剪力和弯矩
- 格式:ppt
- 大小:1.35 MB
- 文档页数:25
§7-2剪力与弯矩一、剪力和弯矩根据作用在梁上的已知载荷,求出静定梁的支座反力以后,梁横截面上的内力可利用前面讲过的“截面法”来求解,如图7-8a 所示简支梁在外力作用下处于平衡状态,现在讨论距A 支座距离为x 的m m -截面上的内力。
图7-8简支梁指定截面的剪力、弯矩计算根据截面法计算内力的基本步骤“切、代、平”,计算梁的内力的步骤为:①、首先根据静力平衡方程求支座反力Ay F 和By F ,为推导计算的一般过程,暂且用Ay F 和By F 代替。
②、用截面假想沿m m -处把梁切开为左、右两段,如图7-8b、7-8c 所示,取左段梁为脱离体,因梁原来处于平衡状态,所以被截取的左段梁也同样保持平衡状态。
从图7-8b 中可看到,左段梁上有一向上的支座反力Ay F 、向下的已知力1P 作用,要使左段梁不发生竖向移动,则在m m -截面上必定存在一个竖直方向的内力S F 与之平衡;同时,Ay F 、1P 对m m -截面形心O 点有一个力矩,会引起左段梁转动,为了使其不发生转动,在m m -截面上必须有一个力偶矩M 与之平衡,才能保持左段梁的平衡。
S F 和M 即为梁横截面上的内力,其中内力S F 使横截面有被剪开的趋势,称为剪力;力偶矩M 将使梁发生弯曲变形,称为弯矩。
由于外载荷的作用线垂直于梁的轴线,所以轴力为零,通常不予考虑。
剪力S F 和弯矩M 的大小可由左段梁的静力平衡方程来求解。
由0=∑Y 得:10Ay S F P F --=,得1S Ay F F P =-由0o M =∑得:()01=+-+-M a x P x F Ay 得()a x P x F M Ay --=1如图7-8c 所示,如果取右段梁为脱离体,同样可求得m m -截面的剪力S F 和弯矩M 。
根据作用力与反作用力原理,右段梁在m m -截面上的剪力S F 和弯矩M 与左段梁在m m -截面上的剪力S F 和弯矩M 应大小相等,方向相反。
弯矩和剪力单位弯矩和剪力是结构力学中重要的概念,用于描述杆件或梁在受力下的行为。
弯矩指的是在横截面上由力产生的力矩,而剪力则是垂直于横截面的内力。
本文将详细介绍弯矩和剪力的定义、计算方法以及其在工程中的应用。
一、弯矩1. 弯矩的定义弯矩是指在横截面上由力产生的力矩,是力对杆件或梁的作用结果。
当外力作用在杆件或梁上时,横截面上会产生内力,这种内力引起了横截面的变形,即弯曲变形。
弯矩的大小取决于外力的大小和作用点的位置。
2. 弯矩的计算方法要计算弯矩,需要知道作用在杆件或梁上的外力和作用点的位置。
常用的计算公式是M = F * d,其中M表示弯矩,F表示作用力,d表示作用点到杆件或梁的某个参考点的距离。
3. 弯矩的单位弯矩的单位是力乘以长度,通常使用牛顿米(N·m)或千牛顿米(kN·m)作为单位。
4. 弯矩的应用弯矩在工程中有广泛的应用,特别是在结构设计和分析中。
通过计算弯矩,可以确定杆件或梁的受力情况,进而选择合适的材料和尺寸。
此外,弯矩还用于计算梁的挠度和应力分布,以确保结构的安全性和稳定性。
二、剪力1. 剪力的定义剪力是指垂直于横截面的内力,作用于杆件或梁上。
剪力是由力对横截面产生的剪应力引起的,其大小取决于外力的大小和横截面的形状。
2. 剪力的计算方法要计算剪力,需要知道作用在杆件或梁上的外力和横截面的形状。
剪力的计算通常使用剪力图或截面法来进行。
剪力图是一种图形表示方法,可以显示在杆件或梁上各个截面上的剪力大小和方向。
截面法则是通过对杆件或梁的横截面进行平衡分析,计算每个截面上的剪力。
3. 剪力的单位剪力的单位是力,通常使用牛顿(N)或千牛顿(kN)作为单位。
4. 剪力的应用剪力在工程中也有重要的应用。
在结构设计和分析中,剪力用于计算结构的强度和稳定性,特别是在混凝土结构中。
此外,剪力还用于计算梁的剪应力和横向变形,以确保结构的安全性和可靠性。
弯矩和剪力是结构力学中重要的概念,用于描述杆件或梁在受力下的行为。