1-4 条件概率,全概率公式,贝叶斯公式
- 格式:ppt
- 大小:2.19 MB
- 文档页数:63
全概率公式与贝叶斯公式全概率公式和贝叶斯公式是概率论中最基础、最重要的两个公式之一。
它们是概率论领域的基础理论,广泛应用于科学、经济、社会等诸多领域。
在本文中,我们将从定义、思想、应用等多个角度系统地介绍这两个公式,并通过实例加深读者对其理解和应用的能力。
一. 全概率公式(Law of Total Probability)全概率公式,指在已知某一事件的所有可能情况下,推断出该事件发生的概率公式。
其定义如下:对于任何一组事件A1,A2,A3...,An,满足:1. 这些事件构成一个完备事件组,即其中任意两个事件不可能同时发生;2. 对于任意一个事件B,都可以写成B与A1,A2,A3...,An的交集的和;则可得到全概率公式:P(B) = ∑P(Ai) · P(B|Ai)其中,P(B)为事件B的概率,P(Ai)为组合事件A1,A2,A3...,An的概率,P(B|Ai) 表示在事件Ai发生的条件下,事件B发生的概率。
全概率公式的思想是通过列出完备事件组,并结合贝叶斯公式,计算出该事件每个可能事件的概率。
这个公式几乎在所有诸如风险评估、决策分析等领域都有广泛应用。
1.1 示例——决策分析用全概率公式来说明决策分析。
现在,有一个人可以选择投资A或B。
如果选择A,有60%的机会获得10000元的回报和40%的机会获得20000元的回报;如果选择B,则有100%的机会获得15000元的回报。
这个人现在需要决定选择哪种投资。
我们可以将选到A和选到B的两个事件分别设为Ai和Aj。
则全概率公式的应用如下:P(A) = P(Ai) · P(A) + P(Aj) · P(A)其中,P(Ai)=0.5,P(Aj)=0.5,P(A|Ai)=0.6,P(A|Aj)=1所以:P(A) = 0.5 × 0.6 + 0.5 × 1 = 0.8P(B) = 1 - P(A) = 0.2因此,我们可以看到,通过全概率公式,我们可以得出选择A的概率为0.8,选择B的概率为0.2。
全概率公式贝叶斯公式推导过程Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...An-1) > 0 时,有:P(A1A2...An-1An)=P(A1)P(A2|A1)P(A3|A1A2)...P(An|A1A2...An-1)(3)全概率公式1. 如果事件组B1,B2,.... 满足,B2....两两互斥,即 Bi∩ Bj= ,i≠j , i,j=1,2,....,且P(Bi)>0,i=1,2,....;∪B2∪....=Ω,则称事件组 B1,B2,...是样本空间Ω的一个划分设B1,B2,...是样本空间Ω的一个划分,A为任一事件,则:上式即为全概率公式(formula of total probability)2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(Bi ),P(A|Bi)(i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。
思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A 的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...Bn,这样事件A就被事件AB1,AB2,...ABn分解成了n部分,即A=AB1+AB2+...+ABn, 每一Bi发生都可能导致A发生相应的概率是P(A|Bi),由加法公式得P(A)=P(AB1)+P(AB2)+....+P(ABn)=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|Bn)P(PBn)3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。
全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...A n-1) > 0 时,有:P(A1A2...A n-1A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1)(3)全概率公式1. 如果事件组B1,B2,.... 满足1.B1,B2....两两互斥,即B i ∩ B j = ∅,i≠j ,i,j=1,2,....,且P(B i)>0,i=1,2,....;2.B1∪B2∪....=Ω ,则称事件组B1,B2,...是样本空间Ω的一个划分设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则:上式即为全概率公式(formula of total probability)2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。
思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...B n,这样事件A就被事件AB1,AB2,...AB n分解成了n部分,即A=AB1+AB2+...+AB n, 每一B i发生都可能导致A发生相应的概率是P(A|B i),由加法公式得P(A)=P(AB1)+P(AB2)+....+P(AB n)=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|B n)P(PB n)3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。
概率论与数理统计主讲:四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式1§1.5 条件概率四川大学第10讲条件概率(III): 全概率公式贝叶斯公式3第10讲条件概率(III)全概率公式贝叶斯公式四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式4四川大学第10讲条件概率(III): 全概率公式贝叶斯公式5在前面两讲,我们讲了条件概率和乘法公式。
现在来讲全概率公式和贝叶斯公式()()(|)P AB P A P B A =(()0)P A >(一)全概率公式四川大学第10讲条件概率(III): 全概率公式贝叶斯公式6A ()(|)B P A B1AB 2AB 3AB 4AB 5AB )B1AB2AB 3AB 4AB 5AB四川大学第10讲条件概率(III): 全概率公式贝叶斯公式11全概率公式的意义事件A 的发生有各种可能的原因B i (i =1,…,n )。
如果A 是由原因B i 引起,则A 发生的概率为()()(|)i i i P AB P B P A B 每一个原因都可能导致A 发生,故A 发生的概率是全部原因引起A 发生的概率的总和,即为全概率公式。
由此可以形象地把全概率公式看成是“由原因推结果”的公式,每个原因对结果的发生有一定的作用,结果发生的可能性与各种原因的作用大小有关,全概率公式就表达了它们之间的关系。
四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式12在很多实际问题中,P (A )不容易直接求得,但却容易找到S 的一个划分B 1, B 2,…, B n ,且P (B i )和P (A |B i )容易求得,那么就可以用全概率公式求出P (A )。
使用全概率公式的关键是作出S 的一个划分。
何时用全概率公式求A 的概率?四川大学1()()(|)ni i i P A P B P A B ==∑四川大学第10讲条件概率(III): 全概率公式贝叶斯公式16例2 有12个足球都是新球,每次比赛时取出3个,比赛后又放回去,求第三次比赛时取到的3 个足球都是新球的概率。