异步电动机变频调速的控制方式和机械特性(精)
- 格式:ppt
- 大小:80.00 KB
- 文档页数:6
三相异步电动机变频调速原理三相异步电动机变频调速原理一、介绍电动机调速方式电动机调速是一种控制电动机转速的技术,以实现不同功率、不同扭矩负载下的工作要求。
电动机调速方式有很多,例如电阻调速、电压调速、频率调速、自耦变压器调速等。
二、三相异步电动机变频调速原理三相异步电动机调速方式中,变频调速是应用较广泛的一种方式。
它是通过改变电源输入电压的频率来控制电动机转速。
变频调速可以通过调整电机绕组磁通的频率和振幅,改变电动机的电磁特性,以达到调速的目的。
三、变频调速器变频调速器是实现变频调速的关键设备,其主要功能是将输入电源的交流电变频后,供给电动机使用。
变频调速器包含输入电容器、中间电路、输出滤波器、PWM模块等模块组成。
四、变频调速器的工作原理变频调速器采用PWM技术实现电压、频率、转矩等的控制。
其工作原理主要分为以下几个步骤:1. 输入电流输入电容器,将电流变成滤波后的直流电2. 直流电进入中间电路,经过静止变频器变成可变的中间直流电3. 中间直流电经过PWM模块,被分解成高频PWM脉冲信号4. PWM脉冲信号经过输出滤波器滤波后,形成可变频率的交流电5. 变频调速器输出可调的交流电给电动机,实现电动机转速的调节五、变频调速器的优点与其它调速方式相比,变频调速器主要有以下优点:1. 能够实现恒定功率输出2. 能够实现高精度控制3. 能够实现高效节能4. 能够实现自动平衡5. 对电动机不会造成损坏六、小结三相异步电动机变频调速是一种控制电动机转速的高效、精确的方式,其中变频调速器是实现该调速方式的关键设备。
变频调速技术在现代机械应用中得到了广泛的应用。
异步电动机的调速方法和各调速方法适用什么电动机异步电动机的调速方法有以下几种:改变电动机的极对数。
利用定子的两套或单套绕组,改变其连接方法,到达改变极对数的目的。
这种调速是分级的,不是平滑的。
改变电源的频率。
为此要有一套专用的变频电源。
改变外施电压,以改变转差率。
这种方法实用价值不大。
在转子回路中串入附加电阻。
这种方法只适用于绕线式异步电动机,可得到平滑调速。
1.变频调速向电机定子输以连续变化的频率及相应的电压,即可获得平滑的调速。
要有专用的变频变压电源。
这种调速适用于同步电机及鼠笼电动机的调速。
2.变极数调速转速n与极数P成正比,极数增加,即可降速;极数减少,即可增速。
适用于鼠笼电动机。
3.转子外接电阻调速当电网电压及频率不变时,在转子回路中串入电阻后,可以改善电动机的起动转矩,在绕线电机转子中串接启动电阻,减小启动电流。
适用于滑环电动机。
4.转子外加电压调速此方法也叫串级调速,是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,到达调速的目的。
这种方式有两种:电机反应方式和电气反应方式。
串级调速,多采用晶闸管串级调速,晶闸管低同步串级调速系统是在绕线异步电动机转子侧用大功率的晶闸管或整流二极管,将转子的转差频率交流变为直流,再用晶闸管逆变器将转子电流返回电源以改变电机转速的一种方式。
此控制调速系统效率利用率高,它能实现无级平滑调速,低速时机械特性也比较硬。
这种方法适用于滑环电动机。
此方法又有两种方式:1)电机反应方式,也叫库拉姆法,转子的转差电压经硅整流输入与主电机同轴的直流他励电机,通过直流电机的励磁调节,以调节反应量,从而获得调速。
2)电气反应方式,也叫沙尔比法,转子的转差电压经硅整流输入可控硅逆变器,逆变器交流输出通过反应变压器接与电网,改变逆变角,即可调速。
5,定子调压、转子变阻调速利用异步机转矩与定子端电压平方成正比的关系,同时利用转子改变外接电阻的关系开展调速。
转子变阻为粗调,定子调压为细调。
异步电动机变频调速实验
一、实验目的
1. 掌握异步电动机变频调速原理;
2. 熟悉SVF 系列变频器的使用方法;
3. 加深理解变频调速机械特性。
二、实验内容
测定闭环变频调速机械特性。
三、实验线路
四、变频器操作步骤
1. 变频器面板RUN/STOP 开关置于STOP 位置;
2. 逆时针旋转面板的频率设置按钮FREQSET ,转至最低频率;
3. 电源送至变频器预工作,此时频率显示00;
4. 将变频器面板RUN/STOP 开关置于RUN 位置;
5. 稍微转动FREQSET 按钮,使电动机开始旋转,然后按下表调节,测出转速5-6点。
五、实验步骤和方法
~
~
1. 电源通过三相变压器输出380伏电压输入至变频器R1和T1端,使变频器内部先工作(即合上开关Q1);
2. 将开关Q2闭合,然后再将开关Q3合上接通异步电动机。
调节变频器频率至表中所要求点;
3. 在相同频率下调节励磁电流,使测功机转矩为给定大小,测出转速,改变转矩(20%,40%,60%,0%)T N,测出不同转速填入表格。
4. 改变频率f=(60,55,50,40,30,20)Hz,重做步骤3;
六、实验报告
1. 画出给定负载时的变频调速曲线;
2. 画出不同频率时电机的机械特性曲线。
七、思考题
1. 频率变化时机械特性硬度如何变化?为什么?
2. 根据机械特性分析低频时电动机的过载能力。
本文介绍了三相异步电动机的七种调速方式及其特点,指明其适用的场合、情况。
三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。
从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。
在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。
改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。
从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。
有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。
一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。
一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。
三相异步电动机的变频调速改变三相异步电动机电源频率fi,可以改变旋转磁通势的同步转速,从而达到调速的目的。
如果电源频率连续可调,可以平滑调节电动机的转速。
额定频率称为基频,变频调速时可以从基频向上调,也可以从基频向下调,下面分别进行分析。
忽略定子漏阻抗压降,三相异步电动机每相电压U¡≈E¡=4.44fW1kw1Фm(2.63)如果保持电源电压为额定值,降低电源频率,则随着fi的下降,气隙每极磁通Φ增加。
电动机磁路本来就刚进入饱和状态,Φ增加,磁路过饱和,励磁电流会急剧增加,电机的功率因数下降,负载能力减小,甚至导致无法正常运行。
因此,降低电源频率时,必须同时降低电源电压。
降低电源电压U有两种控制方法。
1.保持E/f=常数降低电源频率f1的同时,保持E/f=常数,则Φ=常数,是恒磁通控制方式。
当改变频率f时,若保持E:/f=常数,最大转矩Tm一常数,与频率无关,并且最大转矩对应的转速落降相等,也就是不同频率的各条机械特性曲线是近似平行的,机械特性的硬度相同。
这种调速方法与他励直流电机降低电源电压调速相似,机械特性较硬,在一定的静差率要求下,调速范围宽,而且稳定性好。
由于频率可以连续调节,因此变频调速为无级调速,平滑性好。
另外,电动机在正常负载运行时,转差率s较小,因此转差功率P,较小,效率较高。
2.保持U/fi=常数当降低电源频率f时,保持U/fx=常数,则气隙每极磁通Φ≈常数。
U、/f、=常数时的机械特性不如保持E/fi=常数时的机械特性,特别是当低频低速时,机械特性变坏了。
升高频率向上调速时,升高电源电压是不允许的,只能保持电压UN 不变,频率越高,磁通Φ越低,因此是一种弱磁升速的方法,类似他励直流电机弱磁调速。