第二讲:字典排列法与树形图(巩固篇)
- 格式:doc
- 大小:56.00 KB
- 文档页数:1
第四讲枚举法二(字典排列法与简单树形图)知识脉络:本讲属于计数专题,三年级暑期:枚举法一。
枚举法一:主要知识点让学生明白枚举的意思及精髓所在(有序思考)1.本讲要点:掌握枚举法中的字典排列法与简单树形图。
①字典排序法:中心思想(分类有序思考),从小到大或字母前后顺序。
易错点:分人与分堆的区别,例:10颗糖分给两个人,1,9和9,1算两种情况,分堆则算一种②树状图:前后存在关联性,更清晰直观的分析列举所有情况,步骤少,每个步骤选择少适用2. 做题步骤:①区别分堆与分人;②确定以什么为顺序来进行枚举;③多回头做到不重不漏,本讲例题【例1】汤姆、杰瑞和得鲁比都有蛀牙,他们一起去牙医诊所看病,医生发现他们一共有8颗蛀牙,他们三人可能分别有几颗蛀牙?三人情况:先确定一人,剩余两人依次枚举,枚举时注意总数汤姆: 1 1 1 1 1 1 汤姆: 2 2 2 2 2 汤姆: 3 3 3 3杰瑞: 1 2 3 4 5 6 杰瑞: 1 2 3 4 5 杰瑞: 1 2 3 4得鲁比:6 5 4 3 2 1 得鲁比 5 4 3 2 1 得鲁比 4 3 2 1汤姆: 4 4 4 汤姆: 5 5 汤姆: 6杰瑞: 1 2 3 杰瑞: 1 2 杰瑞: 1得鲁比:3 2 1 得鲁比:2 1 得鲁比: 1总共有6+5+4+3+2+1=21种情况。
提示:三个人的情况:每人至少一颗共8颗:6+5+4+3+2+1;共10颗:8+7+6+5+4+3+2+1;共15颗:13+12+11+10+….+3+2+1;那么共30颗从几加?【例2】三名工人搬运20袋面粉,每人至少运6袋,那么三名工人可能分别搬运了多少袋?1.基本方法:三人情况:先确定一人,剩余两人依次枚举,枚举时注意总数工人一: 6 6 6 工人一: 7 7 工人一: 8工人二: 6 7 8 工人二: 6 7 工人二: 6工人三: 8 7 6 工人三: 7 6 工人三: 6共有3+2+1=6(种)搬运情况。
三年级思维拓展之字典排序法
1.用数字1,2,3可以组成多少个不同的三位数?(数字可以重复使用)
2.在某地有1分,2分,4分,8分四种面值的硬币,假如你恰有这四种硬币各1枚。
问共能组成都少种不同的钱数?请你用加法算式一个一个列举出来
3.小悦、东东、阿奇三个人共有7本课外书,每个人至少有一本。
问小悦、东东、阿奇分别有几本课外书?
4.汤姆、杰瑞和得鲁比都有蛀牙,他们一起去牙医诊所看病,医生发现他们一共有8颗蛀牙,他们三人可能分别有几颗蛀牙?
5.设S=1,2,3,4,用字典序法求出S的全部排列。
6.解答下列各题.
(1)用1、2、3三张数字卡片可以组成多少个不同的三位数?
(2)用1、2、3三种数字卡,每种都有足够数量,可以组成多少个不同的三位数?
7.解答下列各题
(1)用数字1、2、3可以组成多少个不同的三位数?
(2)用数字1、3、6可以组成多少个不同的三位数?
(3)数字用1、3、6可以组成多少个不同的无重复数字的三位数?
8.用数字1、2、3可以组成多少个不同的无重复数字的自然数?。
概率知识点1 树状图(或列表法)的使用对于简单的概率类题型我们可以通过列举法,计算事件发生的频率的分析来估计事件发生的概率,但是对于可能情况较多的事件,我们可以通过用树状图或列表法来解决树状图法:①分层.分清事件发生的层次,哪些情况是第一层(第一次)发生的,哪些是第二层(第二次)发生的;②根据分层用树状图把每一层(每一次)表示出来,然后计算事件发生的概率;列表法:将前后两次发生的事件在表格中全部表达出来,在其中计算事件发生的次数,进而计算频率.例1.一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率为例2.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果;(2)求选手A 晋级的概率.21=63【解析】(1)树状图如图所示,选手一共有8种等可能的结果,分别为(√,√,√)、(√,√,×)、(√,×,√)、(√,×,×)、(×,√,√)、(×,√,×)、(×,×,√)、(×,×,×). 开始(2)由(1)得选手A 的结果共有8种等可能情况,其中晋级的情况有4种,故其概率为41=82例 3.在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是无理数的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图的方法列出所有等可能的结果,并求出两次好抽取的卡片上的实数之差为有理数的概率.【解析】(1)∵在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,∴从盒子中随机抽取一张卡片,卡片上的实数是无理数的概率是:23(2)画树状图得:∵共有6种等可能的结果,两次好抽取的卡片上的实数之差为有理数的有2种情况, ∴两次好抽取的卡片上的实数之差为有理数的概率为: 例4.将五张分别画有等边三角形、平行四边形、矩形、等腰梯形、正六边形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张卡片,图形一定是中心对称图形的概率是( )A .15B .25C .35D .45例5.如图,管中放置着三根同样的绳子AA 1,BB 1,CC 1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A 、B 、C 三个绳头中随机选两个打一个结,再从右端A 1、B 1、C 1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.例6.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 .例7.在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x ;小红在剩下有三个小球中随机取出一个小球,记下数字y.(1)计算由x 、y 确定的点(x ,y )在函数6y x =-+图象上的概率;(2)小明、小红约定做一个游戏,其规则是:若x 、y 满足xy>6,则小明胜;若x 、y 满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?例8.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x 2-3x+2=0的解的概率.。
第二讲字典排列法与树形图知识点总结1、枚举法:字典排列法、分类枚举、树形图都是枚举法中的一种,使用各种枚举法需要注意有条理、不重复、不遗漏,使人一目了然。
2、字典排列法:从首位开始,按一定的顺序(比如从小到大)枚举第一位,对于每种情况再按从小到大的顺序枚举第二位,依次类推。
3、分类枚举:先有序分类,再有序枚举。
4、树形图:确定起点,按照一定的顺序一一罗列,最后数终点个数。
例题精讲【例1】汤姆、杰瑞和得鲁比都有蛀牙,他们一起去牙医诊所看病,医生发现他们一共有8颗蛀牙,他们三人可能分别有几颗蛀牙?【分析】三人情况:都有蛀牙说明每个人的蛀牙数目不能为0,每人至少有1颗,一共有8颗蛀牙,所以最多的蛀牙数是6。
题中有三个人的名字,所以三个人是有次序的,我们将汤姆看成是首位,杰瑞看成第二位,德鲁比看成第三位,则可以运用字典排列法枚举。
汤姆: 1 1 1 1 1 1 汤姆: 2 2 2 2 2杰瑞: 1 2 3 4 5 6 杰瑞: 1 2 3 4 5得鲁比:6 5 4 3 2 1 得鲁比: 5 4 3 2 1汤姆: 3 3 3 3 汤姆: 4 4 4杰瑞: 1 2 3 4 杰瑞: 1 2 3得鲁比:4 3 2 1 得鲁比:3 2 1汤姆: 5 5 汤姆: 6杰瑞: 1 2 杰瑞: 1 得鲁比:2 1 得鲁比:1总共有6+5+4+3+2+1=21种情况。
【例2】下午茶的时候,老师给同学们准备了苹果,香蕉和橘子三种水果,每种都有足够多个,昊昊想挑3个水果吃,请问:他一共有多少中选择?【分析】分类枚举:先有序分类,再有序枚举。
一种水果:苹苹苹,香香香,橘橘橘两种水果:苹香香,苹苹香,苹橘橘,苹苹橘,香橘橘,香香橘三种水果:苹香橘一共:3+6+1=10(种)【例3】一个人在三个城市A、B、C中游览。
他今天在这个城市,明天就必须到另一个城市。
这个人从A城出发,4天后还回到A城,那么这个人有几种旅游路线?【分析】列出树形图如下,共有6种路线。
第二讲:字典排列法与树形图(巩固篇)
1、有5 分、1 角、5 角、1 元的硬币各一枚,一共可以组成多少种不同的币值?
2、三个人互换帽子,要使每个都戴过别人的帽子,共有多少种换法?
3、一次射击比赛中,5 个泥制的靶子排成3 列,一射手按下列规则去击碎靶子:先挑选一列,然后必须击碎这列中尚未被击碎的靶子中最低的一个,若每次都遵循这一原则,击碎五个靶子可以有多少种不同的次序?
4、有1,2,3,4,5 的数字卡片各一张,每次取4 张,计算它们的和,可能有多少种不同的和,他们分别是多少?
5、右图中有多少个三角形,多少条线段?
6、甲、乙两人进行乒乓球比赛,规定谁先胜三场谁胜。
第一场甲胜。
问到决出最后胜负为止,共有几种不同的情形?其中甲胜的情形有几。