徐州市第三十六中学2018-2019学年上学期高三期中数学模拟题
- 格式:doc
- 大小:730.00 KB
- 文档页数:16
河南省焦作市第三十六中学2018-2019学年高三数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的导函数的图像如图所示,那么的图像最有可能的是(☆ )参考答案:A2. 点(1,1)在不等式组,表示的平面区域内,则m2+n2的取值范围是()A.[3,4] B.[2,4] C.[1,+∞) D.[1,3]参考答案:C【考点】简单线性规划.【专题】不等式的解法及应用.【分析】求出约束条件,画出可行域,然后利用目标函数的几何意义求解即可.【解答】解:点(1,1)在不等式组,表示的平面区域内,可得,不等式组表示的可行域如图:m2+n2的几何意义是可行域内的点到原点距离的平方,显然(1,0)到原点的距离最小,最小值为1,没有最大值,则m2+n2的取值范围是:{1,+∞).故选:C【点评】本题考查线性规划的应用,数形结合的应用,基本知识的考查.3. 某几何体的三视图如图所示(网格线中,每个小正方形的边长为1),则该几何体的体积为()A.2 B.3 C.4 D.6参考答案:A【分析】根据几何体的三视图知该几何体是四棱锥,结合图中数据求出该几何体的体积.【解答】解:根据几何体的三视图知,该几何体是如图所示的四棱锥,则该几何体的体积为V四棱锥P﹣ABCD=××(1+2)×2×2=2.故选:A.4. 已知函数f(x)=,则f(5)=()A.32 B.16 C.D.参考答案:D【考点】函数的值.【分析】利用分段函数的性质求解.【解答】解:∵函数f(x)=,∴f(5)=f(2)=f(﹣1)=2﹣1=.故选:D.5. ()A.B.C.1 D.参考答案:D,故选D.6. 已知函数的图象关于对称,当时,,且,若,则()A. B .C.可能为D.可正可负参考答案:B试题分析:由题设可得,故,所以函数是减函数.又因,故且关于对称,所以,所以,故应选B.考点:对数函数的图象和性质及运用.7. 如右图,在一个长为,宽为2的矩形内,曲线与轴围成如图所示的阴影部分,向矩形内随机投一点(该点落在矩形内任何一点是等可能的),则所投的点落在阴影部分的概率是()A.B. C.D.参考答案:D8. 如图是一个由三根细棒PA、PB、PC组成的支架,三根细棒PA、PB、PC两两所成的角都为600,一个半径为1的小球放在支架上,则球心O到点P 的距离是A、 B、2 C、 D、参考答案:C9. 已知双曲线的一个焦点与抛物线的焦点重合,且其渐近线方程为,则该双曲线的标准方程为()A.B. C. D.参考答案:B10. 已知三棱柱的6个顶点都在球O的球面上,若AB=3,AC=4,AB AC,=12,则球O的半径为A.B.C.D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数是定义在上的奇函数,在上,则参考答案:略12. (14)已知等比数列.参考答案:6313. 已知角α的顶点在坐标原点,始边与x轴的正半轴重合,将角α的终边按逆时针方向旋转后经过点,则sinα=______________.参考答案:1【分析】由题意利用任意角的三角函数的定义,先求得的值,可得的值.【详解】角的顶点在坐标原点,始边与x轴的正半轴重合,将角的终边按逆时针方向旋转后经过点,,,所以,.故答案为:1.【点睛】本题考查已知终边上一点求三角函数值的问题,涉及到三角函数的定义,是一道容易题.14. 设f(x)=sin4x-sin x cos x+cos4x,则f(x)的值域是.参考答案:[0,]解:f(x)=sin4x-sin x cos x+cos4x=1-sin2x- sin22x.令t=sin2x,则f(x)=g(t)=1-t-t2=-(t+)2.因此-1≤t≤1min g(t)=g(1)=0,-1≤t≤1max g(t)=g(-)=.故,f(x)∈[0,].15. 在△ABC中,D是BC的中点,AD=8,BC=20,则的值为.参考答案:-3616. 已知关于x的方程只有一个实数解,则实数的值为▲ .参考答案:317. 在复平面内,复数对应的点位于第三象限,则实数的取值范围是.参考答案:(-2,0)三、解答题:本大题共5小题,共72分。
一、单选题二、多选题1. 已知集合,,则( )A.B.C.D.2. 三棱锥中,底面,若,则该三棱锥外接球的表面积为( )A.B.C.D.3. 已知i是虚数单位,若,,则复数在复平面内对应的点在( ).A .第一象限B .第二象限C .第三象限D .第四象限4. 设,,且为偶函数,为奇函数,若存在实数,当时,不等式成立,则的最小值为A.B.C.D.5.已知函数,则A .-2B.C .2D.6. 双曲线C :的左,右焦点分别为,,过的直线与C 交于A ,B两点,且,,则双曲线C 的离心率为( )A.B .2C.D.7. 函数的定义域为A.B.C.D.8. 已知复数z 的共轭复数,则( )A.B.C.D.9. 已知,则下列结论正确的是( )A.B.C.D .若,则10.如图,在直三棱柱中,,,、分别为,的中点,过点、、作三棱柱的截面,则下列结论中正确的是( )江苏省徐州市2024届高三上学期合格考试学情调研数学试题江苏省徐州市2024届高三上学期合格考试学情调研数学试题三、填空题四、解答题A.三棱柱外接球的表面积为B.C .若交于,则D .将三棱柱分成体积较大部分和体积较小部分的体积比为11. 已知曲线的方程为,则下列结论正确的是( )A .当时,曲线为椭圆,其焦距为B .当时,曲线为双曲线,其离心率为C .存在实数使得曲线为焦点在轴上的双曲线D .当时,曲线为双曲线,其渐近线与圆相切12. 已知平面向量,,则下列说法正确的是( )A .若,则B .若,则C .若,则D .若,则13.已知函数,都有,则的取值范围为__________.14. 已知双曲线E:=1(m ,n >0)的焦距为4,则m +n =___.15. 某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为的样本,已知从高中生中抽取70人,则为____.16.如图,在圆锥中,是底面圆的直径,,是底面圆周上一点,与平面所成的角为30°,点,分别在,上,且平面.(1)求的值;(2)求平面与平面夹角的余弦值.17. 若数列满足:,,对于任意的,都有.(1)证明:数列是等比数列;(2)求数列的通项公式.18. 已知函数.(1)求不等式的解集;(2)若函数的图象最低点为,正数满足,求的取值范围.19. 如图,棱长为2的正四面体ABCD(所有棱长均相等的三棱锥)中,E,F为AB和DC的中点.(1)证明:;(2)求三棱锥的体积.20. 过坐标原点作圆的两条切线,设切点为,直线恰为抛物的准线.(1)求抛物线的标准方程;(2)设点是圆上的动点,抛物线上四点满足:,设中点为.(i)求直线的斜率;(ii)设面积为,求的最大值.21. 已知数列满足.(1)求的通项公式;(2)求数列的前n项和.。
2021-2022学年江苏省徐州市高三(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣x﹣2≥0},B={x|y=√x−1},则A∪B=()A.R B.[1,+∞)C.(﹣∞,﹣1]∪[1,+∞)D.(﹣∞,﹣1]∪[0,+∞)2.复数z满足z1−z=2i,则z平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.某校开设A类选修课4门,B类选修课3门,每位同学从中选3门.若要求两类课程中都至少选一门,则不同的选法共有()A.18种B.24种C.30种D.36种4.已知a,b是两条不同的直线,α,β是两个不同的平面,且a⊥α,α⊥β,则“a⊥b”是“b⊥β”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件5.若(x−ax)8的二项展开式中x6的系数是﹣16,则实数a的值是()A.﹣2B.﹣1C.1D.26.某单位招聘员工,先对应聘者的简历进行评分,评分达标者进入面试环节.现有1000人应聘,他们的简历评分X服从正态分布N(60,102),若80分及以上为达标,则估计进入面试环节的人数为()(附:若随机变量X~N(μ,σ2),则P(μ﹣σ<X<μ+σ)=0.6827,P(μ﹣2σ<X<μ+2σ)≈0.9545,P(μ﹣3σ<X<μ+3σ)≈0.9973.)A.12B.23C.46D.1597.已知第二象限角θ的终边上有异于原点的两点A (a ,b ),B (c ,d ),且sin θ+3cos θ=0,若a +c =﹣1,则1b+4d 的最小值为( )A .83B .3C .103D .48.已知等比数列{a n }的前n 项和S n =(13)n +1﹣b ,数列{(ab )n }的前n 项和为T n ,若数列{T n }是等差数列,则非零实数a 的值是( ) A .﹣3 B .13C .3D .4二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a <b ,则下列结论错误的是( ) A .1a>1bB .a 2<b 2C .(12)a >(12)bD .ln (b ﹣a )>010.已知圆M :x 2+y 2+4x ﹣1=0,点P (a ,b )是圆M 上的动点,则( ) A .圆M 关于直线x +3y +2=0对称 B .直线x +y =0与圆M 相交所得弦长为√3 C .b a−3的最大值为12D .a 2+b 2的最小值为√5−211.已知函数f (x )=sin ωx +√3cos ωx (ω>0)的零点依次构成一个公差为π2的等差数列,把函数f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,则函数g (x )( )A .是偶函数B .其图象关于直线x =π4对称 C .在[π4,π2]上是减函数D .在区间[π6,2π3]上的值域为[−√3,2]12.若f (x )和g (x )都是定义在R 上的函数,且方程f [g (x )]=x 有实数解,则下列式子中可以为 g [f (x )]的是( ) A .x 2+2x B .x +1C .e cos xD .ln (|x |+1)三、填空题:本题共4小题,每小题5分,共20分.13.已知正方形ABCD 的边长为2,点P 满足AP →=13AB →+23AD →,则CP →⋅DC →的值是 .14.设f (x )是定义域为R 的奇函数,且f (1+x )=f (﹣x ).若f (−13)=3,则f (113)的值是 .15.已知抛物线C :y 2=8x 的焦点为F ,P 为C 上一点,若A (﹣2,0),则PA PF的最大值为 .16.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 在棱D 1C 1上运动,点Q 在棱BC 上运动,且PQ 与BB 1所成的角为π4,若线段PQ 的中点为M ,则点M 的轨迹的长度是 .四、解答题:本题共6小题,共70分。
2019年江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣22.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a63.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,104.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.12005.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,386.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y28.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是.10.(3分)使有意义的x的取值范围是.11.(3分)方程x2﹣4=0的解是.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为.18.(3分)函数y =x+1的图象与x 轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有个.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.20.(10分)(1)解方程:+1=(2)解不等式组:21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:1 2 3 4乙积甲123(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.图案的长度10cm20cm30cm40cm50cm60cm 所有不同图案的个数 1 2 327.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.2019年江苏省徐州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣2【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a6【分析】分别根据合并同类项的法则、完全平方公式、幂的乘方以及同底数幂的乘法化简即可判断.【解答】解:A、a2+a2=2a2,故选项A不合题意;B.(a+b)2=a2+2ab+b2,故选项B不合题意;C.(a3)3=a9,故选项C符合题意;D.a3•a2=a5,故选项D不合题意.故选:C.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及完全平方公式,熟练掌握法则是解答本题的关键.3.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点评】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.4.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.1200【分析】由抛掷一枚硬币正面向上的可能性为0.5求解可得.【解答】解:抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选:C.【点评】本题主要考查随机事件,关键是理解必然事件为一定会发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.5.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,38【分析】根据众数和中位数的概念求解可得.【解答】解:将数据重新排列为37,37,38,39,40,40,40,所以这组数据的众数为40,中位数为39,故选:B.【点评】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解可得.【解答】解:不是轴对称图形,故选:D.【点评】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2【分析】根据题意和反比例函数的性质可以解答本题.【解答】解:∵函数y=,∴该函数图象在第一、三象限、在每个象限内y随x的增大而减小,∵A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,∴y1<y2,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.8.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108【分析】先化简2.5×106=0.25×107,再从选项中分析即可;【解答】解:2.5×106=0.25×107,(10×107)÷(0.25×107)=40,从数轴看比较接近;故选:D.【点评】本题考查数轴,科学记数法;能够将数进行适当的表示,结合数轴解题是关键.二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)使有意义的x的取值范围是x≥﹣1 .【分析】根据二次根式中的被开方数必须是非负数,可得x+1≥0,据此求出x的取值范围即可.【解答】解:∵有意义,∴x+1≥0,∴x的取值范围是:x≥﹣1.故答案为:x≥﹣1.【点评】此题主要考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.(3分)方程x2﹣4=0的解是±2 .【分析】首先把4移项,再利用直接开平方法解方程即可.【解答】解:x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为 4 .【分析】由a=b+2,可得a﹣b=2,代入所求代数式即可.【解答】解:∵a=b+2,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4.故答案为:4【点评】本题主要考查了完全平方公式,熟记公式是解答本题的关键.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为16 .【分析】根据中位线的性质求出BO长度,再依据矩形的性质AC=BD=2BO进行求解问题.【解答】解:∵M、N分别为BC、OC的中点,∴BO=2MN=8.∵四边形ABCD是矩形,∴AC=BD=2BO=16.故答案为16.【点评】本题主要考查了矩形的性质以及三角形中位线的定理,解题的关键是找到线段间的倍分关系.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=140°.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出多边形的边数,再根据多边形的内角和公式计算即可.【解答】解:多边形的每个外角相等,且其和为360°,据此可得多边形的边数为:,∴∠OAD=.故答案为:140°【点评】本题主要考查了正多边形的外角以及内角,熟记公式是解答本题的关键.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为 6 cm.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262 m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【分析】作AE⊥BC于E,根据正切的定义求出AE,根据等腰直角三角形的性质求出BE,结合图形计算即可.【解答】解:作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为y=(x﹣4)2.【分析】设原来的抛物线解析式为:y=ax2.利用待定系数法确定函数关系式;然后利用平移规律得到平移后的解析式,将点P的坐标代入即可.【解答】解:设原来的抛物线解析式为:y=ax2(a≠0).把P(2,2)代入,得2=4a,解得a=.故原来的抛物线解析式是:y=x2.设平移后的抛物线解析式为:y=(x﹣b)2.把P(2,2)代入,得2=(2﹣b)2.解得b=0(舍去)或b=4.所以平移后抛物线的解析式是:y=(x﹣4)2.故答案是:y=(x﹣4)2.【点评】考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征.利用待定系数法确定原来函数关系式是解题的关键.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有 3 个.【分析】三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;【解答】解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为3;【点评】本题考查一次函数的图象上点的特征,等腰三角形的性质;掌握利用两圆一线找等腰三角形的方法是解题的关键.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.【分析】(1)先计算零指数幂、算术平方根、负整数指数幂和绝对值,再计算加减可得;(2)先化简各分式,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=1﹣3+9﹣5=2;(2)原式=÷=(x﹣4)•=2x.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式的乘除运算顺序和运算法则.20.(10分)(1)解方程:+1=(2)解不等式组:【分析】(1)两边同时乘以x﹣3,整理后可得x=;(2)不等式组的每个不等式解集为;【解答】解:(1)+1=,两边同时乘以x﹣3,得x﹣2+x﹣3=﹣2,∴x=;经检验x=是原方程的根;(2)由可得,∴不等式的解为﹣2<x≤2;【点评】本题考查分式方程,不等式组的解;掌握分式方程和不等式组的解法是关键.21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:乙积甲1 2 3 41 1 23 42 2 4 6 83 3 6 9 12 (2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.【分析】(1)计算所取两数的乘积即可得;(2)找到符合条件的结果数,再根据概率公式计算可得;(3)利用概率公式计算可得.【解答】解:(1)补全表格如下:1 2 3 41 123 42 2 4 6 83 3 6 9 12 (2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为;积为偶数的概率为=,故答案为:,.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.【分析】(1)从条形统计图中可得3﹣4月份电费240元,从扇形统计图中可知3﹣4月份电费占全年的10%,可求全年的电费,进而求出9﹣10月份电费所占的百分比,然后就能求出9﹣10月份对应扇形的圆心角的度数;(2)全年的总电费减去其它月份的电费可求出7﹣8月份的电费金额,确定直条画多高,再进行补全统计图.【解答】解:(1)全年的总电费为:240÷10%=2400元9﹣10月份所占比:280÷2400=,∴扇形统计图中“9﹣10月”对应扇形的圆心角度数为:360°×=42°答:扇形统计图中“9﹣10月”对应扇形的圆心角度数是42°(2)7﹣8月份的电费为:2400﹣300﹣240﹣350﹣280﹣330=900元,补全的统计图如图:【点评】考查条形统计图、扇形统计图的特点及反应数据的变化特征,两个统计图联系在一起,可以发现数据之间关系,求出在某个统计图中缺少的数据.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.【分析】(1)依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;(2)依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD =CG,即可得到∠B=∠G,BC=CG,进而得出△EBC≌△FGC.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).【点评】本题主要考查了平行四边形的性质,平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.【分析】(1)连接OC,由D为的中点,得到=,根据圆周角定理即可得到结论;(2)根据平行线的判定定理得到AE∥OD,根据平行线的性质得到OD⊥DE,于是得到结论.【解答】(1)证明:连接OC,∵D为的中点,∴=,∴∠BCD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.【点评】本题考查了直线与圆的位置关系,圆心角、弧、弦的关系,圆周角定理,熟练掌握切线的判定定理是解题的关键.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?【分析】设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,根据长方体盒子的侧面积为200cm2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.图案的长度10cm20cm30cm40cm50cm60cm 所有不同图案的个数 1 2 3 4 5 6 【分析】根据已知条件作图可知40cm时,所有图案个数4个;猜想得到结论;【解答】解:如图:根据作图可知40cm时,所有图案个数4个;50cm时,所有图案个数5个;60cm时,所有图案个数6个;故答案为4,5,6;【点评】本题考查应用与设计作图,规律探究;能够根据条件作图图形,探索规律是解题的关键.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?【分析】(1)设甲、乙两人的速度,并依题意写出函数关系式,再根据图②中函数图象交点列方程组求解;(2)设甲、乙之间距离为d,由勾股定理可得d2=(1200﹣240x)2+(80x)2 =64000(x﹣)2+144000,根据二次函数最值即可得出结论.【解答】解:(1)设甲、乙两人的速度分别为am/min,bm/min,则:y1=y2=bx由图②知:x=3.75或7.5时,y1=y2,∴,解得:答:甲的速度为240m/min,乙的速度为80m/min.(2)设甲、乙之间距离为d,则d2=(1200﹣240x)2+(80x)2=64000(x﹣)2+144000,∴当x=时,d2的最小值为144000,即d的最小值为120;答:当x=时,甲、乙两人之间的距离最短.【点评】本题考查了函数图象的读图识图能力,正确理解图象交点的含义,从图象中发现和获取有用信息,提高分析问题、解决问题的能力.28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.【分析】(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.利用全等三角形的性质解决问题即可.(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,利用勾股定理求出a,b之间的关系,求出OC,OD即可解决问题.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,可得AB=6﹣a﹣b,推出OA+OB+AB =6,可得a+b+=6,利用基本不等式即可解决问题.【解答】解:(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠PAM=∠PAH,PA=PA,∴△PAM≌△PAH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∴∠MPN=90°,∴∠APB=∠APH+∠BPH=(∠MPH+∠NPH)=45°,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=9,∵m>0,∴m=3,∴P(3,3).(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(6﹣a﹣b)2,可得ab=18﹣6a﹣6b,∴9﹣3a﹣3b=ab,∵PM∥OC,∴=,∴=,∴OC=,同法可得OD=,∴S△COD=•OC•DO====6.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∴OA+OB+AB=6,∴a+b+=6,∴2+≤6,∴(2+)≤6,∴≤3(2﹣),∴ab≤54﹣36,∴S△AOB=ab≤27﹣18,∴△AOB的面积的最大值为27﹣18.【点评】本题属于反比例函数综合题,考查了反比例函数的应用,全等三角形的判定和性质,勾股定理,平行线分线段成比例定理,基本不等式等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。
江苏省徐州市铜山区2018-2019学年八年级数学下学期期中试题2018~2018学年度第二学期期中考试八年级数学试题参考答案及评分意见2018.4.12说明:1.本意见对每题给出了一种或几种解法供参考,如果考生的解法与本意见不同,可根据试题的主要考查内容比照本意见制定相应的评分细则.2.对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端括号内所注分数,表示考生正确做到这一步应得的分段分数.4.只给整数分数.一、选择题(每题3分,共24分)二、填空题(每题3分,共30分)9.①③10.167.5---170.5 11.226a b12.④③②①13.5 14.1615.12 16. ③ 17. 5 18.2三、解答题(第19-25题每题8分,第26题每题10分,共66分) 19. (本题8分)(1)解:原式=()()22a b a b b a ba b-++++ (2)解:原式=()()()12122a a a a a a +--+- =22a b a b++ ---------4分 =112a a +-+=12a +--------8分 20. (本题8分)(1)解:去分母得:2x=3(x-2) (2)解:去分母得:()()222216x x --+=去括号得:2x=3x-6 去括号得:2x -4x+4-(2x +4x+4)=16移项得:2x-3x=-6 移项合并得:-8x=16 合并同类项得:x=6 系数化为1得:x=-2 检验:当x=6时,x(x-2)=24≠0, 检验:当x=-2时,(x+2)(x-2)=0,x=-2是增根x =6是原方程的解.---------------4分 原方程无解. ----------------------8分 21. (本题8分)证明:连接BD ,BD 交AC 于点O. ∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD(平行四边形的对角线互相平分). ------------3分∵AE=CF,∴OA-AE=OC-CF,即OE=OF. ------------6分∴四边形EBFD是平行四边形。
江苏省徐州市2024-2025学年高一上学期11月期中数学检测试卷一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.命题“21(0,),xxx”的否定为()A.21(0,),xxxB.2
1(0,),xx
x
C.21(0,),xxxD.2
1(0,),xx
x
2.下列各组中,函数fx与gx表示同一函数的一组是()A.2lgfxx和2lggxxB.22fxxx和
24gxx
C.fxx和2xgxxD.3log3x
fx
和3
3
gxx
3.已知0x是函数21xfxx的一个零点,若101,xx,20,xx,则()A.120,0fxfxB.120,0fxfx
C.120,0fxfxD.120,0fxfx
4.已知3log2a,1215b,131
25c
,则实数,,abc的大小关系正确的是()
A.abcB.bcaC.cbaD.cab
5.若正实数x,y满足3xy,且不等式2814m
xy
恒成立,则实数m的取值范围
是()A.|31mmB.{3|mm或1}mC.|13mmD.{1|mm或3}m6.函数2
e()
e1
x
xx
fx
的大致图象为()
A.B.
C.D.7.某种产品的两种原料相继提价,产品生产者决定根据这两种原料提价的百分比,对产品进行提价,现有四种提价方案:方案甲,第一次提价%p,第二次提价%q;方案乙,第一次提价%pq,第二次提价%pq;
方案丙,第一次提价%2pq,第二次提价%2pq;方案丁,一次性提价%pq.
其中pq且0,0pq,则上述方案中提价最多的是()A.甲B.乙C.丙D.丁8.已知函数2221xfxx,则不等式2232ftft的解集为()A.,13,B.1,3C.,31,D.3,1
2019-2020学年江苏省徐州市第三十六中学高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 一个几何体的三视图如图所示,则该几何体的表面积是()A.B.C.D.参考答案:C【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知中的三视图可得该几何体是一个以俯视图为底面的四棱锥,求出各个面的面积,相加可得答案.【解答】解:由已知中的三视图可得该几何体是一个以俯视图为底面的四棱锥,其底面是边长为1m的正方形,故底面积为1m2,侧面均为直角三角形,其中有两个是腰为1m的等腰直角三角形,面积均为: m2,另外两个是边长分别为1m, m, m的直角三角形,面积均为: m2,故几何体的表面积S=,故选:C2. 能化为普通方程的参数方程为( )参考答案:B略3. 复数(m2-5m+6)+(m2-3m)i是纯虚数,则实数m的值是()A.3B.2C.2或3 D.0或2或3参考答案:B略4. 如图所示,是全集,是的子集,则阴影部分所表示的集合为A. B. C. D.参考答案:D5. 由“若a>b,则a+c>b+c”推理到“若a>b,则ac>bc”是()A.归纳推理B.类比推理C.演绎推理D.不是推理参考答案:B【考点】类比推理.【分析】根据归纳推理是由部分到整体的推理,演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推理;由“若a>b,则a+c>b+c”推理到“若a>b,则ac>bc”是由特殊到特殊的推理,所以它是类比推理,据此解答即可.【解答】解:根据归纳推理是由部分到整体的推理,演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推理,由“若a>b,则a+c>b+c”推理到“若a>b,则ac>bc”是由特殊到特殊的推理,所以它是类比推理.故选:B.【点评】本题主要考查了归纳推理、类比推理和演绎推理的判断,属于基础题,解答此题的关键是熟练掌握归纳推理、类比推理和演绎推理的定义和区别.6. 下列推理正确的是()A.如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖B.∵,∴C.若,,则D.若,则参考答案:C7. a,b∈R,且a>b,则下列不等式中恒成立的是()A.a2>b2B.( ) a <()bC.lg(a-b)>0D.>1参考答案:B8. 已知椭圆与双曲线有相同的焦点, 则的值为A. B. C. D.参考答案:C略9. 在中,,且CA=CB=3,点M满足,则等于 ( )A.2 B.3 C.4D.6参考答案:B10. 若双曲线的左焦点在抛物线的准线上,则P的值为A、2B、3C、4 D、参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 已知,,,则的最小值是.参考答案:4因为,根据基本不等式:,则,令,不等式转化为:,解得:,即的最小值为4.12. 在平面直角坐标系xOy中,点M是椭圆上的点,以M为圆心的圆与x轴相切于椭圆的焦点F,圆M与y轴相交于P,Q两点.若△PQM是锐角三角形,则该椭圆离心率的取值范围是.参考答案:13. 长方体的过一个顶点的三条棱长的比是1:2:3,对角线长为2,则这个长方体的体积是.参考答案:48【考点】棱柱、棱锥、棱台的体积.【分析】先设出长方体的长宽高,然后根据对角线求出长宽高,最后根据长方体的体积公式求出所求即可.【解答】解:∵长方体的过一个顶点的三条棱长的比是1:2:3,∴设三条棱长分别为k,2k,3k则长方体的对角线长为==2∴k=2长方体的长宽高为6,4,2∴这个长方体的体积为6×4×2=48故答案为:4814. 在某个容量为300的样本的频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个小长方形面积和的,则中间一组的频数为.参考答案:50略15. 已知椭圆的离心率是,过椭圆上一点作直线交椭圆于两点,且斜率存在分别为,若点关于原点对称,则的值为▲.参考答案:略16. 一个总体分为甲、乙两层,用分层抽样方法从总体中抽取一个容量为的样本.已知乙层中每个个体被抽到的概率都为,则总体中的个体数为 .参考答案:18017. 关于x的不等式的解集为{x|-1<x<2}则关于x的不等式的解集为________________.参考答案:三、解答题:本大题共5小题,共72分。
2024年中考第一次模拟考试(徐州卷)数学·全解全析第Ⅰ卷一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)118)A .32B .23C .9D .6【答案】A 189232==故选:A .2.在下列运算中,正确的是()A .835x x x ÷=B .()2236x x =C .326x x x ⋅=D .()235x x =【答案】A【解析】解:A 、835x x x ÷=,故A 符合题意.B 、22(3)9x x =,故B 不符合题意.C 、325x x x ×=,故C 不符合题意.D 、326()x x =,故D 不符合题意.故选:A .3.如图是由4个相同的小正方体组成的几何体,从上面看这个几何体得到的平面图形是()A .B .C .D .【答案】B【解析】解:从上面看,得到的图形是两行,其中(上往下)第一行为2个小正方形,第二行是一个小正方形,选项B 中的图形符合题意,故选:B .4.某轮滑队所有队员的年龄只有12,13,14,15,16(岁)五种情况,其中部分数据如图所示,若队员年龄的唯一的众数与中位数相等,则这个轮滑队队员人数最少是()A .10B .11C .12D .13【答案】C 【解析】解:由题图中数据可知:小于14的人有4人,大于14的人也有4人,∴这组数据的中位数为:14,队员年龄的唯一的众数与中位数相等,∴众数是14,即年龄为14的人最多,∴14岁的队员最少有4人,故选:C .5.如图所示,在正五边形ABCDE 中,过点B ,A 作平行线BG ,AF ,46ABG ∠=︒,则FAE ∠的度数是()A .26︒B .44︒C .46︒D .72︒【答案】A 【解析】解:∵五边形ABCDE 为正五边形,∴()521801085EAB -⨯︒∠==︒.∵AF BG ∥,46ABG ∠=︒,∴1801804610826FAE ABG EAB ︒︒︒︒︒∠=-∠-∠=--=.故选:A .6.二次函数2y ax bx c =++中,y 与x 的部分对应值如下:则一元二次方程20ax bx c ++=的一个解x 满足条件()x1.1 1.2 1.3 1.4 1.5 1.6y 1.59- 1.16-0.71-0.24-0.250.76A .1.2 1.3x <<B .1.3 1.4x <<C .1.4 1.5x <<D .1.5 1.6x <<【答案】C【解析】解:由表格可知: 1.4x =时,0.240y =-<, 1.5x =时,0.250y =>,∴当1.4 1.5x <<,存在一个x 的值,使20y ax bx c =++=,∴一元二次方程20ax bx c ++=的一个解x 满足条件为1.4 1.5x <<;故选:C .7.如图,在平面直角坐标系xOy 中,菱形AOBC 的一个顶点O 在坐标原点,一边OB 在x 轴的正半轴上,4sin 5AOB ∠=,反比例函数48y x =在第一象限内的图象经过点A ,与BC 交于点F ,则AOF 的面积等于()A .30B .40C .60D .80【答案】B 【解析】解:过点A 作AM x ⊥轴于点M ,如图所示.设OA a =,在Rt OAM △中,90AMO ∠=︒,OA a =,4sin 5AOB ∠=,4sin 5AM OA AOB a ∴=⋅∠=,2235OM OA AM a =-=,∴点A 的坐标为3455a a ⎛⎫ ⎪⎝⎭,. 点A 在反比例函数48y x=的图象上,∴23412485525a a a ⋅==,解得:10a =,或10a =-(舍去).8AM ∴=,6OM =,∴10OA =.四边形OACB 是菱形,点F 在边BC 上,∴10OB OA ==,114022AOF OBCA S S OB AM ∴==⋅=菱形△.故选:B .8.如图,在ABC 中,点D 、E 在AC BC 、边上,连接DE 并延长交AB 延长线于点G .过D 作DF AG ⊥于F .若2ADF G ∠=∠,:2:1CE BE =,210AD =2AF =,4GE =,则BA 的长度为()A 2103B .4103C .9D .12【答案】C【解析】解:设ADF α∠=,则2G α∠=,∵DF AG ⊥,∴90AFD ∠=︒,∴90A α∠=︒-,∴18090ADG A G A α∠=︒-∠-∠=︒-=∠,∴GAD 为等腰三角形.由勾股定理得,226DF AD AF =-=,设GD x =,2GF x =-,由勾股定理得,222GF DF GD +=,即()22236x x -+=,解得10x =,∴6DE =,∵:2:1CE BE =,∴:2:3CE BC =,如图,过B 作BQ DG ∥交AC 于Q ,∴BQC EDC ∽,∴CEDEBC BQ =,即263BQ =,解得,9BQ =,∵BQ DG ∥,∴BQA DGA A ∠=∠=∠,∴9BA BQ ==,故选:C .第Ⅱ卷二、填空题(本大题共10个小题,每小题3分,共30分)9.实数5的平方根是.【答案】5±【解析】解:实数5的平方根是5故答案为:510.分解因式:22mx my -=.【答案】()()m x y x y -+/()()m x y x y +-【解析】解:()()()2222mx my m x y m x y x y -=-=-+;故答案为:()()m x y x y -+.11.作为锦州市非物质文化遗产,锦州烧烤已经成为我市的一张饮食文化名片,并于2022年入选国家《地标美食名录》.上网搜索“锦州烧烤”,网页显示找到相关结果约为5140000个,数据5140000用科学记数法可表示为.【答案】65.1410⨯【解析】65140000 5.1410=⨯.故答案为:65.1410⨯.12.圆锥的底面半径为2cm ,母线长为3cm ,则圆锥的侧面积为2cm .【答案】6π【解析】圆锥的侧面积为:()12236cm 2ππ⨯⨯⨯=.故答案为:6π13.如图,O 的直径12cm CD =,AB 是O 的弦,AB CD ⊥于点E ,13OE OC =::,则AB 的长为.【答案】82先求出OE 再利用勾股定理即可得得出AE ,最后用垂径定理即可得出AB .【解析】解:如图,连接OA ,O 的直径12cm CD =,6OD OA OC ∴===,13OE OC = ::,2OE ∴=,AB CD ⊥ ,290AB AE OEA ∴=∠=︒,,在Rt OAE △中,223642AE OA OE =--282cm AB AE ∴==.故答案为:8214.列方程组解题:“今有马二、牛一,直金七两;马三、牛二,直金十二两.马、牛各直金几何?”其大意是:2匹马,1头牛,一共价值7两;3匹马,2头牛,一共价值12两,问每匹马、每头牛各价值多少两?设每匹马x 两,每头牛y 两.根据题意,可列方程组为.【答案】273212x y x y +=⎧⎨+=⎩【解析】解:由题意得:273212x y x y +=⎧⎨+=⎩,故答案为:273212x y x y +=⎧⎨+=⎩.15.如图,在ABC 中,90ABC ∠=︒,60A ∠=︒,直尺的一边与BC 重合,另一边分别交AB ,AC 于点D ,E .点B ,C ,D ,E 处的读数分别为15,12,0,1,则直尺宽BD 的长为.233233【解析】解:由题意得,1DE =,3BC =,在Rt ABC △中,60A ∠=︒,则33tan 3BC AB A ==∵DE BC ∥,ADE ABC ∴△△∽,DE AD BC AB ∴=,即1333=解得:233BD =,23316.在古代的两河流域,人们用粘土制成泥版,在泥版上进行书写.古巴比伦时期的泥版BM15285(如图1)记录着祭司学校的数学几何练习题,该图片由完美的等圆组成.受泥版上的图案启发,某设计师设计出形似雨伞的图案用作平面镶嵌(如图2),若图案中伞顶与伞柄的最长距离为2,则一块伞形图案的面积为.【答案】2【解析】解:观察图形,一块伞形图案的面积为:矩形面积-下半圆面积+上半圆面积=矩形面积,∴一块伞形图案的面积为:2×1=2.故答案为:2.17.如图,曲线l 是由函数k y x=在第一象限内的图象绕坐标原点O 逆时针旋转45︒得到的,过点(42,2A -,(22,2B 的直线与曲线l 相交于点M ,N ,若OMN 的面积是46,则k 的值为.【答案】5【解析】解:连接OA ,OB ,过A 作AE y ⊥轴于E ,过B 作BF y ⊥轴于F ,如图所示:点(2,2A -,(2,2B ,42OE ∴=42AE =228OA OE AE ∴=+=,45EAO AOE ∠=∠=︒,同理得:4OB =,45BOF ∠=︒,90AOB ∠=︒∴,OA OB ∴⊥,函数(0)k y k x=>在第一象限内的图象绕坐标原点O 逆时针旋转45︒,∴建立新的坐标系:OB 为x '轴,OA 为y '轴,则旋转后的函数解析式为:k y x '=',在新的坐标系中,()0,8A ,()4,0B ,设直线AB 的解析式为:y mx n '='+,则840n m n =⎧⎨+=⎩,解得28m n =-⎧⎨=⎩,∴直线AB 的解析式为:28y x ''=-+,设()11,28M x x -+,()22,28N x x -+,由28k x x '-+='得:2280x x k ''-+=,124x x ∴+=,122k x x =,()121118484286222OMN AOB AOM BON S S S S x x =--=⨯⨯-⨯⨯-⨯⨯-+= 整理得126x x -=-()2126x x ∴-=,∴22112226x x x x +-=,()2121246x x x x ∴+-=,24462k ∴-⨯=,5k ∴=;故答案为:5.18.如图,等腰ABC 中,4AB AC BC m ===,,点D 是边AB 的中点,点P 是边BC 上的动点,且不与B C 、重合,DPQ B ∠=∠,射线PQ 交AC 于点Q .当点Q 总在边AC 上时,m 的最大值是.【答案】42【解析】解:设BP x =,则,PC m x =-AB AC = ,,B C ∴∠=∠,DPQ B ∠=∠Q ,C DPQ ∴∠=∠180,180PQC QPC C BPD ∠=︒-∠-∠∠=︒-∠Q ,DPQ QPC -∠,PQC BPD ∴∠=∠,BPD CQP ∴V V ∽,BD PBCP CQ ∴=即2,xm x CQ =-2111(),222CQ x m x mx ∴=-=-+当12x m =时,CQ 取最大值,最大值为218m ,要使Q 永远在AC 上,则CQ AC ≤,即4CQ ≤,214,8m ∴≤232,m ∴≤042,m ∴<≤∴m 的最大值为42故答案为:42三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)19.(1()10131330 3.142tan π-⎛⎫-︒+-+- ⎪⎝⎭;(2)解方程:24810x x ++=.【解析】(1)原式()3313123131223=--+-=--=-(2)解:2124x x +=-212114x x ++=-+,()2314x +=312x +=±∴1312x =-+,2312x =--.20.(1)化简24()44-÷+--a a a a (2)解不等式组:2132(1)4x x x x <+⎧⎨--≤⎩【解析】解:(1)原式224444a a a a a --+=÷--224444a a a a a --=⨯--+2244(2)a a a a --=⨯--12a =-;(2)()213214x x x x <+⎧⎪⎨--≤⎪⎩①②解不等式①,得1x >-,解不等式②,得2x ≤,故原不等式组的解集是12x -<≤.21.2023年9月,为了更好地落实“双减”政策,增强课后服务的时效性,某中学定于每周二、周四下午进行兴趣社团课“走班制”,开设了5类兴趣社团课(每位学生均只选其一):A .音乐;B .体育;C .美术;D .信息技术;E .演讲.为了了解该校学生的参与情况,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查的学生人数为________人,并补全条形统计图;(2)求“C”类兴趣社团课所对应扇形的圆心角的度数;(3)该校现有学生1800人,请你估算该校参加“D”类兴趣社团课的学生有多少人?【解析】(1)解:1230%40÷=(人)参加“D”类兴趣社团课的学生有:40612859----=(人)补全条形统计图(2)“C”类兴趣社团课所对应扇形的圆心角的度数为:8 3607240︒⨯=︒(3)该校参加“D”类兴趣社团课的学生有:4061285 180040540----⨯=(人)22.元旦假期全国客流持续回暖,某景区入口检票处有A、B、C、D四个闸机,如图所示,游客领取门票后可随机选择一个闸口通过.(1)一名游客通过该景点闸口时,选择A闸口通过的概率为______.(2)当两名游客通过该景点闸口时,请用树状图或列表法求两名游客选择不同闸口通过的概率.【解析】(1)解:由题意可得:选择A闸口通过的概率为14,故答案为14;(2)解:设这两名游客为甲和乙,由题意可得如下表格:甲/乙A B C DA(),A A(),A B(),A C(),A DB(),B A(),B B(),B C(),B DC(),C A(),C B(),C C(),C DD(),D A(),D B(),D C(),D D由表格可知两名游客选择闸口通过的可能性有16种,其中选择不同闸口通过的情况有12种,∴两名游客选择不同闸口通过的概率为123164 P==.23.如图,矩形ABCD中,点E,F分别在AB,CD边上,连接CE、AF,∠DCE=∠BAF.试判断四边形AECF的形状并加以证明.【解析】解:四边形AECF是平行四边形.∵四边形ABCD是矩形,∴//DC AB,∴∠DFA=∠BAF,又∵∠DCE=∠BAF,∴∠DCE=∠DFA∴//FA CE,∴四边形AECF是平行四边形.24.今年春节期间第二十四届冬奥会在我国成功举办,吉祥物“冰墩墩”以其呆萌可爱、英姿飒爽形象,深受大家喜爱.某商店第一次用3000元购进一批“冰墩墩”玩具,很快售完;该商店第二次购进该“冰墩墩”玩具时,进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次购进的“冰墩墩”玩具每件的进价;(2)若两次购进的“冰墩墩”玩具每件售价均为70元,且全部售完,求两次的总利润.【解析】(1)解:设第一次购进的“冰墩墩”玩具每件的进价为x 元,则第二次每件的进价为(120%)x +元,依题意得:3000300010(120%)x x -=+,解得:50x =,经检验:50x =是方程的解,且符合题意,答:第一次购进的“冰墩墩”玩具每件的进价为50元.(2)解:由题意可得30003000703000217005050 1.2⎛⎫⨯+-⨯= ⎪⨯⎝⎭(元),答:两次的总利润为1700元.25.已知BC 是O 的直径,点D 是BC 延长线上一点,AB AD =,AE 是O 的弦,30AEC ∠=︒.(1)求证:直线AD 是O 的切线;(2)若AE BC ⊥,垂足为M ,O 的半径为10,求AE 的长.【解析】(1)如图,连结OA ,∵30AEC ∠=︒, AC AC =,∴30260B AEC AOC AEC ∠=∠=︒∠=∠=︒,,∵AB AD =,∴30D B ∠=∠=︒,∴18090OAD AOC D ∠=︒-∠-∠=︒,∵OA 是O 的半径,且AD OA ⊥,∴直线AD 是O 的切线.(2)∵BC 是O 的直径,且AE BC ⊥于点M ,∴AM EM =,∵9060AMO AOM ∠=︒∠=︒,,∴30OAM ∠=︒,∴1110522OM OA ==⨯=,∴22221053AM OA OM =--∴2233AE AM ==⨯.26.如图1是一种折叠椅示意图,忽略其支架等器件的宽度,支架与座板均用线段表示,得到它的侧面的简化结构图,如图2所示.若座板CD 平行于地面,前支架AB 与后支架OF 分别与CD 交于点E ,D ,量得20cm ED =,40cm DF =,58AED ∠=︒,76ODC ∠=︒.(1)求椅子座板CD 距离地面BF 的高度;(2)求两支架着地点B ,F 之间的距离.(精确到0.1cm )(参考数据:sin 580.85︒≈,cos 580.53︒≈,tan 58 1.60︒≈,sin 760.97︒≈,cos760.24︒≈,tan 76 4.00︒≈)【解析】(1)解:过点E ,D 分别作EH BF ⊥于H ,作DG BF ⊥于G ,90EHB DGF ∴∠=∠=︒,∵ED BF ∥,58OED OBF ∴∠=∠=︒,76ODE DFG ∠=∠=︒,在Rt DGF △中,40DF =,sin sin 760.97DG DFG DF∠=︒=≈ ,()0.974038.8cm DG ∴=⨯=,∴椅子座板CD 距离地面BF 的高度是38.8cm ;(2)解:在Rt DGF △中,40DF =,cos cos760.24FG DFG FD∴∠=︒=,()0.24409.6FG cm ∴=⨯=,∵ED BF ∥,EH BF ⊥,DG BF ⊥,∴四边形EDHG 是矩形,38.8cm EH DG ∴==,20cm ED HG ==,在Rt EBH △中,38.8EH =,tan tan 58 1.60EH EBH BH∠=︒=≈ ,()24.25cm BH ∴≈,()24.25209.653.9cm BF BH HG GF ∴=++=++≈,∴两支架着地点BF 之间的距离约为53.9cm .27.如图1,已知在平面直角坐标系xOy 中,抛物线31y a x x =+-()()与x 轴交于点A 和点B ,与y 轴交于点C ,且3OC =.点P 是抛物线上的一个动点,连接AP 和BP .(1)求a 的值和ACO ∠的度数;(2)当点P 运动到抛物线顶点时,求AOC 与APB △的面积之比;(3)如图2,当点P 在抛物线上运动,且满足APB ACO ∠∠=时,求点P 的坐标.【解析】(1)3OC = ,(0,3)C ∴,代入31y a x x =+-()(),得:33a -=,解得1a =-;令0y =,有(3)(1)0x x -+-=,解得3x =-或1x =,(3,0)A ∴-,(1,0)B ,OC OA ∴=,45ACO ∴∠=︒.(2)1a =- ,(3,0)A -,(1,0)B 2(3)(1)(1)4y x x x ∴=-+-=-++,1(3)4=--=AB ,∴顶点P 坐标为(1,4)-, 193322AOC S =⨯⨯=△,14482APB S ∆=⨯⨯=,∴992816AOCAPB S S ==⨯ .(3)如图,这样的点P 有两个.过点B 作1BD BP ⊥交1AP 于点D过点D 作DE x ⊥轴于点E ,过点1P 作1PF x ⊥轴于点F .145APB ∠=︒ ,1BDP ∴ 是等腰直角三角形.1BDE PBF ∴ ≌,DE BF ∴=,1BE PF =.设BF m =,则DE m =,21(1,4)P m m m +--,所以,214BE PF m m ==+.244AE AB BE m m ∴=-=--,4AF m =+.1ADE APF ∽,∴1DE AE PF AF =,∴224444m m m m m m--=++,化简得,243m m +=,即2(2)7m +=,解得27m =-±,取27m =-∴1(17,3)P --,根据对称性可知,2(17,3)P --.综上所述P 的坐标为1(17,3)P --,2(17,3)P--.28.(1)【方法尝试】如图1,矩形ABFC 是矩形ADGE 以点A 为旋转中心,按逆时针方向旋转90︒所得的图形,CB ED 、分别是它们的对角线.则CB 与ED 数量关系_______,位置关系________;(2)【类比迁移】如图2,在Rt ABC △和Rt ADE △中,909632BAC DAE AC AB AE AD ∠∠=︒=====,,,,.将DAE 绕点A 在平面内逆时针旋转,设旋转角BAE ∠为α(0360α︒≤<︒),连接CE BD ,.请判断线段CE 和BD 的数量关系和位置关系,并说明理由;(3)【拓展延伸】如图3,在Rt ABC △中,906ACB AB ∠=︒=,,过点A 作AP BC ∥,在射线AP 上取一点D ,连接CD ,使得3tan 4ACD ∠=,请求线段BD 的最大值和最小值.【解析】解:(1)如图,延长CB 交DE 于点H .由旋转的性质可得:CB ED =,ACB BEH ∠=∠.又∵ABC HBE ∠=∠,∴90CAB BHE ∠=∠=︒,即CB ED ⊥.故答案为:CB ED =,CB ED ⊥;(2)32CE BD =,CE BD ⊥,理由如下,延长CE 交BD 于点Q ,交AB 于点O ,如图2.∵90BAC DAE ∠=∠=︒,∴CAE BAD ∠=∠.∵9632AC AB AE AD ====,,,,∴32ACAEAB AD ==,∴CAE BAD ∽,∴32CE ACBD AB ==,ACE ABD ∠=∠.∵AOC BOQ ∠=∠,∴90OQB OAC ∠=∠=︒,∴32CE BD =,CE BD ⊥;(3)如图,过点A 作AE AB ⊥,使得483AE AB ==,取AB 的中点R ,连接CR ER CE ,,.∵AP BC ∥,∴90DAC ACB EAB ∠=∠=∠=︒.∴CAE DAB ∠=∠.∵3tan 4ADACD AC ∠==,∴34ADABAC AE ==,∴DAB CAE ∽△△,∴34BD ADEC AC ==,∴34BD EC =.∵点R 为AB 中点,90ACB ∠=︒,∴3CR AR BR ===.∵908EAB AE ∠=︒=,,∴2273ER AE AR =+=∵ER CR EC CR ER -≤≤+,733373EC ≤≤∵34BD EC =,37399373BD -+≤∴BD 94373+37394-.。
江苏省徐州市第三十六中学2018年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 等比数列前项和为54,前项和为60,则前项和为()A.B.C.D.参考答案:D略2. 有关正弦定理的叙述:①正弦定理仅适用于锐角三角形;②正弦定理不适用于直角三角形;③正弦定理仅适用于钝角三角形;④在给定三角形中,各边与它的对角的正弦的比为定值;⑤在△ABC中,sinA:sinB:sinC=a:b:c.其中正确的个数是()A.1 B.2 C.3 D.4参考答案:B【考点】正弦定理.【专题】计算题;阅读型;转化思想;分析法;解三角形.【分析】由正弦定理及比例的性质即可得解.【解答】解:∵由正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.对于任意三角形ABC,都有,其中R为三角形外接圆半径.所以,选项①,②,③对定理描述错误;选项④⑤是对正弦定理的阐述正确;故:正确个数是2个.故选:B.【点评】本题主要考查了正弦定理及比例性质的应用,属于基本知识的考查.3. 甲、乙两名运动员在某项测试中的6次成绩如茎叶图所示,分别表示甲乙两名运动员这项测试成绩的众数,分别表示甲乙两名运动员这项测试成绩的标准差,则有( )A. B.C. D.参考答案:B4. 设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件参考答案:A【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<﹣1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.5. 将函数的图象向右平移个单位长度后,得到函数f(x)的图象,则函数f(x)的单调增区间为()A. B.C. D.参考答案:D【分析】求出图象变换的函数解析式,再结合正弦函数的单调性可得出结论.【详解】由题意,,∴,故选D.【点睛】本题考查三角函数的平移变换,考查三角函数的单调性.解题时可结合正弦函数的单调性求单调区间.6. 已知,则的范围()A. B. C. D.参考答案:C7. 已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.参考答案:D【考点】椭圆的标准方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2, ==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选D.8. “a>0”是“|a|>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:A【考点】必要条件.【分析】本题主要是命题关系的理解,结合|a|>0就是{a|a≠0},利用充要条件的概念与集合的关系即可判断.【解答】解:∵a>0?|a|>0,|a|>0?a>0或a<0即|a|>0不能推出a>0,∴a>0”是“|a|>0”的充分不必要条件故选A9. 已知集合,若,则实数a的取值范围是()A.(3,+∞)B. [3,+∞)C.(-∞,1]D. (-∞,1)参考答案:C【分析】由一元一次不等式和一元二次不等式解出集合A,B,根据B?A,可得参数a的取值范围.【详解】集合A={x|x>3或x<1},集合B={x|x<a},由B?A,可得a≤1,∴实数的取值范围是,故选:C.【点睛】本题考查集合间的关系以及一元二次不等式的解法,属于基础题.10. 通过随机询问250名不同性别的高中生在购买食物时是否看营养说明书,得到如下列联表:A.95%以上认为无关B.90%~95%认为有关 C. 95%~99.9%认为有关D.99.9%以上认为有关附:.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数,则___________.参考答案:1【分析】利用导数的运算法则求得,然后代值计算可得出的值.【详解】,,因此,.故答案为:1.【点睛】本题考查导数的计算,考查了导数的运算法则,考查计算能力,属于基础题.12. 直线与坐标轴围成的三角形的面积为▲ .参考答案:略13. 若x,y满足,则目标函数z=x+2y的最大值为.参考答案:3【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+2y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点B时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即B(1,1),代入目标函数z=x+2y得z=2×1+1=3故答案为:3.14. 已知z=1+i, (1)求w=z2+3-4(2)如果=1-i,求实数a、b.参考答案:z=-1-i a=-1 b=215. 斜率为1的直线与椭圆相交与A,B两点,则的最大值为__________. 参考答案:16. 设,是f(x)的导函数,则.参考答案:-1∵f(x)=sinx+2xf'(),∴f'(x)=cosx+2f'(),令x=,可得:f'()=cos+2f'(),解得f'()=,则f'()=cos+2×=﹣1.17. 某同学在四次语文单元测试中,其成绩的茎叶图如下图所示,则该同学语文成绩的方差_______________.参考答案:45略三、解答题:本大题共5小题,共72分。
第 1 页,共 16 页 徐州市第三十六中学2018-2019学年上学期高三期中数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 已知全集为R,且集合}2)1(log|{2xxA,}012|{xxxB,则)(BCAR
等于( )
A.)1,1( B.]1,1( C.)2,1[ D.]2,1[ 【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.
2. 已知实数yx,满足不等式组
5342yxyxxy
,若目标函数mxyz取得最大值时有唯一的最优解)3,1(,则
实数m的取值范围是( ) A.1m B.10m C.1m D.1m 【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等. 3. 设函数()log|1|afxx在(,1)上单调递增,则(2)fa与(3)f的大小关系是( ) A.(2)(3)faf B.(2)(3)faf C. (2)(3)faf D.不能确定 4. 设集合|||2AxRx,|10BxZx,则AB( ) A.|12xx B.|21xx C. 2,1,1,2 D. 1,2 【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.
5. 已知实数[1,1]x,[0,2]y,则点(,)Pxy落在区域20210220xyxyxy„„… 内的概率为( ) A.34 B.38 C. 14 D. 18 【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力. 6. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........
从该地区调查了500位老年人,结果如
下: 第 2 页,共 16 页
由22()()()()()nadbcKabcdacbd算得22500(4027030160)9.96720030070430K
附表:
参照附表,则下列结论正确的是( ) ①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”;
②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好 A.①③ B.①④ C.②③ D.②④ 7. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则mn的值是( )
A.10 B.11 C.12 D.13 【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.
8. 执行右面的程序框图,如果输入的[1,1]t,则输出的S属于( ) A.[0,2]e B. (,2]e-? C.[0,5] D.[3,5]e
3.841 6.635 10.828k2() 0.050 0.010 0.001PKk
性别 是否需要志愿者 男 女
需要 40 30 不需要 160 270 第 3 页,共 16 页 【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用. 9. “3ba”是“圆056222ayxyx关于直线bxy2成轴对称图形”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.
10.执行如图所示的程序框图,输出的s值为( )。 第 4 页,共 16 页
A-3 B C D2
11.已知点A(0,1),B(3,2),C(2,0),若AD→=2DB→,则|CD→|为( ) A.1 B.43 C.53 D.2 12.函数2(44)xyaaa是指数函数,则的值是( ) A.4 B.1或3 C.3 D.1 二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.设向量a=(1,-1),b=(0,t),若(2a+b)·a=2,则t=________. 14.已知a、b、c分别是ABC三内角ABC、、的对应的三边,若CaAccossin,则33sincos()4AB的取值范围是___________.
【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想. 15.要使关于x的不等式2064xax恰好只有一个解,则a_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.
16.若全集,集合,则 。 三、解答题(本大共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。)
17.(本小题满分12分) 两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,xyz分别表示甲,乙,丙3个 盒中的球数. (1)求0x,1y,2z的概率; (2)记xy,求随机变量的概率分布列和数学期望. 【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力. 第 5 页,共 16 页
18.(本小题满分13分) 如图,已知椭圆22:14xCy
的上、下顶点分别为,AB,点P在椭圆上,且异于点,AB,直线,APBP
与直线:2ly分别交于点,MN, (1)设直线,APBP的斜率分别为12,kk,求证:12kk
为定值;
(2)求线段MN的长的最小值; (3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.
【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.
19.(本小题满分12分)椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,P是椭圆上一点,PF⊥x轴,A,B是C的长轴上的两个顶点,已知|PF|=1,kPA·kPB=-12.
(1)求椭圆C的方程; (2)过椭圆C的中心O的直线l交椭圆于M,N两点,求三角形PMN面积的最大值,并求此时l的方程. 第 6 页,共 16 页
20.(本题满分12分) 已知数列{an}满足a1=1,an+1=2an+1. (1)求数列{an}的通项公式;
(2)令bn=n(an+1),求数列{bn}的前n项和Tn.
21.(本小题满分12分) 已知{}na是等差数列,满足13a,412a,数列{}nb满足14b,420b,且数列{}nnba是等比
数列. (1)求数列{}na和{}nb的通项公式;
(2)求数列{}nb的前项和.
22.(本小题满分10分)选修4—4:坐标系与参数方程 以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为方程为2r=
(],0[),直线l的参数方程为2tcos2sinxytaaì=+ïí=+ïî(t为参数). (I)点D在曲线C上,且曲线C在点D处的切线与直线+2=0xy+垂直,求点D的直角坐标和曲线C 的参数方程; (II)设直线l与曲线C有两个不同的交点,求直线l的斜率的取值范围. 第 7 页,共 16 页 第 8 页,共 16 页
徐州市第三十六中学2018-2019学年上学期高三期中数学模拟题(参考答案) 一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 【答案】C
2. 【答案】C 【解析】画出可行域如图所示,)3,1(A,要使目标函数mxyz取得最大值时有唯一的最优解)3,1(,则需直线l过点A时截距最大,即z最大,此时1lk即可.
3. 【答案】A 【解析】
试题分析:由log1,,1log1,1,aaxxfxxx且fx在,1上单调递增,易得01,112aa.fx在1,上单调递减,23faf,故选A.
考点:1、分段函数的解析式;2、对数函数的单调性. 4. 【答案】D 【解析】由绝对值的定义及||2x,得22x,则|22Axx,所以1,2AB,故选D.
5. 【答案】B 【解析】