233(0)(14)(30)2P P P ,,,,,这三个点中,与点O 是线段AB 的一对平衡点的是 ; (2)如图2,已知⊙O 的半径为1,点D 的坐标为(5,0).若点(,2)E x 在第一象限,且点D 与点E 是 ⊙O 的一对平衡点,求x 的取值范围;图2 图3(3)如图3,已知点(3,0)H ,以点O 为圆心,OH 长为半径画弧交x 轴的正半轴于点K .点(,)C a b(其中0b )是坐标平面内一动点,且OC =5,⊙C 是以点C 为圆心,半径为2的圆.若HK 上的任意两个点都是⊙C 的一对平衡点,直接写出b 的取值范围.(顺义)28. 在平面直角坐标系xOy中,A、B为平面内不重合的两个点,若Q到A 、B两点的距离相等,则称点Q是线段AB的“似中点”.(1)已知A(1,0),B(3,2),在点D(1,3)、E(2,1)、F(4,-2)、G(3,0)中,线段AB的“似中点”是点;y x轴交于点M,与y轴交于点N.(2)直线=+①求在坐标轴上的线段MN的“似中点”;②若⊙P的半径为2,圆心P为(t,0),⊙P上存在线段MN的“似中点”,请直接写出t的取值范围.(丰台)28. 对于平面直角坐标系xOy中的点P和图形G,给出如下定义:若在图形G上存在两个点A,B,使得以P,A,B为顶点的三角形为等边三角形,则称P为图形G的“等边依附点”.(1)已知M(-3,N(3,.①在点C(-2,2),D(0,1),E(1,3)中,是线段MN的“等边依附点”的是;②点P(m,0)在x轴上运动,若P为线段MN的“等边依附点”,求点P的横坐标m的取值范围;(2)已知⊙O的半径为1,若⊙O上所有点都是某条线段的“等边依附点”,直接写出这条线段长n的取值范围.(东城)28.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(-3,1),①在点E(0,3),F(3,-3),G(2,-5)中,为点A的“等距点”的是________;②若点B在直线y=x+6上,且A,B两点为“等距点”,则点B的坐标为________;(2)直线l:y=kx-3(k>0)与x轴交于点C,与y轴交于点D,①若T1(-1,t1),T2(4,t2),是直线l上的两点,且T1与T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M,N两点为“等距点”,直接写出r的取值范围.(海淀)28.对于平面直角坐标系xOy 中的直线l 和图形M ,给出如下定义:12-1n n P P P P ,,,,是图形M 上的(3)n n 个不同的点,记这些点到直线l 的距离分别为12-1n n d d d d ,,,,,若这n 个点满足12-1+++=n n d d d d ,则称这n 个点为图形M 关于直线l 的一个基准点列,其中n d 为该基准点列的基准距离.(1)当直线l 是x 轴,图形M 上有三点(11)A ,,(11)B ,,(02)C ,时,判断A B C ,,是否为图形M 关于直线l 的一个基准点列?如果是,求出它的基准距离;如果不是,请说明理由;(2)已知直线l 是函数33yx 的图象,图形M 是圆心在y 轴上,半径为1的⊙T ,12-1n n P P P P ,,,,是⊙T 关于直线l 的一个基准点列. ①若T 为原点,求该基准点列的基准距离n d 的最大值;②若n 的最大值等于6,直接写出圆心T 的纵坐标t 的取值范围.(怀柔)28.对于平面直角坐标系xoy 中的点P 和图形G 上任意一点M ,给出如下定义:图形G 关于原点O 的中心对称图形为G ′,点M 在G ′上的对应点为M ′,若∠MP M ′=90°,则称点P 为图形G ,G ′的“直角点”,记作Rt(G ,P ,G ′).已知点A (-2,0),B (2,0),C (0,23).(1)如图1,在点P 1(1,1),P 2(0,3),P 3(0,-2)这三个点中, Rt(OA ,P ,OA ′)是 ; (2)如图2,⊙D 的圆心为D (1,1),半径为1,在直线3y x b =+上存在点P ,满足Rt(⊙D ,P ,⊙D ′),求b 的取值范围; (3)⊙T 的半径为3,圆心(t ,33t ),若⊙T 上存在点P ,满足Rt(△ABC ,P ,△ABC ′), 直接写出⊙T 的横坐标的取值范围.xy –1–2–3–4–512345–1–2–3–41234O图1图2xy D –1–2–3–4–512345–1–2–3–41234O(朝阳)28.在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)和P 2(x 2,y 2),称d (P 1,P 2)=|x 1-x 2|+|y 1-y 2|为P 1,P 2两点的直角距离.(1)已知点A (1,2),直接写出d (O ,A )= ; (2)已知B 是直线y =-34x +3上的一个动点, ①如图1,求d (O ,B )的最小值;②如图2,C 是以原点O 为圆心,1为半径的圆上的一个动点,求d (B ,C )的最小值.图1 图2yy(大兴)28.在平面直角坐标系xOy 中,如果等边三角形的一边与x 轴平行或在x 轴上,则称这个等边三角形为水平正三角形.(1)已知A (1,0),B (-1,0),若△ABC 是水平正三角形,则点C 坐标的是 (只填序号); ①,②,③,④(2)已知点O ,E ,F ,以这三个点中的两个点及平面内的另一个点P 为顶点,构成一个水平正三角形,则这两个点是 ,并求出此时点P 的坐标; (3)已知⊙O,点M 是⊙O 上一点,点N 是直线形的两个顶点为M ,N ,直接写出点N 的横坐标N x 的取值范围 .()12,(0()01,-(0()00,(1()02,-y x =+。
北京市13区2019届高三第一次模拟(3、4月)数学文试题分类汇编直线与圆1、(朝阳区2019届高三一模)已知圆22:(2)2C x y ,直线:2l y kx . 若直线l 上存在点P ,过点P 引圆的两条的切线12,l l ,使得12l l ,则实数k 的取值范围是A. ()U B. 2323[-,+]C. (-,0)D. )[0,+2、(大兴区2019届高三一模)若直线220x y与圆22(1)()1x y a 相切,则a .3、(东城区2019届高三一模)已知圆22:20C x x y ++=,则圆心C 到直线3x =的距离等于(A )1(B )2(C )3(D )44、(房山区2019届高三一模)已知点(,0),(,0)(0)A a B a a ,若圆22(2)(2)2x y 上存在点C 使得90ACB °,则a 的最大为____.5、(丰台区2019届高三一模)直线2y kx 与圆224x y 相交于,M N 两点,若||22MN =,则k ____.6、(海淀区2019届高三一模)直线+1y kx 被圆222x y 截得的弦长为2,则k 的值为A .0B .±12C .±1D .±227、(怀柔区2019届高三一模)以原点(0,0)O 为圆心,以1为半径的圆C 的方程为__________;若点P 在圆C 上,点A 的坐标为(2,0),则AO AP 的最大值为__________.8、(石景山区2019届高三一模)在直角坐标系xOy 中,点11,A x y 和点22,B x y 是单位圆221x y 上两点,=1AB ,则AOB =______;12|2||2|y y 的最大值为_ .9、(顺义区2019届高三第二次统练(一模))过原点作圆2269x y 的两条切线,则两条切线所成的锐角_________.10、(通州区2019届高三一模)直线x y 33被圆4)2(22y x 截得的弦长为11、(西城区2019届高三一模)如图,阴影表示的平面区域W 是由曲线0x y ,222x y 所围成的. 若点(,)P x y 在W 内(含边界),则43z x y 的最大值和最小值分别为(A )52,7(B )52,52(C )7,52(D )7,712、(延庆区2019届高三一模)圆心为(0,1)且与直线2y 相切的圆的方程为(A )22(1)1x y (B )22(1)1x y (C )22(1)1x y (D )22(1)1x y 13、(昌平区2019高三模拟)能说明“若点(,)M a b 与点(3,1)N 在直线10x y 的同侧,则222a b ”是假命题的一个点M 的坐标为_____________.参考答案1、D2、5(只写一个且正确给3分)3、D4、325、16、A7、221x y ,6.8、π3,34.9、06010、3211、A 12、C13、22(1,1)[(2,0),(0,2),(,)]22或(答案不唯一)。
1PA1、(海淀)2、(西城)23.如图,AB 是O ⊙的直径, CB 与O ⊙相切于点B.点D 在⊙O 上,且BC=BD,连接CD 交⊙O于点E.过点E 作EFAB ^于点H ,交BD 于点M ,交⊙O 于点F.(1)求证:∠MED=∠MDE ;(2)连接BE ,若ME=3,MB=2,求BE 的长3、(东城)4、(朝阳)5、(昌平)6、(密云)7、(门头沟)23.如图,点D 在⊙O 上,过点D 的切线交直径AB 的延长线于点P ,DC ⊥AB 于点C .(1)求证:DB 平分∠PDC ; (2)如果DC = 6,3tan 4P ∠=,求BC 的长.8、(通州)23. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,过点A 作⊙O 的切线交BC 的延长线于点E ,在弦BC 上取一点F ,使AF =AE ,连接AF 并延长交⊙O 于点D .(1)求证:B CAD ∠=∠;(2)若CE =2,30B ∠=︒,求AD 的长.243tan CPB ∠=CQ CP ⊥BA9、(延庆)24.如图,AB 是⊙O 的直径,点C 在⊙O 上,点P 是AB 上一动点,且与点C 分别位于直径AB 的两侧, ,过 点C 作 交PB 的延长线于点Q ;(1)当点P 运动到什么位置时,CQ 恰好是⊙O 的切线? (2)若点P 与点C 关于直径AB 对称,且AB =5,求此时CQ的长.10、(燕山) 11、(丰台)12、(石景山)22.如图,AB 是⊙O 的直径,过⊙O 上一点C 作⊙O 的切线CD ,过点B 作BE ⊥CD于点E ,延长EB 交⊙O 于点F ,连接AC ,AF . (1)求证:12CE AF =; (2)连接BC ,若⊙O 的半径为5,tan 2CAF ∠=,求BC 的长.13、(怀柔)14、(房山)22. 如图,在△ABC 中,AB = AC ,以AB 为直径的⊙O 分别交AC ,BC 于点 D ,E ,过点B 作⊙O 的切线, 交 AC 的延长线于点F .(1) 求证:∠CBF =12∠CAB ; (2) 若CD = 2,1tan 2CBF ∠=,求FC 的长.15、(平谷)24.如图,AB 是⊙O 的直径,AC 切⊙O 于点A ,连接BC 交⊙O 于点D ,点E 是BD 的中点,连接AE 交BC 于点F . (1)求证:AC=CF ;(2)若AB =4,AC =3,求∠BAE 的正切值.AC备用图16、(大兴)17、(顺义)3。
代几综合2018西城一模28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ). 已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r . (1)如图1,当r =①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A 是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k =r 的取值范围.(3)若存在r的值使得直线y b =+与⊙C 有公共点,且公共点时⊙C附点”,直接写出b 的取值范围.x2018平谷一模28. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (,则以AB 为边的“坐标菱形”的最小内角为_______; (2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.2018石景山一模28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B的“确定圆”的示意图.... (1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B在直线y x = 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.2018怀柔一模28. P是⊙C外一点,若射线..PC交⊙C于点A,B两点,则给出如下定义:若0<PA PB≤3,则点P为⊙C的“特征点”.(1)当⊙O的半径为1时.①在点P1(2,0)、P2(0,2)、P3(4,0)中,⊙O的“特征点”是;②点P在直线y=x+b上,若点P为⊙O的“特征点”.求b的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=x+1与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是...⊙C的“特征点”,直接写出点C的横坐标的取值范围.2018海淀一模28.在平面直角坐标系xOy 中,对于点P 和⊙C ,给出如下定义:若⊙C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在⊙C 上,则称P 为⊙C 的反射点.下图为⊙C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),⊙A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,⊙A 的反射点是____________; ②点P 在直线y x =-上,若P 为⊙A 的反射点,求点P 的横坐标的取值范围; (2)⊙C 的圆心在x 轴上,半径为2,y 轴上存在点P 是⊙C 的反射点,直接写出圆心C 的横坐标x 的取值范围.2018朝阳一模28. 对于平面直角坐标系xOy中的点P和线段AB,其中A(t,0)、B(t+2,0)两点,给出如下定义:若在线段AB上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为线段AB的伴随点.(1)当t=-3时,①在点P1(1,1),P2(0,0),P3(-2,-1)中,线段AB的伴随点是;②在直线y=2x+b上存在线段AB的伴随点M、N,且MN=,求b的取值范围;(2)线段AB的中点关于点(2,0)的对称点是C,将射线CO以点C为中心,顺时针旋转30°得到射线l,若射线l上存在线段AB的伴随点,直接写出t的取值范围.2018东城一模28.给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2, 22M ⎛⎫ ⎪ ⎪⎝⎭,22N ⎛- ⎝⎭.在A (1,0),B (1,1),)C 三点中,是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N 1,22⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °;②在第一象限内有一点E),m ,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;③点F 在直线2y x =+上,当∠MFN ≥∠MDN 时,求点F 的横坐标F x 的取值范围.2018丰台一模28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x .已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.2018房山一模28. 在平面直角坐标系xOy 中,当图形W 上的点P 的横坐标和纵坐标相等时,则称点P 为图形W 的“梦之点”. (1)已知⊙O 的半径为1. ①在点E (1,1),F (-22 ,-22),M (-2,-2)中,⊙O 的“梦之点”为 ; ②若点P 位于⊙O 内部,且为双曲线ky x=(k ≠0)的“梦之点”,求k 的取值范围. (2)已知点C 的坐标为(1,t ),⊙C 的半径为 2 ,若在⊙C 上存在“梦之点”P ,直接写出t 的取值范围.(3)若二次函数21y ax ax =-+的图象上存在两个“梦之点”()11Ax ,y ,()22B x ,y ,且122x x -=,求二次函数图象的顶点坐标.2018门头沟一模28. 在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”. (1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意图直接.....写出半径r 的取值范围.备用图1 备用图22018大兴一模28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图.1如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N . (1)点N 的横坐标为 ;(2)已知一直角为点,,N M K 的“平横纵直角”,若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围.图22018顺义一模28.如图1,对于平面内的点P 和两条曲线1L 、2L 给出如下定义:若从点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”.例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'.(1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由; (3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.2L 1图22018通州一模28.在平面直角坐标系xOy 中有不重合的两个点()11,y x Q 与()22y x P ,.若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x 或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和定义为点Q 与点P 之间的“直距PQ D ”.例如在下图中,点()1,1P ,()3,2Q ,则该直角三角形的两条直角边长为1和2,此时点Q 与点P 之间的“直距”=3PQ D .特别地,当PQ 与某条坐标轴平行(或重合)时,线段PQ 的长即为点Q 与点P 之间的“直距”.(1)①已知O 为坐标原点,点()2,1A -,()2,0B -,则_______=AO D ,_______=BO D ;② 点C 在直线3y x =-+上,请你求出CO D 的最小值;(2)点E 是以原点O 为圆心,1为半径的圆上的一个动点;点F 是直线24y x =+上一动点.请你直接写出点E 与点F 之间“直距EF D ”的最小值.2018燕山一模27.如图,抛物线)0(2>++=a c bx ax y 的顶点为M ,直线y=m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.(1)由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是 (2)抛物线221x y =对应的准蝶形必经过B (m ,m ),则m = ,对应的碟宽AB 是 (3)抛物线)0(3542>--=a a ax y 对应的碟宽在x 轴上,且AB =6. ①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (p x ,p y ),使得∠APB 为锐角,若有,请求出p y 的取值范围.若没有,请说明理由.,备用图准蝶形AMB A BM。
2019 年北京市各区一模数学试题分类汇编——圆(房ft )22. 如图,在△ABC 中,AB = AC ,以 AB 为直径的⊙O 分别交 AC ,BC 于点 D ,E ,过点 B 作 ⊙O 的切线, 交 AC 的延长线于点 F .(1) 求证:∠CBF = 1∠CAB ;2(2) 若 CD = 2, tan ∠CBF = 1,求 FC 的长.2(门头沟)23.如图,点 D 在⊙O 上,过点 D 的切线交直径 AB 的延长线于点 P ,DC ⊥AB 于点 C . (1) 求证:DB 平分∠PDC ;(2) 如果 DC = 6, tan ∠P = 3,求 BC 的长.4AP3 DFEO(密云)24.如图,AB 为⊙O 的直径,E 为 OB 中点,过 E 作 AB 垂线与⊙O 交于 C 、D 两点.过点 C 作 ⊙O 的切线 CF 与 DB 延长线交于点 F . (1) 求证:CF ⊥DF(2) 若 CF = ,求 OF 长.FA(平谷)24.如图,AB 是⊙O 的直径,AC 切⊙O 于点 A ,连接 BC 交⊙O 于点 D ,点 E 是 BD 的中点,连接 AE 交 BC 于点F . (1) 求证:AC=CF ; (2) 若 AB =4,AC =3,求∠BAE 的正切值.CACOEBD(2)连接BC,若⊙O的半径为5 ,tan ∠CAF = 2 ,求BC的长.(通州)23.如图,△ABC 内接于⊙O,AB 为⊙O 的直径,过点 A 作⊙O 的切线交BC 的延长线于点E,在弦BC 上取一点F,使AF=AE,连接AF 并延长交⊙O 于点D.(1)求证:∠B =∠CAD ;(2)若CE=2,∠B = 30︒,求AD 的长.O5AOD CE(延庆)24.C 如Q 图⊥ C ,P AB 是⊙O 的直径,点 C 在⊙O 上,点 P 是 AB 上一动点,且与点 C 分别位于直径AB 的两侧, tan ∠CPB = 4,过点 C 作 CQ ⊥CP 交 PB 的延长线于点 Q ;3(2)若点 P 与点 C 关于直径 AB 对称,且 AB =5,求此时 CQ 的长.CAB(燕ft )22.如图,Rt △ABC 中,∠ACB =90°,点 D 在 AC 边上,以 AD 为直径作⊙O 交 BD 的延长线于点 E ,CE =BC .(1) 求证:CE 是⊙O 的切线;(2) 若 CD =2,BD = 2 ,求⊙O 的半径.(西城)23.如图,AB 是⊙O 的直径,CB 与⊙O 相切于点B.点 D 在⊙O 上,且BC=BD,连接CD 交⊙O 于点E.过点E 作EF⊥AB 于点H,交BD 于点M,交⊙O 于点F.(1)求证:∠MED=∠MDE;(2)连接BE,若ME=3,MB=2,求BE 的长.(顺义)22.已知:如图,AB 是⊙O 的直径,点C 是⊙O 上一点,点P 在AB 的延长线上,且∠A=∠P=30.(1)求证:PC 是⊙O 的切线;(2)连接BC,若AB=4,求△PBC 的面积.CA P3 (丰台)22.如图,AB 是⊙O 的直径,AE 是弦,C 是 AE 的中点,过点 C 作⊙O 的切线交 BA的延长线于点 G ,过点 C 作 CD ⊥AB 于点 D ,交 AE 于点 F . (1) 求证:GC ∥AE ;(2) 若 sin ∠EAB = 3,OD = ,求 AE 的长.5(东城)23.如图,AB 与⊙O 相切于点 A ,P 为 OB 上一点,且 BP =BA ,连接 AP 并延长交⊙O 于点 C ,连接 OC . (1) 求证:OC ⊥OB ; (2) 若⊙O 的半径为 4,AB =3,求 AP 的长.3 CA E O(海淀)22.如图,AB 是⊙O 的直径,弦 CD ⊥AB 于点 E ,在⊙O 的切线 CM 上取一点 P ,使得 ∠CPB =∠COA . (1) 求证:PB 是⊙O 的切线; (2) 若 AB 4 ,CD =6,求 PB 的长.PMBD。
2019 年北京市各区一模数学试题分类汇编——代几综合题2(海淀) 26.在平面直角坐标系xOy 中,抛物线y = ax + bx + c( a > 0)经过点A(0,- 3)和B(30),.(1)求c的值及a,b知足的关系式;(2)若抛物线在 A, B 两点间,从左到右上升,求a的取值范围;(3)结合函数图象判断:抛物线可否同时经过点M (- 1+ m,n),N(4 - m,n) ?若能,写出一个吻合要求的抛物线的表达式和n 的值;若不能够,请说明原因.(西城) 26.在平面直角坐标系xOy 中,已知抛物线y x2mx n .(1)当m = 2时,①求抛物线的对称轴,并用含n 的式子表示极点的纵坐标;②若点 A(- 2, y1) , B( x2 , y2 ) 都在抛物线上,且y2 > y1,则 x2的取值范围是_______;(2)已知点 P(- 1,2),将点 P 向右平移 4 个单位长度,获取点 Q.当 n=3 时,若抛物线与线段 PQ 恰有一个公共点,结合函数图像,求 m 的取值范围.(东城) 26.在平面直角坐标系 xOy 中,抛物线y mx26mx 9m 1(m 0)(1)求抛物线的极点坐标;(2)若抛物线与 x 轴的两个交点分别为 A 和 B(点 A 在点 B 的左侧),且 AB=4,求 m 的值;(3)已知四个点 C(2,2), D(2,0), E( 5,-2), F( 5,6),若抛物线与线段 CD 和线段EF 都没有公共点,请直接写出 m 的取值范围.(旭日) 26.在平面直角坐标系 xOy 中抛物线 y=x2-2x+a-3,当 a=0 时,抛物线与 y 轴交于点 A 将点 A 向右平移 4 个单位长度 ,获取点 B.(1)求点 B 的坐标;(2)将抛物线在直线 y=a 上方的部分沿直线 y=a 翻折 ,图象的其他部分保持不变获取一个新的图象记为图形 M,若图形 M 与线段 AB 恰有两个公共点,结合函数的图象 ,求 a 的取值范围 .(石景山) 26.在平面直角坐标系xOy 中,直线 y kx 1 ( k 0) 经过点 A(2,3) ,与y轴交于点B ,与抛物线y ax2bx a 的对称轴交于点 C(m,2) .(1)求m的值;(2)求抛物线的极点坐标;(3)N ( x1, y1)是线段AB上一动点,过点N 作垂直于 y 轴的直线与抛物线交于点P( x2, y2) ,Q( x3, y3)(点 P在点Q的左侧).若x2x1x3恒建立,结合函数的图象,求a的取值范围.(丰台) 26.在平面直角坐标系xOy 中,抛物线y ax2bx c 过原点和点A(-2,0).(1)求抛物线的对称轴;(2)横、纵坐标都是整数的点叫做整点.已知点B(0,),记抛物线与直线AB 围成的关闭地区(不含界线)为W.①当 a=1时,求出地区W 内的整点个数;①若地区 W 内恰有 3 个整点,结合函数图象,直接写出 a 的取值范围.(房山) 26.在平面直角坐标系 xOy中,二次函数y x2mx n 的图象经过点A(-1 , a),B(3,a),且极点的纵坐标为-4.(1)求 m,n 和 a 的值;(2)记二次函数图象在点A,B 间的部分为 G (含点 A 和点 B ),若直线y kx2与图象G有公共点,结合函数图象,求k 的取值范围.y54321o12345x–5 –4 –3 –2 –1–1–2–3–4–5(门头沟) 26.在平面直角坐标系xOy 中,一次函数y x 4 的图象与x轴交于点A,与过点(0,5)平行于 x 轴的直线 l 交于点 B,点 A 对于直线 l 的对称点为点 C.(1)求点 B 和点 C 坐标;(2)已知某抛物线的表达式为y x22mx m2m .①若是该抛物线极点在直线 y x 4 上,求m的值;②若是该抛物线与线段 BC 有公共点,结合函数图象,直接写出m 的取值范围.y12108642O2468x–10–8 –6 –4 –2–2–4–6(密云) 26.已知抛物线y x22mx m2 4 ,抛物线的极点为P.(1)求点 P 的纵坐标.(2)设抛物线 x 轴交于 A、 B 两点,A(x1, y1), B( x2, y2),x2x1.①判断 AB 长可否为定值,并证明.②已知点 M( 0, -4),且 MA≥5,求x2-x1m 的取值范围.y54321-5-4-3-2-112345x-1-2-3-4-5(平谷) 26.平面直角坐标系xOy 中,抛物线y x22mx m2 3 与y轴交于点A,过A作AB∥x 轴与直线 x=4 交于 B 点.(1)抛物线的对称轴为 x= (用含 m 的代数式表示);(2)当抛物线经过点 A, B 时,求此时抛物线的表达式;(3)记抛物线在线段 AB 下方的部分图象为 G(包含 A,B 两点),点 P(m,0)是 x 轴上一动点,过 P 作 PD⊥ x 轴于 P,交图象 G 于点 D,交 AB 于点 C,若 CD≤1,求 m 的取值范围.y654321–6–5–4–3–2–1O 1 2 3 4 5 6 x–1–2–3–4–5–6(通州) 26. 已知二次函数y x2ax b 在x0 和 x 4 时的函数值相等.(1)求二次函数y x2ax b 的对称轴;(2)过 P( 0, 1)作x轴的平行线与二次函数y x2ax b的图象交于不同样样的两点 M 、N. ①当 MN 2 时,求 b 的值;②当 PM PN =4 时,请结合函数图象,直接写出 b 的取值范围.y4321x-3 -2 -1 O 1 2 3 4-1-2(延庆) 26.在平面直角坐标系 xOy 中,抛物线y ax24ax 3a 2 (a0 )的对称轴与 x轴交于点 A,将点 A 向右平移 3 个单位长度,向上平移 2 个单位长度,获取点 B.(1)求抛物线的对称轴及点 B 的坐标;(2)若抛物线与线段 AB 有公共点,结合函数图象,求 a 的取值范围.(燕山) 26.在平面直角坐标系xOy 中,抛物线y ax22ax 3a(a 0) 的极点为D,与x轴交于 A,B两点(A在 B的左侧).(1)当 a 1 时,求点 A,B, D 的坐标;(2)横,纵坐标都是整数的点叫做整点.若抛物线在点 A,B 之间的部分与线段 AB 所围成的地区内 (不含界线 )恰有 7 个整点,结合函数图象,求 a 的取值范围.yO 1x(顺义) 26.在平面直角坐标系xOy中,抛物线y mx2( m 3)x 3 ( m0)与x轴交于 A 、 B 两点(点 A 在点 B 左侧),与 y 轴交于点 C , AB 4 ,点 D 为抛物线的极点.(1)求点A和极点D的坐标;(2)将点D向左平移 4 个单位长度,获取点E ,求直线BE的表达式;(3)若抛物线y ax2 6 与线段 DE 恰有一个公共点,结合函数图象,求 a 的取值范围.y654321O123456x-6 -5 -4 -3 -2 -1-1-2-3-4-5-6-7(怀柔) 26.在平面直角坐标系 xOy 中,已知抛物线y x22ax a2 2 的极点C,过点B(0,t)作与 y 轴垂直的直线 l ,分别交抛物线于 E,F 两点,设点 E(x1,1),点F (2,y x y2)( x1< x2).(1)求抛物线极点 C 的坐标;(2)当点 C 到直线 l 的距离为 2 时,求线段 EF 的长;(3)若存在实数 m,使得 x1≥m-1 且 x2≤m+5 建立,直接写出t 的取值范围.。
圆简答题专题东城区23.如图,AB为O的直径,点C,D在O上,且点C是BD的中点.过点C作AD的垂线EF交直线AD 于点E.(1)求证:EF是O的切线;(2)连接BC. 若AB=5,BC=3,求线段AE的长.23. (1)证明:连接OC.∵CD CB=∴∠1=∠3.∵OA OC=,∴∠1=∠2.∴∠3=∠2.∴AE OC∥.∵AE EF⊥,∴OC EF⊥.∵OC是O的半径,∴EF是O的切线. ----------------------2分(2)∵AB为O的直径,∴∠ACB=90°.根据勾股定理,由AB=5,BC=3,可求得AC=4.∵AE EF⊥,∴∠AEC=90°.∴△AEC∽△ACB.∴AE AC AC AB=.∴445AE =. ∴165AE =. ----------------------5分 西城区24.如图,⊙O 的半径为r ,ABC △内接于⊙O ,15BAC ∠=︒,30ACB ∠=︒,D 为CB 延长线上一点,AD 与⊙O 相切,切点为A .(1)求点B 到半径OC 的距离(用含r 的式子表示). (2)作DH OC ⊥于点H ,求ADH ∠的度数及CBCD的值. AB C【解析】(1)如图4,作BE OC ⊥于点E . ∵在⊙O 的内接ABC △中,15BAC ∠=︒, ∴230BOC BAC ∠=∠=︒.在Rt BOE △中,90OEB ∠=︒,30BOE ∠=︒,OB r =, ∴22OB rBE ==, ∴点B 到半径OC 的距离为2r. (2)如图4,连接OA .由BE OC ⊥,DH OC ⊥,可得BE DH ∥. ∵AD 于⊙O 相切,切点为A , ∴AD OA ⊥, ∴90OAD ∠=︒. ∵DH OC ⊥于点H , ∴90OHD ∠=︒.∵在OBC △中,OB OC =,30BOC ∠=︒,∴180752BOCOCB ︒-∠∠==︒.∵30ACB ∠=︒,∴45OCA OCB ACB ∠=∠-∠=︒. ∵OA OC =,∴45OAC OCE ∠=∠=︒, ∴180290AOC OCA ∠=︒-∠=︒, ∴四边形AOHD 为矩形,90ADH ∠=︒, ∴DH AO r ==. ∵2r BE =, ∴2DHBE =. ∵BE DH ∥, ∴CBE CDH ∽△△, ∴12CB BE CD DH ==. 图4CB A海淀区23.如图,AB 是O 的直径,弦EF AB ⊥于点C ,过点F 作O 的切线交AB 的延长线于点D . (1)已知A α∠=,求D ∠的大小(用含α的式子表示);(2)取BE 的中点M ,连接MF ,请补全图形;若30A∠=︒,MF ,求O 的半径.DA23.解:(1)连接OE ,OF .∵EF AB ⊥,AB 是O 的直径, ∴DOF DOE =∠∠. ∵2DOE A =∠∠,A α=∠,∴2DOF α=∠. ………………1分 ∵FD 为O 的切线, ∴OF FD ⊥. ∴90OFD ︒=∠.∴+90D DOF ︒=∠∠.902D α∴∠=︒-. ………………2分(2)图形如图所示.连接OM .∵AB 为O 的直径,∴O 为AB 中点, 90AEB ∠=︒. ∵M 为BE 的中点, ∴OM AE ∥,1=2OM AE . ………………3分 ∵30A ∠=︒,∴30MOB A ∠=∠=︒. ∵260DOF A ∠=∠=︒ ,∴90MOF ∠=︒. ………………4分∴222+OM OF MF =. 设O 的半径为r . ∵90AEB ∠=︒,30A ∠=︒,∴cos30AE AB ︒=⋅=.DADA∴OM .………………5分 ∵FM∴222)+r =. 解得=2r .(舍去负根)∴O 的半径为2. ………………6分 丰台区23.如图,A ,B ,C 三点在⊙O 上,直径BD 平分∠ABC ,过点D 作DE ∥AB 交弦BC 于点E ,过点D 作⊙O 的切线交BC 的延长线于点F . (1)求证:EF =ED ;(2)如果半径为5,cos ∠ABC =35,求DF 的长.23.(1)证明:∵BD 平分∠ABC ,∴∠1=∠2.∵DE ∥AB ,∴∠2=∠3.∴∠1=∠3. ∵BC 是⊙O 的切线,∴∠BDF =90°. ∴∠1+∠F =90°,∠3+∠EDF =90°.∴∠F =∠EDF .∴EF =DE . …….…….……………2分 (2)解:连接CD .∵BD 为⊙O 的直径,∴∠BCD =90°. ∵DE ∥AB ,∴∠DEF =∠ABC . ∵cos ∠ABC =35,∴在Rt △ECD 中,cos ∠DEC =CE DE =35. 设CE =3x ,则DE =5x .由(1)可知,BE = EF =5x .∴BF =10x ,CF =2x .在Rt △CFD 中,由勾股定理得DF =. ∵半径为5,∴BD =10. ∵BF ×DC = FD ×BD ,∴1041025x x x=,解得x =.∴DF ==5. …….…….……………5分(其他证法或解法相应给分.) 石景山区23.如图,AB 是⊙O 的直径,BE 是弦,点D 是弦BE 上一点,连接OD 并延长交⊙O 于点C ,连接BC ,过点D 作FD ⊥OC 交⊙O 的切线EF 于点F . (1)求证:12CBE F ∠=∠;(2)若⊙O 的半径是,点D 是OC 中点,15CBE ∠=°,求线段EF 的长.23.(1)证明:连接OE 交DF 于点H ,∵EF 是⊙O 的切线,OE 是⊙O 的半径, ∴OE ⊥EF . ∴190F ∠+∠=°. ∵FD ⊥OC , ∴3290∠+∠=︒. ∵12∠=∠,∴3F ∠=∠. ………………1分 ∵132CBE ∠=∠,∴12CBE F ∠=∠. ………………2分(2)解:∵15CBE ∠=°, ∴3230F CBE ∠=∠=∠=°.∵⊙O 的半径是D 是OC 中点,∴OD = 在Rt ODH ∆中,cos 3OD OH∠=,∴2OH =. ………………3分∴2HE =. 在Rt FEH ∆中,tan EH F EF∠=. ………………4分∴6EF ==-………………5分 朝阳区23. 如图,在⊙O 中,C ,D 分别为半径OB ,弦AB 的中点,连接CD 并延长,交过点A 的 切线于点E .(1)求证:AE ⊥CE . (2)若AE =,sin ∠ADE =31,求⊙O 半径的长.23. (1)证明:连接OA ,∵OA 是⊙O 的切线,∴∠OAE =90º. ………………………………1分 ∵ C ,D 分别为半径OB ,弦AB 的中点, ∴CD 为△AOB 的中位线. ∴CD ∥OA . ∴∠E =90º.∴AE ⊥CE . …………………………………2分(2)解:连接OD ,∴∠ODB =90º. ……………………………………………………3分 ∵AE =,sin ∠ADE =31,在Rt △AED 中,23sin =∠=ADEAEAD .∵CD ∥OA , ∴∠1=∠ADE .在Rt △OAD 中,311sin ==∠OA OD .…………………………………4分 设OD =x ,则OA =3x ,∵222OA AD OD =+, ∴()()222323x x =+.解得 231=x ,232-=x (舍). ∴293==x OA . ……………………………………………5分 即⊙O 的半径长为29. 燕山区25.如图,在△ABC 中,AB=AC ,AE 是BC 边上的高线,BM 平分∠ABC 交 AE 于点M ,经过 B ,M 两点的⊙O 交 BC 于点G ,交AB 于点F ,FB 为⊙O 的直径. (1)求证:AM 是⊙O 的切线 (2)当BE =3,cosC=52时,求⊙O 的半径.25.解: (1)连结OM. ∵BM 平分∠ABC∴∠1 = ∠2 又OM=OB ∴∠2 = ∠3∴ OM ∥ BC …………………………………2′ AE 是BC 边上的高线∴AE ⊥BC,∴AM ⊥OM∴AM 是⊙O 的切线…………………………………3′ (2)∵AB=AC∴∠ABC = ∠C AE ⊥BC, ∴E 是BC 中点 ∴EC=BE=3 ∵cosC=52=ACEC ∴AC=25EC= 215…………………………………4′ ∵OM ∥ BC ,∠AOM =∠ABE ∴△AOM ∽△ABE ∴ABAOBE OM = 又∠ABC = ∠C ∴∠AOM =∠C 在Rt △AOM 中cos ∠AOM = cosC=5252=AO OM ∴AO=OM 25AB=OM 25+OB=OM 27而AB= AC= 215门头沟区23. 如图,AB 为⊙O 直径,过⊙O 外的点D 作DE ⊥OA 于点E ,射线DC 切⊙O 于点C 、交AB 的延长线于点P ,连接AC 交DE 于点F ,作CH ⊥AB 于点H . (1)求证:∠D =2∠A ;(2)若HB =2,cos D =35,请求出AC 的长.(1)证明:连接OC ,∵射线DC 切⊙O 于点C , ∴∠OCP =90° ∵DE ⊥AP ,∴∠DEP =90° ∴∠P +∠D =90°,∠P +∠COB =90°∴∠COB =∠D …………………1分ABCDEO∵OA =OC , ∴∠A =∠OCA∵∠COB=∠A +∠OCA ∴∠COB =2∠A∴∠D =2∠A …………………2分 (2)解:由(1)可知:∠OCP =90°,∠COP =∠D ,∴cos ∠COP =cos ∠D =35, …………………3分 ∵CH ⊥OP ,∴∠CHO =90°, 设⊙O 的半径为r ,则OH =r ﹣2. 在Rt △CHO 中,cos ∠HOC =OH OC =2r r-=35,∴r =5, …………………4分 ∴OH =5﹣2=3,∴由勾股定理可知:CH =4,∴AH =AB ﹣HB =10﹣2=8.在Rt △AHC 中,∠CHA =90°,∴由勾股定理可知:AC=…………………5分 大兴区23.已知:如图,在△OAB 中,OA OB =,⊙O 经过AB 的中点C ,与OB 交于点D,且与BO 的延长线交于点E ,连接EC CD ,.(1)试判断AB 与⊙O 的位置关系,并加以证明; (2)若1tan 2E =,⊙O 的半径为3,求OA 的长.23. (1)AB 与⊙O 的位置关系是相切证明:如图,连接OC . OA OB =,C 为AB 的中点,OC AB ∴⊥.∴AB 是⊙O 的切线. ······················· 2分 (2)ED 是直径,90ECD ∴∠=.∴90E ODC ∠+∠=.又90BCD OCD ∠+∠=,OCD ODC ∠=∠, ∴BCD E ∠=∠. 又CBD EBC ∠=∠, ∴BCD BEC △∽△.BC BDBE BC∴=. ∴2BC BD BE =⋅. ························ 3分1tan 2E ∠=, ∴12CD EC =. BCD BEC △∽△,∴12BD CD BC EC ==.························· 4分 设BD x =,则2BC x =. 又2BC BD BE =⋅, ∴2(2)(6)x x x =+. 解得10x =,22x =.0BD x =>,∴2BD =.235OA OB BD OD ∴==+=+=. ·················· 5分平谷区24.如图,以AB 为直径作⊙O ,过点A 作⊙O 的切线AC ,连结BC ,交⊙O 于点D ,点E 是BC 边的中点,连结AE .(1)求证:∠AEB =2∠C ; (2)若AB =6,3cos 5B =,求DE 的长.24.(1)证明:∵AC 是⊙O 的切线,∴∠BAC =90°. ······················ 1 ∵点E 是BC 边的中点,∴AE=EC.∴∠C=∠EAC, (2)∵∠AEB=∠C+∠EAC,∴∠AEB=2∠C. (3)(2)解:连结AD.∵AB为直径作⊙O,∴∠ABD=90°.∵AB= 6,3 cos5B=,∴BD=185. (4)在Rt△ABC中,AB=6,3 cos5B=,∴BC=10.∵点E是BC边的中点,∴BE=5. (5)∴75DE=. (6)怀柔区23.如图,AC是⊙O的直径,点B是⊙O内一点,且BA=BC,连结BO并延长线交⊙O于点D,过点C作⊙O的切线CE,且BC平分∠DBE.(1)求证:BE=CE;(2)若⊙O的直径长8,sin∠BCE=45,求BE的长.23.(1)∵BA=BC,AO=CO, ∴BD⊥AC.∵CE是⊙O的切线, ∴CE⊥AC.E∴CE∥BD. ……………………………………1分∴∠ECB=∠CBD.∵BC平分∠DBE,∴∠CBE=∠CBD.∴∠ECB=∠CBE.∴BE=CE. …………………………………………2分(2)解:作EF⊥BC于F. …………………………3分∵⊙O 的直径长8,∴CO=4.∴sin∠CBD= sin∠BCE= 45=OCBC. …………………………………………………………4分∴BC=5,OB=3. ∵BE=CE,∴BF=15 22 BC=.∵∠BOC=∠BFE=90°,∠CBO=∠EBF, ∴△CBO∽△EBF.∴BE BF BC OB=.∴BE=256. ……………………………………………………………………………………5分延庆区23.如图,AB是⊙O的直径,D是⊙O上一点,点E是弧AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB BC=;(2)如果AB=5,1tan2FAC∠=,求FC的长.23.证明:(1)连接BE.∵AB是直径,∴∠AEB=90°.∴∠CBE+∠ECB=90°∠EBA+∠EAB=90°.∵点E是AD的中点,∴∠CBE =∠EBA.∴∠ECB =∠EAB.……1分∴AB=BC.……2分(2)∵FA作⊙O的切线,∴FA⊥AB.∴∠FAC+∠EAB=90°.∵∠EBA+∠EAB=90°,∴∠FAC=∠EBA.∵1tan2FAC∠=AB=5,∴AE=BE=……4分过C点作CH⊥AF于点H,∵AB=BC∠AEB=90°,∴AC=2AE=25.∵1 tan2FAC∠=,∴CH=2.……5分∵CH∥AB AB=BC=5,∴255FCFC=+.∴FC=310.…6分顺义区24.如图,等腰△ABC是⊙O的内接三角形,AB=AC,过点A作BC的平行线AD交BO的延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为15,sin∠D=35,求AB的长.A BCDEFOHA BCDEFO24.(1)证明:连接AO,并延长交⊙O于点E,交BC于点F.∵AB=AC,∴AB AC.∴AE⊥BC.∵AD∥BC,∴AE⊥AD.∴AD是⊙O的切线.…………… 2分(2)解法1:∵AD∥BC,∴∠D=∠1.∵sin∠D=35,∴sin∠1=35.∵AE⊥BC,∴OFOB=35.∵⊙O的半径OB=15,∴OF=9,BF=12.∴AF=24.∴AB= 5分3解法2:过B作BH⊥DA交DA延长线于H.∵AE⊥AD,sin∠D=35,∴OAOD=35.∵⊙O的半径OA=15,∴OD=25,AD=20.∴BD=40.∴BH=24,DH=32.∴AH=12.∴AB= 5分。
2019年北京市各区一模数学试题分类汇编——新定义(房山)28.在平面直角坐标系xOy中,⊙C的半径为r,给出如下定义:若点P的横、纵坐标均为整数,且到圆心C的距离d≤r,则称P为⊙C的关联整点.(1)当⊙O的半径r=2时,在点D(2,-2),E(-1,0),F(0,2)中,为⊙O的关联整点的是;(2)若直线4=-+上存在⊙O的关联整点,且不超过7个,求r的取值范围;y x(3)⊙C的圆心在x轴上,半径为2,若直线4=-+上存在⊙C的关联整点,求圆心C的横坐标t的取y x值范围.(门头沟)28.对于平面直角坐标系xOy 中的线段MN 和点P ,给出如下定义:点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点.如果以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,我们就称点P 是线段MN 的“关联点”. 如图,M (1,2),N (4,2).(1) 在点P 1(1,3),P 2(4,0),P 3(3,2)中,线段MN 的“关联点”有 ;(2) 如果点P 在直线1y x =+上,且点P 是线段MN 的“关联点”,求点P 的横坐标x 的取值范围; (3) 如果点P 在以O (1,1-)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,直接写出⊙O 半径r 的取值范围.备用图(密云)28.在平面直角坐标系xOy 中,已知P (x 1,y 1)Q (x 2,y 2),定义P 、Q 两点的横坐标之差的绝对值与纵坐标之差的绝对值的和为P 、Q 两点的直角距离,记作d (P ,Q ).即d (P ,Q )=|x 2-x 1|+|y 2-y 1| 如图1,在平面直角坐标系xoy 中,A (1,4),B (5,2),则d (A ,B )=|5-1|+|2-4|=6.(1)如图2,已知以下三个图形: ①以原点为圆心,2为半径的圆;②以原点为中心,4为边长,且各边分别与坐标轴垂直的正方形;③以原点为中心,对角线分别在两条坐标轴上,对角线长为4的正方形.点P 是上面某个图形上的一个动点,且满足(,)2d O P = 总成立.写出符合题意的图形对应的序号____________.(2)若直线(3)y k x =+ 上存在点P 使得(,)2d O P =,求k 的取值范围.(3)在平面直角坐标系xoy 中,P 为动点,且d (O ,P )=3,M 圆心为M (t ,0),半径为1. 若M上存在点N 使得PN =1,求t 的取值范围.图1备用图1(平谷)28.对于平面直角坐标系xoy中的图形P,Q,给出如下定义:M为图形P上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q间的“非常距离”,记作d(P,Q).已知点A(4,0),B(0,4),连接AB.(1)d(点O,AB)=(2)⊙O半径为r,若d(⊙O,AB)=0,求r的取值范围;(3)点C(-3,-2),连接AC,BC,⊙T的圆心为T(t,0),半径为2,d(⊙T,△ABC),且0<d <2,求t的取值范围.(石景山)28. 在平面直角坐标系xOy 中,正方形ABCD 的顶点分别为(0,1)A ,(1,0)B -,(0,1)C -, (1,0)D .对于图形M ,给出如下定义:P 为图形M 上任意一点,Q 为正方形ABCD 边上任意一点,如果P ,Q 两点间的距离有最大值,那么称这个最大值为图形M 的“正方距”,记作d (M ). (1)已知点(0,4)E , ①直接写出()d E 点的值;②直线4y kx =+(0)k ≠与x 轴交于点F ,当()d EF 线段取最小值时,求k 的取值范围;(2)⊙T 的圆心为(,3)T t ,半径为1.若()6d T <,直接写出t 的取值范围.(通州)28. 在平面直角坐标系xOy 中,已知点A (0,2),B (2,2),点M 为线段AB 上一点.(1)在点()2,1C ,()2,0D ,()1,2E 中,可以与点M 关于直线y x =对称的点是____________;(2)若x 轴上存在点N ,使得点N 与点M 关于直线y x b =+对称,求b 的取值范围.(3)过点O 作直线l ,若直线y x =上存在点N ,使得点N 与点M 关于直线l 对称(点M 可以与点N 重合),.请你直接写出点N 横坐标n 的取值范围.(延庆)28.对于图形M ,N ,给出如下定义:在图形M 中任取一点A ,在图形N 中任取两点B ,C (A ,B ,C 不共线),将∠BAC 的最大值α(0°<α<180°)叫做图形M 对图形N 的视角. 问题解决:在平面直角坐标系xOy 中,已知T (t ,0),⊙T 的半径为1; (1)当t =0时,①求点D (0,2)对⊙O 的视角α;②直线1l 的表达式为2y x =+,且直线1l 对⊙O 的视角为α,求;(2)直线2l 的表达式为y x t =+,若直线2l 对⊙T 的视角为α,且60°≤α≤90°,直接写出t 的取值范围.(燕山)28.对于平面直角坐标系xOy 中的点P 和⊙M (半径为r ),给出如下定义:若点P 关于点M 的对称点为Q ,且r ≤PQ ≤3r ,则称点P 为⊙M 的称心点.(1) 当⊙O 的半径为2时,① 如图1,在点A (0,1),B (2,0),C (3,4)中,⊙O 的称心点是 ; ② 如图2,点D在直线y =上,若点D 是⊙O 的称心点,求点D 的横坐标m 的取值范围;(2) ⊙T 的圆心为T (0,t ),半径为2,直线13y x =+与x 轴,y 轴分别交于点E ,F .若线段..EF 上的所有点都是⊙T 的称心点,直接写出t 的取值范围.(西城)28.在平面直角坐标系xOy 中,对于两个点,P Q 和图形W ,如果在图形W 上存在点M ,N (M 、N 可以重合)使得PM =QN ,那么称点P 与点Q 是图形W 的一对平衡点.图2(1)如图1,已知点(0,3)A ,(2,3)B . ①设点O 与线段AB 上一点的距离为d ,则d 的最小值是____,最大值是____;图1②在1233(0)(14)(30)2P P P ,,,,,-这三个点中,与点O 是线段AB 的一对平衡点的是 ; (2)如图2,已知⊙O 的半径为1,点D 的坐标为(5,0).若点(,2)E x 在第一象限,且点D 与点E 是 ⊙O 的一对平衡点,求x 的取值范围;图2 图3(3)如图3,已知点(3,0)H -,以点O 为圆心,OH 长为半径画弧交x 轴的正半轴于点K .点(,)C a b(其中0b ³)是坐标平面内一动点,且OC =5,⊙C 是以点C 为圆心,半径为2的圆.若HK 上的任意两个点都是⊙C 的一对平衡点,直接写出b 的取值范围.(顺义)28. 在平面直角坐标系xOy 中,A 、B 为平面内不重合的两个点,若Q 到A 、B 两点的距离相等,则称点Q 是线段AB 的“似中点”.(1)已知A(1,0),B(3,2),在点D(1,3)、E(2,1)、F(4,-2)、G(3,0)中,线段AB的“似中点”是点;y x轴交于点M,与y轴交于点N.(2)直线=+①求在坐标轴上的线段MN的“似中点”;②若⊙P的半径为2,圆心P为(t,0),⊙P上存在线段MN的“似中点”,请直接写出t的取值范围.(丰台)28. 对于平面直角坐标系xOy中的点P和图形G,给出如下定义:若在图形G上存在两个点A,B,使得以P,A,B为顶点的三角形为等边三角形,则称P为图形G的“等边依附点”.(1)已知M(-3,N(3,.①在点C(-2,2),D(0,1),E(1,3)中,是线段MN的“等边依附点”的是;②点P(m,0)在x轴上运动,若P为线段MN的“等边依附点”,求点P的横坐标m的取值范围;(2)已知⊙O的半径为1,若⊙O上所有点都是某条线段的“等边依附点”,直接写出这条线段长n的取值范围.。