工程材料与热加工基础
- 格式:ppt
- 大小:891.50 KB
- 文档页数:76
《机械工程材料及热加工基础》第一章金属的性能1.强度:金属材料在静载荷(大小和方向不变或逐渐变化的载荷)作用下,抵抗永久变形和断裂的能力。
2.塑性:断裂前材料发生不可逆永久变形的能力。
3.硬度:金属材料表面抵抗其他更硬物体压入的能力。
4.韧性:冲击载荷(以较高速度作用于零件上的载荷)作用下,金属在断裂前吸收变形能量的能力。
5.疲劳:材料在循环应力(大小、方向随时间发生周期性变化的载荷)和应变作用下,在一处或几次产生局部永久性累计损伤,经一定循环次数产生裂纹或发生断裂的过程。
疲劳极限用σ-1表示。
6.屈服点(屈服强度)σs:材料在实验过程中,载荷不增加(保持恒定)试样仍能继续伸长时代应力。
σs﹦试样发生屈服时代载荷/试样原始横截面积。
[不是所有的金属在拉伸试验中都会出现显著的屈服现象]7.抗拉强度σb=试样拉断前所承受的最大载荷/试样原始横截面积。
8.伸长率δ,数值上准确地反映材料的塑性变形。
9.断面收缩率ψ:缩颈处横截面积德最大缩减量与原始横截面积的百分数。
10.硬度的测定:①布氏硬度(压入法):HBS(压头分淬火钢球)和HBW(压头硬质合金)②洛氏硬度HR(测定淬火钢件的硬度用此方法)③维氏硬度HV。
第二章金属的结构与结晶1.晶体:指其组成微粒(原子、分子或离子)按一定次序作有规律重复排列的物质。
2.晶格:描述原子在晶体中排列方式的空间格架。
3.晶胞:晶格中一个能完整反映晶格特征的最小几何单元。
4.金属晶体结构:体心立方结构;面心立方结构;密排立方结构。
5.晶体缺陷:点缺陷(原子的热震动引起晶格畸变),使材料的强度、硬度提高;线缺陷(主要指位错),起到强化金属的目的;面缺陷(晶界、亚晶界引起),阻碍金属的塑性变形发生。
6.细化晶粒度方法:增加过冷度;变质处理(加入难溶物);附加震动。
7.金属的铸态组织:表面细晶粒区,柱状晶粒区,中心等轴晶粒区(穿晶)。
8.铸锭的缺陷:缩孔及缩松,气孔及裂纹,偏析,非金属夹杂物。
绝对最全!!!!!!!工程材料与热加工拒绝盗版!第1章材料的力学性能一、选择题1.金属材料在静载荷作用下,抵抗变形和破坏的能力称为__C____。
A. 塑性B. 硬度C. 强度D. 弹性2.在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是___C___。
A. HBSB. HRCC. HVD. HBW3.做疲劳试验时,试样承受的载荷为__B_____。
A. 静载荷B. 交变载荷C. 冲击载荷D. 动载荷二、填空题1.金属塑性的指标主要有断后伸长率和断面收缩率两种。
2.金属的性能包括物理性能、化学性能、工艺性能和力学性能。
3.常用测定硬度的方法有压入法、刻划法和回跳法测试法。
4.材料的工艺性能包括铸造性能、锻造性能、焊接性能、切削加工性、热处理性等。
5.零件的疲劳失效过程可分为疲劳裂纹产生、疲劳裂纹扩展、瞬时断裂三个阶段。
三、判断题1.用布氏硬度测试法测量硬度时,压头为钢球,用符号HBS表示。
( √)2.材料的断裂韧度大于材料的应力场强度因子的,材料的宏观裂纹就会扩展而导致材料的断裂。
( ×)四、概念及思考题1.硬度,硬度的表示方法。
答:(1)硬度:材料在表面局部体积内抵抗变形(特别是塑性变形)、压痕或刻痕的能力;(2)硬度的表示方法:①布氏硬度:HBS(钢头:淬火钢球)或HBW (钢头:硬质合金球)②洛氏硬度:HR ③维氏硬度:HV2.韧性,冲击韧性。
3.疲劳断裂4.提高疲劳强度的途径。
第2章金属的晶体结构与结晶一、名词解释晶体:是指原子(离子、分子)在三维空间有规则地周期性重复排列的物体;晶格:是指原子(离子、分子)在空间无规则排列的物体;晶胞:通常只从晶格中选取一个能完全反应晶格特征的、最小的几何单元来分析晶体中原子的排列规律,这个最小的几何单元成为晶胞;晶粒:多晶体中每个外形不规则的小晶体;晶界:晶粒与晶粒间的界面;共晶转变:在一定温度下,由一定成分的液相同时结晶出成分一定的两个固相的过程;结晶:原子从排列不规则的液态转变为排列规则的晶态的过程。
工程材料及热加工工艺基础引言工程材料及热加工工艺是现代工程领域中至关重要的一部分。
了解材料的特性以及如何通过热加工工艺将材料加工成所需的形状和性能是工程师们必备的知识。
本文将介绍工程材料的分类以及常用的热加工工艺,帮助读者对这一重要领域有一个基础的了解。
工程材料的分类工程材料是指用于制造机械、结构件以及其他工程产品的材料。
根据其组成和性能,工程材料可以分为金属材料、聚合物材料和陶瓷材料。
金属材料金属材料是指有着优良导电性和导热性的材料,常见的金属材料包括铁、钢、铝、铜等。
金属材料通常具有良好的可塑性、可焊性和可加工性,使其成为工程中最常用的材料之一。
聚合物材料聚合物材料是一类由多个单体分子通过化学键结合而成的大分子化合物。
常见的聚合物材料包括塑料、橡胶等。
聚合物材料具有较低的密度和良好的绝缘性能,适用于制造轻型结构件和绝缘材料。
陶瓷材料陶瓷材料是一类由非金属元素通过化学键结合而成的材料,具有良好的耐高温、耐腐蚀和绝缘性能。
常见的陶瓷材料包括瓷器、砖瓦等,适用于制造耐火材料和陶瓷制品。
热加工工艺的分类热加工工艺是指通过加热和控制温度来改变材料的形状和性能的过程。
常见的热加工工艺包括锻造、热轧、热处理等。
锻造锻造是通过将金属材料加热至可锻温度,然后在压力的作用下使其发生塑性变形,从而改变材料的形状和性能的过程。
锻造可以分为冷锻和热锻两种方式,适用于制造各种型号和形状的金属零件。
热轧热轧是指将金属坯料加热至较高温度,然后通过辊轧机械将其压延成所需的板材、型材等形状的过程。
热轧可以提高材料的密度和机械性能,适用于制造高强度的金属制品。
热处理热处理是指将材料加热至一定温度,然后在控制的气氛或介质中冷却,以改变材料的组织结构和性能的过程。
常见的热处理工艺包括退火、淬火、回火等,可以提高材料的硬度、强度和韧性。
结论工程材料的选择和热加工工艺的应用对于确保工程产品的质量和性能至关重要。
通过了解工程材料的分类以及常用的热加工工艺,工程师们可以更好地选择合适的材料,并通过热加工工艺将其加工成所需的形状和性能。
工程材料与热加工基础
工程材料是指用于工程结构、机械零部件和设备制造的材料,它们的性能直接
影响着工程产品的质量和性能。
热加工是指利用热能对金属材料进行塑性变形的加工方法,包括锻造、轧制、挤压等。
工程材料与热加工基础是工程技术人员必须掌握的基础知识,下面将就工程材料和热加工的相关内容进行介绍。
首先,工程材料主要包括金属材料、非金属材料和复合材料。
金属材料是指主
要由金属元素组成的材料,具有良好的导热性、导电性和机械性能,常见的金属材料有铁、铝、铜、钛等。
非金属材料包括塑料、橡胶、陶瓷等,它们具有轻质、耐腐蚀等特点。
复合材料是由两种或两种以上的材料组成的材料,具有综合性能优异的特点。
其次,热加工是金属材料加工的重要方法之一。
锻造是利用铸锤或压力机对金
属材料进行塑性变形的加工方法,常用于生产大型零部件。
轧制是通过轧机对金属材料进行塑性变形,可以生产各种形状的材料。
挤压是将金属材料加热至一定温度后,通过挤压机对其进行塑性变形,常用于生产管材和型材。
最后,工程材料与热加工基础的学习对于工程技术人员来说至关重要。
掌握各
种材料的性能特点和适用范围,能够正确选择材料,保证产品的质量和性能。
同时,了解热加工的原理和方法,能够合理选择加工工艺,提高生产效率和产品质量。
总之,工程材料与热加工基础是工程技术人员必须掌握的基础知识,它涉及到
工程产品的质量和性能,对于提高产品质量、降低生产成本具有重要意义。
希望通过本文的介绍,能够对读者有所帮助,增强对工程材料与热加工基础的理解和掌握。
工程材料与热加工基础1工程材料与热加工基础第二章锻压1、何为锻压?何为锻压锻压是对坯料施加外力,使其产生塑性变形、改变尺寸、形状及改善性能,用以制造机械零件、工件或毛坯的成形加工方法。
它是锻造与冲压的总称,属于压力加工的范畴。
锻压设备工程材料与热加工基础2、锻压特点:锻压特点:塑性变形是压力加工的基础,凡具有一定塑性的金属如钢及大多数有色金属,均可进行压力加工。
与铸造相比,压力加工的优点是:金属铸锭经塑性变形后,铸造组织的内部缺陷如气孔、缩孔、微裂纹等得到焊合,再结晶后可细化晶粒,金属的各种力学性能得到提高。
冲压件又具有重量轻、精度高、刚性好等优点。
但由于锻压件是在固态成形,金属的流动受到限制。
因此,对于形状复杂、尤其是内腔形状复杂的零件,从制造工艺上锻件远不及铸件容易实现。
另外,锻件的成本比铸件高,材料利用率等方面也不如铸件。
然而,从锻件力学性能的提高,锻造流线更加与受力条件相适应,在同样受力条件下,零件的几何尺寸可以缩小的角度看,又可以大大降低原材料的使用量,延长零件的使用寿命,节约金属。
工程材料与热加工基础第一节金属的锻造性能一、金属的塑性变形概述金属塑性变形的实质,对于单晶体是由于金属原子某晶面两侧受切应力作用产生相对滑移,或晶体的部分晶格相对于某晶面沿一定方向发生切变,即滑移理论和孪生理论。
工程材料与热加工基础二、热锻、冷锻、温锻、等温锻从金属学的观点划分锻压加工的界限为再结晶温度。
1.热锻在金属再结晶温度以上进行的锻造工艺称为热锻。
在变形过程中冷变形强化和再结晶同时存在,属于动态再结晶。
2.冷锻在室温下进行的锻造工艺称为冷锻。
冷锻可以避免金属加热出现的缺陷,获得较高的精度和表面质量,并能提高工件的强度和硬度。
但冷锻变形抗力大,需用较大吨位的设备,多次变形时需增加再结晶退火和其它辅助工序。
目前冷锻主要局限于低碳钢、有色金属及其合金的薄件及小件加工。
3.温锻在高于室温和低于再结晶温度范围内进行的锻造工艺称为温锻。
一轴类零件1、零件名称:C6132车床主轴2、零件图:3、选材1、技术要求和生产性质(1)技术要求:在滚动轴承中运转,承受交变弯曲和扭转应力,σb ≥800Mpa,δ≥9%,α≥0.6MJ/m2,内锥孔和外锥体硬度40~45HRC,其余部位220~250HBS(2)生产性质:大批生产2、选材分析(1)工作条件车床主轴,带动工件旋转,并能承受一定的载荷。
它在滚动轴承中运转,还需要承受摩擦。
因而其工作条件为:a.传递扭矩,承受拉、压载荷;b.轴颈承受较大的摩擦;c.承受一定的冲击载荷。
(2)失效形式轴被轴承支承的部分成为轴颈。
主轴在工作时由于轴颈和轴承的接触会产生摩擦,导致表面发热、磨损。
同时交变载荷长期作用也会是轴疲劳断裂。
所以车床主轴的主要失效形式有:a.疲劳破坏造成断裂b. 过度磨损导致失效(3)综合分析C6132车床主轴需要承受较大的抗拉强度,具有较大的冲击韧性,对局部锥孔需要进行另外热处理,其余部位的硬度也有一定要求,而且要大批量生产,选用的材料应比较常用且较便宜。
(4)选材方案方案一:从碳钢中选择。
一般车床主轴多用45钢,其价格相对较便宜,在调质处理后力学性能有所改善。
45钢在热处理后σb为650~800Mpa,αk≥450J/m2,硬度可达到220~250HBS。
而此处要求σb ≥800Mpa,αk≥0.6MJ/m2。
45钢硬度能满足要求,但其抗拉强度和冲击韧性太低,不满足要求。
方案二:从合金钢中选择。
选择40Cr这种中碳合金调质钢。
它的价格要比普通的45钢高。
但性能更好。
其力学性能:σb≥1000Mpa,αk≥600 J/m2,调质后硬度达220~250HBS,局部淬硬,表面硬度可达46~55HRC。
因此它具有较高的疲劳强度,能抵抗一定程度的变形。
同时合金钢中Cr的加入可有效提高淬透性,整体力学性能较好。
结论:综上所述,应选择40Cr作为C6132车床主轴的材料。
4、零件毛坯生产车床主轴承受重载,交变载荷,并高速旋转,适合采用锻件。