永磁材料的性能和选用
- 格式:ppt
- 大小:360.50 KB
- 文档页数:44
永磁电机是一种采用永磁体励磁的电动机,相比于传统的电励磁电机,永磁电机具有更高的效率和节能效果。
以下是一些永磁电机节能的措施:优化设计:优化永磁电机的设计是实现节能的关键。
通过合理的电磁设计、结构设计和热设计,可以减小电机的体积、重量和损耗,提高电机的效率。
选用高性能的永磁材料:高性能的永磁材料能够提高永磁电机的磁场强度和效率,从而降低能耗。
降低损耗:降低永磁电机的损耗是节能的重要手段。
通过改进电机设计、优化控制策略等措施,可以有效地减小电机的铁损、铜损和机械损耗。
应用变频技术:变频技术可以实现对永磁电机的精确控制,使电机在不同工况下都能高效运行,从而达到节能效果。
优化控制系统:优化永磁电机的控制系统,根据实际工况调整电机的运行参数,可以有效地提高电机的运行效率,降低能耗。
维护保养:定期对永磁电机进行维护保养,保证电机的正常运行,避免因机械故障或电气故障导致的能耗增加。
总之,永磁电机节能的措施可以从多个方面入手,包括优化设计、选用高性能的永磁材料、降低损耗、应用变频技术、优化控制系统和维护保养等。
这些措施可以提高永磁电机的效率,降低能耗,从而实现节能目标。
磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H 足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
浅谈永磁电机的设计要点永磁电机是一种使用永磁体作为励磁源的电机,由于永磁体的磁场稳定性好,不需要外部励磁,使得永磁电机具有体积小、重量轻、效率高、响应快、维护方便等优点,在电动汽车、新能源等领域中得到了广泛应用。
下面本文将从永磁电机的设计要点角度来探讨永磁电机的设计过程。
一、永磁体的选取永磁电机的设计首先要选取合适的永磁体,常用的永磁体有NdFeB、SmCo等几种。
选取永磁体时要考虑使用环境、温度、磁场稳定性等因素。
一般情况下,NdFeB永磁体由于价格低、磁场稳定性好、温度适中,被广泛选用。
二、电机参数计算在永磁电机设计的过程中,需要首先确定电机的基本参数,如额定功率、额定转速、额定电压等。
这些参数直接影响电机设计的选型和后续测试。
在确定了基本参数后,还需要进行反演计算,即通过已知的参数计算出绕组总匝数、磁链、永磁体的大小等。
在这一过程中需要注意电机效率的计算,效率高的电机设计应该使得机械功率和电功率的比值达到最大。
三、绕组设计绕组设计是永磁电机设计中的一个重要过程,电机的性能和效率很大程度上取决于绕组的设计。
在绕组设计中,需要根据电机的功率、电压、电流等参数来确定绕组的型式和匝数,同时还需要根据电机的结构和使用环境确定绝缘和导线的材料以及绕组布局。
四、磁路分析磁路是永磁电机中传递磁能的通道,一般来说,磁路的磁阻应该设定为最小值,以提高电机的效率。
在磁路分析中,需要确定永磁体、铁芯的大小和形状,电机的气隙大小、铁芯的断面积等参数。
通过计算磁路的磁阻和磁通量,可以确定磁通密度和磁场分布,以此来预测电机的性能。
五、机械结构设计机械结构设计是永磁电机中必不可少的一个环节,设计合理的机械结构可以提高电机的效率和寿命。
在机械结构设计中,需要考虑电机的散热问题,同时还需要考虑电机的制造和维护成本,尽可能降低电机设计的复杂性。
六、电机控制与驱动永磁电机控制与驱动是永磁电机设计中的重要内容,针对设计出的电机,需要选择合适的控制器和驱动器来实现电机的运转。
稀土永磁材料摘要:本文简要介绍了稀土永磁材料的分类及各类各代稀土永磁材料的组成,稀土永磁材料的性能特点,重点介绍了稀土永磁材料的应用。
关键词:稀土永磁;分类;性能;应用;一、前言稀土永磁材料是稀土元素与过渡族金属Fe,Co,Cu,Zr等或非金属元素B,C,N等组成的金属间化合物,其永磁性来源于稀土与3d过渡族金属所形成的某些特殊金属间化合物。
它是重要的金属功能材料,利用其能量转换动能和磁的各种物理效应可以制成多种形式的功能器件。
永磁材料无所不在,小到手表、照相机、录音机、CD机、VCD机、计算机硬盘,大到发动机、汽车、医疗器械等都用到永磁材料,正是稀土永磁材料的发展,才使得电子产品尺寸进一步缩小,性能进一步改善,从而适应了当今轻、薄、小的发展趋势。
①②二、稀土永磁材料的分类稀土永磁材料是20世纪60年代出现的新型金属永磁材料,至今,已经具有规模生产和使用价值的稀土永磁材料已有两大类、三代产品。
第一大类是稀土—钴合金系(即RE-Co永磁),它又包括两代产品。
第一代稀土永磁体1:5型合金,即SmCo5;第二代稀土永磁材料是2:17型SmCo合金,即Sm2Co17,它们均是以钴为基的稀土永磁合金;第二大类是RE-Fe-B系永磁,或称铁基稀土永磁材料;第三代稀土永磁,是以NdFeB合金为代表的Fe基稀土永磁材料。
①③⑴第一代稀土永磁SmCo5第一代稀土永磁是1:5型RE-Co永磁,于1967年问世,是一种二元金属间化合物,由稀土金属(用RE表示)原子与其它金属原子(用TM表示)按1:5的比例组成的1:5型RE-Co永磁,化学成分为Sm34%(或37%)、Co66%(或63%)。
Sm的熔点为1350°。
其中又分为单相和多相两种。
单相是指从磁学原理上为单一化合物的RECo5永磁体,如SmCo5、(SmPr)Co5烧结永磁体等,它属于第一代稀土永磁材料。
多相的1:5型RE-Co永磁材料是指以1:5相为基体、有少量的2:17型沉淀相的1:5型永磁材料。
《磁性材料》基本要求一、熟练掌握基本概念:(1) 磁矩:磁偶极子等效的平面回路的电流和回路面积的乘积,μm =iS ,方向由右手定则确定,单位Am 2。
(2) 磁化强度(M ):定义单位体积磁性材料内磁矩的矢量和称为磁化强度,用M 表示,SI单位为A/m 。
CGS 单位:emu/cm 3。
换算关系:1 ×103 A/m = emu/cm 3。
(3) 磁场强度(H ):单位强度的磁场对应于1Wb 强度的磁极受到1牛顿的力。
SI 单位是A ·m -1。
CGS 单位是奥斯特(Oe)。
换算关系:1 A/m =4π/ 103 Oe 。
(4) 磁化曲线:磁体从退磁状态开始到磁化饱和的过程中,磁感应强度B 、磁化强度M 与磁场强度H 之间的非线性关系曲线。
(5) 退磁曲线:磁滞回线在第二象限的部分称为退磁曲线。
(6) 退磁场:当一个有限大小的样品被外磁场磁化时,在它两端出现的自由磁极将产生一个与磁化强度方向相反的磁场。
该磁场被称为退磁场。
退磁场的强度与磁体的形状及磁极的强度有关存在:Hd=-NM 。
(7) 饱和磁感应强度Bs(饱和磁通密度) :磁性体被磁化到饱和状态时的磁感应强度。
SI 单位是特斯拉[T]或[Wb·m -2];CGS 单位是高斯(Gauss)。
换算关系:1 T = 104 G 。
(8) 磁导率:定义为磁感应强度与磁场强度之比μ=B/H,表示磁性材料传导和通过磁力线的能力.单位为亨利/米(H·m -1). (9) 起始磁导率:磁性体在磁中性状态下磁导率的极限值。
H B H i 00lim1→=μμ (10) 磁化率定义为磁化强度与磁场强度之比:χ= M /H(11) 居里温度:即铁磁性材料(或亚磁性材料)由铁磁状态(或亚铁磁状态)转变为顺磁状态的临界温度,在此温度上,自发磁化强度为零。
(12) 磁各向异性:磁性材料在不同方向上具有不同磁性能的特性。
包括:磁晶各向异性,形状各向异性,感生各向异性和应力各向异性等。
铁氧体永磁材料
铁氧体永磁材料是一类具有高磁化强度和较高矫顽力的永磁材料,它们由氧化铁和其他金属氧化物组成。
这类材料在现代工业和科技领域中具有广泛的应用,比如在电机、传感器、磁记录等方面都有重要的作用。
首先,铁氧体永磁材料具有较高的磁化强度,这意味着它们能够产生较强的磁场。
这使得它们在电机领域中得到了广泛的应用,比如在风力发电机、电动汽车驱动电机等方面。
由于铁氧体永磁材料能够产生强大的磁场,因此可以在电机中实现更高的效率和性能。
其次,铁氧体永磁材料还具有较高的矫顽力,这意味着它们在外加磁场作用下不容易发生磁化反转。
这使得它们在传感器领域中得到了广泛的应用,比如在磁力计、磁传感器等方面。
由于铁氧体永磁材料具有较高的矫顽力,因此可以在传感器中实现更稳定和可靠的性能。
此外,铁氧体永磁材料还具有较好的耐腐蚀性和稳定性,这使得它们在磁记录领域中得到了广泛的应用,比如在硬盘驱动器、磁带等方面。
由于铁氧体永磁材料具有较好的耐腐蚀性和稳定性,因此可以在磁记录中实现更长久的保存和更高的密度。
综上所述,铁氧体永磁材料具有高磁化强度、较高矫顽力、较好的耐腐蚀性和稳定性等优点,因此在电机、传感器、磁记录等领域中具有广泛的应用前景。
随着科技的不断发展和进步,相信铁氧体永磁材料在未来会有更广阔的发展空间。
钕铁硼(NdFeB)磁体是一种非常重要的永磁材料,具有极高的磁能积和较高的矫顽力。
钕铁硼材料的磁性能与其微观结构密切相关,而BH曲线则是描述钕铁硼材料磁性能的重要参数之一。
本文将从钕铁硼材料的基本特性、BH曲线的含义以及对应的物理意义等方面展开详细阐述,旨在全面深入地解析钕铁硼材料的BH曲线。
首先,我们来了解一下钕铁硼材料的基本特性。
钕铁硼磁体是由稀土元素钕(Nd)、铁(Fe)和硼(B)组成的合金,其中钕的含量一般在12%-14%左右,其它元素的含量则根据具体材料配方略有调整。
这种材料具有极高的矫顽力和磁能积,因此在现代工业和科技领域得到广泛应用,如电机、传感器、磁性分离等领域。
接下来,我们将详细介绍BH曲线及其物理意义。
BH曲线是描述磁性材料磁化特性的重要曲线之一,它将磁场强度H和磁感应强度B之间的关系用图形直观地表示出来。
在BH曲线中,横轴通常表示磁场强度H,单位为安培每米(A/m),纵轴表示磁感应强度B,单位为特斯拉(T)。
通过测量和绘制钕铁硼材料的BH曲线,可以清晰地了解该材料的磁化特性,包括饱和磁感应强度、剩余磁感应强度、矫顽力等重要参数。
钕铁硼材料的BH曲线通常呈现出明显的矩形磁滞回线,这是其典型的磁化特性之一。
矩形磁滞回线意味着在一定的磁场作用下,材料可以实现充分的磁化和去磁化,具有良好的磁性响应速度和磁化稳定性。
此外,BH曲线还反映了钕铁硼材料的饱和磁感应强度和矫顽力等重要参数,这些参数直接影响着材料在实际应用中的性能表现。
钕铁硼材料的BH曲线对其性能和应用具有重要的指导意义。
通过对BH曲线的分析,可以评估钕铁硼材料的磁化特性,指导材料的选用和设计,提高磁性材料在电机、传感器、磁性分离等领域的应用性能。
同时,针对不同的应用需求,可以通过调整材料配方、热处理工艺等手段,优化钕铁硼材料的BH曲线,进一步提升其性能。
综上所述,钕铁硼材料的BH曲线是描述其磁化特性的重要参数之一,对于理解和评估该材料的性能具有重要意义。
浅谈永磁电机的设计要点永磁电机是一种主要利用永磁体产生的强磁场来实现能量转换的电机。
它具有结构简单、效率高、体积小、重量轻、响应速度快等特点,在工业生产、航空航天、军事等领域广泛应用。
永磁电机的设计要点主要包括磁路设计、电路设计和控制设计。
一、磁路设计1. 磁路形状永磁电机的磁路形状应该具有高的磁场密度和优异的永磁材料利用率。
常见的磁路形状有面贴式、内转子、外转子等。
其中,面贴式永磁电机结构简单,易于制造,广泛应用。
2. 永磁材料永磁电机主要利用永磁体产生磁场,因此永磁材料的选择对电机性能影响很大。
目前常用的永磁材料有NdFeB、SmCo、AlNiCo等。
其中,NdFeB 属于高性能永磁材料,磁能积高,可提供高磁场密度。
因此,在设计永磁电机时,应优先选用 NdFeB 磁片。
3. 磁路铁心磁路铁心是永磁电机磁路的主要构成部分,它的设计应该考虑磁场分布、磁路长度、永磁材料的利用率等。
常见的磁路铁心形状有圆柱形、长方体形、三角形等。
1. 相数和极数永磁电机的相数和极数对电机性能有较大影响。
一般来说,相数较少的永磁电机运行平稳,但输出功率小;相数较多的永磁电机输出功率大,但运行不稳定。
极数对电机的最大转矩和启动转矩有影响。
当极数多时,电机的最大转矩和启动转矩也比较大。
2. 激励电流和控制方法永磁电机在工作时,需要一定的激励电流来维持永磁体产生的磁场。
激励电流的大小与永磁体的磁场强度、温度等因素有关。
通常可采用 PI 控制、FOC(场向控制)等方法来控制永磁电机的电流。
三、控制设计永磁电机的控制设计主要包括传感器选择、控制算法设计等部分。
其中,传感器选择对控制精度和响应速度有较大影响,电机速度和位置的测量可采用霍尔传感器、编码器等。
控制算法的设计有直接转矩控制、间接转矩控制等方法,可以通过调节电流和电压来实现电机的启动、控制和停止。
以上就是永磁电机的设计要点,通过优化磁路、电路和控制设计,可以实现永磁电机的高效运行。
磁力泵都选用了哪些永磁材料?
永磁材料常用的有铝镍钴、铁氧体及稀土永磁材料。
其中铝镍钴和铁氧体由于磁能积低,会导致磁力联轴器和体积过大,而很少采用。
磁力泵中常选用的永磁材料多为稀土永磁材料。
稀土永磁材料常见的有钐钴SmCo5、钐钴Sm7.4、钕铁硼等。
稀土永磁材料的磁能积远远高于铝镍钴和铁氧体,其中钐钴材料它的最大磁能积高达43MGOe(兆高斯奥斯特)以上,使用温度最高可达到300℃。
这使磁力联轴器的结构尺寸更小,使用温度范围更大,传动效率更高,从而使钐钴材料成为高温工作条件下的首选永磁材料。
永磁电机转子铁芯材料
永磁电机的转子铁芯材料通常可以分为两种类型,硅钢片和铁氧体。
硅钢片是一种常用的转子铁芯材料,它由硅钢片叠压而成。
硅钢片具有高导磁性和低磁滞损耗,能有效减小铁芯的涡流损耗和焦耳热。
这种材料适用于中小型永磁电机,能够提高电机的效率和性能。
另一种常见的转子铁芯材料是铁氧体,它具有优异的磁导率和低涡流损耗,适用于高性能永磁电机。
铁氧体材料的使用可以降低电机的铁损,提高电机的效率和功率密度,适用于需要高速、高功率输出的永磁电机。
除了硅钢片和铁氧体,还有一些其他新型的转子铁芯材料,如非晶合金等,它们具有更优异的磁性能和机械性能,能够进一步提高永磁电机的性能和可靠性。
总的来说,选择永磁电机的转子铁芯材料需要根据具体的应用需求和性能要求来决定,不同的材料都有各自的优势和适用范围。
在实际应用中,需要综合考虑材料的磁性能、机械性能、成本等因素,选择最合适的转子铁芯材料,以确保永磁电机能够达到最佳的工作性能和效率。
n52h 电导率n52H是一种永磁材料,属于五十铁类材料。
它具有优良的电导率,是一种较为常用的电导率高的永磁材料之一。
在工业生产中,电导率是一个重要的物理特性,它反映了材料导电的能力。
本文将就n52H的电导率进行详细介绍。
我们来了解一下电导率的概念。
电导率(又称电导系数)是一个材料的电导能力的度量,它表示单位面积或单位体积内的电流通过材料的能力。
电导率的单位是西门子/米(S/m),也可以用Ω·m的倒数表示。
电导率越高,材料导电能力越强。
针对n52H材料,它由稀土金属钕、铁和硼等元素组成,具有较高的电导率。
这主要归因于两个原因:其一,n52H材料为较为纯净的金属永磁材料,其晶格结构较为紧密,电子之间的迁移能力较强。
其二,n52H材料中掺杂的氧化物和杂质较少,因此阻碍电流传输的因素减少。
这些因素都使得n52H具有较高的电导率。
由于n52H材料的电导率较高,因此在电磁设备中有广泛的应用。
比如,在电机、发电机、磁体、传感器等设备中,需要使用材料具有良好的导电性能。
n52H作为一种永磁材料,其磁性能优异,可以在不需要外部电流的情况下产生磁场,因此在这些设备中非常受欢迎。
n52H材料的电导率还具有一些其它的应用。
在现代科技领域,电子设备的发展需要在小型化的同时具备较高的导电性能。
n52H材料不仅能够在磁领域发挥重要的作用,在微电子和纳米科技领域也有显著的应用潜力。
其导电性能的优秀特性,使得n52H材料能够应用于半导体、电子器件和纳米材料等领域。
尽管n52H具有较高的电导率,但它的导电性能仍然不如铜、银等传统的导电材料。
因此,在特定的应用中,可能需要选用其他更好的导电材料。
此外,n52H材料的制备成本相对较高,生产过程相对较为复杂,这也限制了它在某些领域的应用。
综上所述,n52H具有较高的电导率,是一种在电磁设备、微电子和纳米科技领域应用广泛的永磁材料。
它的导电性能优越,使得其能够在不同的领域发挥重要的作用。
《磁性材料》基本要求一、熟练掌握基本概念:(1) 磁矩:磁偶极子等效的平面回路的电流和回路面积的乘积,μm =iS ,方向由右手定则确定,单位Am 2。
(2) 磁化强度(M ):定义单位体积磁性材料内磁矩的矢量和称为磁化强度,用M 表示,SI 单位为A/m 。
CGS 单位:emu/cm 3。
换算关系:1 ×103 A/m = emu/cm 3。
(3) 磁场强度(H ):单位强度的磁场对应于1Wb 强度的磁极受到1牛顿的力。
SI 单位是A ·m -1。
CGS 单位是奥斯特(Oe)。
换算关系:1 A/m =4π/ 103 Oe 。
(4) 磁化曲线:磁体从退磁状态开始到磁化饱和的过程中,磁感应强度B 、磁化强度M 与磁场强度H 之间的非线性关系曲线。
(5) 退磁曲线:磁滞回线在第二象限的部分称为退磁曲线。
(6) 退磁场:当一个有限大小的样品被外磁场磁化时,在它两端出现的自由磁极将产生一个与磁化强度方向相反的磁场。
该磁场被称为退磁场。
退磁场的强度与磁体的形状及磁极的强度有关存在:Hd=-NM 。
(7) 饱和磁感应强度Bs(饱和磁通密度) :磁性体被磁化到饱和状态时的磁感应强度。
SI 单位是特斯拉[T]或[Wb·m -2];CGS 单位是高斯(Gauss)。
换算关系:1 T = 104 G 。
(8) 磁导率:定义为磁感应强度与磁场强度之比μ=B/H,表示磁性材料传导和通过磁力线的能力.单位为亨利/米(H·m -1).(9) 起始磁导率:磁性体在磁中性状态下磁导率的极限值。
H B H i 00lim 1→=μμ (10) 磁化率定义为磁化强度与磁场强度之比:χ= M /H(11) 居里温度:即铁磁性材料(或亚磁性材料)由铁磁状态(或亚铁磁状态)转变为顺磁状态的临界温度,在此温度上,自发磁化强度为零。
(12) 磁各向异性:磁性材料在不同方向上具有不同磁性能的特性。
包括:磁晶各向异性,形状各向异性,感生各向异性和应力各向异性等。
铝镍钴永磁铁
铝镍钴永磁铁是一种由铝、镍和钴等元素组成的合金材料,具有较高的磁性能和热稳定性。
它是目前应用较广泛的永磁材料之一。
铝镍钴永磁铁具有以下特点:
1. 高磁能积:铝镍钴永磁铁具有较高的磁能积,可以在较小的体积中产生较大的磁场,因此适用于需要较高磁场强度的应用。
2. 良好的热稳定性:铝镍钴永磁铁具有较高的工作温度范围,可以在较高温度下保持较好的磁性能。
3. 耐腐蚀性好:铝镍钴永磁铁具有较好的耐腐蚀性,可以在一些恶劣的环境中使用。
4. 加工性能好:铝镍钴永磁铁具有较好的加工性能,可以通过钻孔、切割、磨削等方式进行加工,制成各种形状的磁体。
铝镍钴永磁铁广泛应用于电机、发电机、传感器、磁性耦合器、磁性传感器等领域。
它可以提供较大的磁场强度和稳定的磁性能,满足各种应用的需求。