浙教版七年级数学下册:2.3解二元一次方程组练习题含答案
- 格式:doc
- 大小:276.00 KB
- 文档页数:6
浙教版初中数学七年级下册第二单元《二元一次方程组》单元测试卷(困难)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分, 学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B 铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知方程2x −3y =7,用含x 的代数式表示y 为( ) A. y =7−2x3B. y =2x−73C. x =7+3x2D. x =7−3x22. 已知x 2m−1+3y 4−2n =−7是关于x ,y 的二元一次方程,则m ,n 的值是( ) A. {m =2n =1B. {m =1n =−32C. {m =1n =52D. {m =1n =323. 若方程mx −2y =3x +4 是关于x,y 的二元一次方程,则m 满足( ) A. m ≠−2B. m ≠0C. m ≠3D. m ≠44. 已知关于x ,y 的二元一次方程组{x −y =3ax +3y =2−a ,下列结论中正确的是( )①当这个方程组的解x ,y 的值互为相反数时,a =−1; ②当x 为正数,y 为非负数时,−14<a ≤12; ③无论a 取何值,x +2y 的值始终不变.A. ①②B. ②③C. ①③D. ①②③5. 三个同学对问题“若方程组{a 1x +b 1y =c1a 2x +b 2y =c 2的解是{x =3y =4,求方程组{3a 1x +2b 1y =5c13a 2x +2b 2y =5c 2的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是( )A. {x =3y =2B. {x =3y =4C. {x =5y =10D. {x =6y =86. 在解方程组{ax +5y =104x −by =−4时,由于粗心,甲看错了方程组中的a ,得到的解为{x =−3y =−1,乙看错了方程组中的b ,得到的解为{x =5y =4.则原方程组的解( ) A. {x =−2y =8B. {x =15y =8C. {x =−2y =6D. {x =−5y =87. 当实数m ,n 满足m −2n =1时,称点P(m +2,n+23)为创新点,若以关于x ,y 的方程组{2x +3y =4,2x −3y =4a的解为坐标的点Q(x,y)为创新点,则a 的值为( ) A. −25B. 25C. −23D. 238. 已知x ,y 是整数,满足x −y +3=0,ax −y −a =0,则整数a 的所有可能值有( ) A. 4个B. 5个C. 6个D. 8个9. 某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出.( )A. 既不获利也不亏本B. 可获利1%C. 要亏本2%D. 要亏本1%10. 将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图(单位:cm)所示.则桌子的高度ℎ=( )A. 30cmB. 35cmC. 40cmD. 45cm11. 用白铁皮做罐头盒,每张铁片可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有36张白铁皮,设用x 张制盒身,y 张制盒底,恰好配套制成罐头盒,则下列方程组中符合题意的是( )A. {x +y =36y =2xB. {x +y =36x =2yC. {x +y =362×25x =40yD. {x +y =3625x =2×40y12. 三角形然幻方是锻炼思维的有趣数学问题,例:把数字1、2、3、…、9分别填入如图所示的9个圆圈内,要求△ABC 和△DEF 的每条边上三个圆圈内数字之和都等于18,则x +y +z的和是( )A. 6B. 15C. 18D. 24第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 已知二元一次方程2x −y =1,用y 的代数式表示x 为______ .14. 若关于x 、y 的二元一次方程组{3x −my =52x +ny =6的解是{x =1y =2,则关于a 、b 的二元一次方程组{3(a +b )−m (a −b )=52(a +b )+n (a −b )=6的解是_____. 15. 已知关于x ,y 的方程组{3x −5y =2a,2x +7y =a −18,有下列三种说法: ①当a =8时,x ,y 互为相反数; ②x ,y 都是负整数的解只有1组; ③{x =21,y =−3是该方程组的解.其中说法正确的有 (填序号).16. 为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为______.三、解答题(本大题共9小题,共72.0分。
2024年浙教版数学七年级下册第2章二元一次方程组拔高练习一、选择题1.如果方程组 {ax −by =134x −5y =41 与 {ax +by =32x +3y =−7 有相同的解,则a ,b 的值是( )A .{a =2b =1B .{a =2b =−3C .{a =52b =1D .{a =4b =−52.已知(x-y+1)2+|2x+y-7|=0,则x 2-3xy+2y 2的值为( )A.0B.4C.6D.123.已知x-y=4,|x|+|y|=7,那么x+y 的值是A.±32B.±112C.±7D.±114.已知方程组{2a −3b =133a +5b =30.9的解为{a =8.3b = 1.2,则方程组{2(x +2)−3(y −1)=133(x +2)+5(y −1)=30.9的解为( )A.{x =8.3y = 1.2 B.{x =10.3y = 2.2 C.{x = 6.3y = 2.2 D.{x =10.3y =0.25.已知x ,y ,z 满足2x =3y −z =5x +z,则5x −yy +2z=( )A.1B.13C.- 13D.126.甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( )A.甲比乙大5岁 B.甲比乙大10岁 C.乙比甲大10岁 D.乙比甲大5岁7.已知m 2+2mn=13,3mn+2n 2=21,那么2m 2+13mn+6n 2-44的值为( )A.45 B.55 C.66 D.778.关于实数a ,b ,定义一种关于“※”的运算:a ※b =2a +b 3,例如:2※1=2×2+13=413.依据运算定义,若a ※3b =a +1,且12(a +1)※(b −1)=0,则2a +b 的值为( )A .−1B .1C .−12D .129.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x (x ≠0)时输出的运算结果为P ,输入的数是3x 时输出的运算结果为Q ,则( )A .P :Q =3B .Q :P =3C .(Q ﹣1):(P ﹣1)=3D .(Q +1):(P +1)=310.在一家水果店,小明买了1斤苹果、4斤西瓜、2斤橙子、1斤葡萄,共付27.6元;小天买了2斤苹果、6斤西瓜、2斤橙子、2斤葡萄,共付32.2元。
2.3 解二元一次方程组第2课时 加减消元法基础过关全练知识点 加减消元法1.(2022浙江杭州余杭期中)观察下列二元一次方程组,最适合采用加减消元法求解的是 ( )A.{3x −2y =11y =16−2x B.{2x +3y =−15x −3y =15C.{x =−32y2x +y =2D.{2x −5=y 3x −2y =42.(2020浙江嘉兴中考)用加减消元法解二元一次方程组{x +3y =4①,2x −y =1②时,下列方法中无法消元的是 ( )A.①×2-②B.②×3+①C.①-②×3D.①×(-2)+②3.【一题多解】(2021天津中考)方程组{x +y =2,3x +y =4的解是( ) A.{x =0y =2 B.{x =1y =1 C.{x =2y =−2 D.{x =3y =−3 4.二元一次方程组{x +2y =2,x −4y =−16的解是 .5.(2022湖北随州中考)已知二元一次方程组{x +2y =4,2x +y =5,则x-y 的值为 .6.(2022浙江台州中考)解方程组:{x +2y =4,x +3y =5.7.【教材变式·P43T2变式】解方程组:(1){4a +b =15,3b −4a =13; (2){6(x +y)−4(2x −y)=16,2(x−y)3−x+y 4=−1.能力提升全练8.(2022浙江丽水青田二中月考,6,)用加减消元法解方程组{x +3y =5,2x −y =4时,要使方程组中同一个未知数的系数相等或互为相反数,必须适当变形.以下四种变形中正确的是 ( )(1){2x +6y =5,2x −y =4;(2){2x +6y =10,2x −y =4;(3){x +3y =5,6x −3y =4;(4){x +3y =5,6x −3y =12.A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)9.(2022浙江嘉兴期中,9,)解关于x,y 的方程组{(a +2)x +(3b +2)y =3①,(5b −1)x −(4a −b)y =7②,可以用①×3-②,消去未知数x,也可以用①+②×4消去未知数y,则a,b 的值分别为( )A.1,-2B.-1,-2C.1,2D.-1,2 10.(2022浙江宁波鄞州期中,8,)若|x+2y-3|+|x-y+3|=0,则x y 的值是( )A.-1B.1C.12 D.211.【一题多变】已知关于a,b 的方程组{a −2b =6,3a −b =m 中,a,b 互为相反数,则m 的值是 .[变式] (2022浙江衢州龙游月考,15,)定义运算“*”,规定x*y=ax 2+by,其中a,b 为常数,且3*2=6,4*1=7,则5*3= . 12.【新独家原创】已知关于m,n 的二元一次方程组{2 024m +2 023n =19,506m +505n =7,则n 2= . 13.【新独家原创】已知关于x,y 的二元一次方程组{3(x +2 023)−2(y −⊕)=1,3(x +2 023)+2(y −⊕)=5,则x= . 14.(2019山东枣庄中考,21,)对于实数a 、b,定义关于“⊗”的一种运算:a ⊗b=2a+b,例如3⊗4=2×3+4=10. (1)求4⊗(-3)的值;(2)若x ⊗(-y)=2,(2y)⊗x=-1,求x+y 的值.15.已知关于x 、y 的二元一次方程组{3x −5y =2a,2x +7y =a −18.(1)若x,y 的值互为相反数,求a 的值; (2)若2x+y+35=0,解这个方程组.素养探究全练16.【运算能力】(2022浙江金华兰溪二中月考)阅读下列解方程组的方法,然后回答问题.解方程组:{19x +18y =17,①17x +16y =15.②解:①-②,得2x+2y=2,∴x+y=1.③ ③×16,得16x+16y=16.④②-④,得x=-1,将x=-1代入③,得-1+y=1,解得y=2. ∴原方程组的解是{x =−1,y =2.(1)请你仿照上面的解法解方程组{2 021x +2 020y =2 019,①2 019x +2 018y =2 017;②(2)请大胆猜想关于x,y 的方程组{(a +2)x +(a +1)y =a,(b +2)x +(b +1)y =b (a≠b)的解,并验证你的猜想.答案全解全析基础过关全练1.B 选项B 的两个方程中y 的系数互为相反数,故最适合用加减消元法求解,故选B.2.C ①×2-②,得7y=7,能消元;②×3+①,得7x=7,能消元;①-②×3,得-5x+6y=1,不能消元;①×(-2)+②,得-7y=-7,能消元.故选C.3.B 解法一:{x +y =2①,3x +y =4②,②-①,得2x=2,解得x=1,把x=1代入①,得1+y=2,解得y=1,所以原方程组的解为{x =1,y =1.故选B.解法二:{x +y =2①,3x +y =4②,把4个选项分别代入方程①,知A 、B 均符合,排除C 、D,再把A 、B 代入方程②,知B 符合,故选B. 4.答案 {x =−4y =3解析 {x +2y =2①,x −4y =−16②,①-②,得6y=18,解得y=3,把y=3代入①,得x+6=2,解得x=-4,则原方程组的解是{x =−4,y =3.5.答案 1解析 {x +2y =4①,2x +y =5②,由②-①可得x-y=1.6.解析 {x +2y =4,①x +3y =5,②②-①得y=1,把y=1代入①得x+2=4,解得x=2, 则原方程组的解为{x =2,y =1.7.解析 (1){4a +b =15,①3b −4a =13,②①+②得4b=28,解得b=7, 把b=7代入①得4a+7=15, 解得a=2.所以方程组的解是{a =2,b =7.(2)方程组整理得{−x +5y =8,①5x −11y =−12,②①×5+②得14y=28,解得y=2, 把y=2代入①得-x+10=8,解得x=2. 所以方程组的解是{x =2,y =2.能力提升全练8.D {x +3y =5①,2x −y =4②,①×2,得2x+6y=10,∴{2x +6y =10,2x −y =4,故(2)正确;②×3,得6x-3y=12, ∴{x +3y =5,6x −3y =12,故(4)正确,故选D. 9.C 由①×3-②,消去未知数x,可知3(a+2)-(5b-1)=0;由①+②×4消去未知数y,可知3b+2-4(4a-b)=0.∴{3(a +2)−(5b −1)=0,3b +2−4(4a −b)=0,化简得{3a −5b =−7,16a −7b =2,解得{a =1,b =2,故选C.10.B ∵|x+2y-3|+|x-y+3|=0,∴x+2y-3=0且x-y+3=0,即{x +2y =3,①x −y =−3,②①-②,得3y=6,解得y=2,把y=2代入②,得x-2=-3,解得x=-1, ∴这个方程组的解为{x =−1,y =2.∴x y =(-1)2=1,故选B. 11.答案 8解析 因为a,b 互为相反数, 所以a+b=0,即b=-a,将b=-a 代入方程组得{3a =6,4a =m,解得{a =2,m =8.[变式] 答案 13解析 ∵x*y=ax 2+by,∴5*3=25a+3b, ∵3*2=6,4*1=7,∴{9a +2b =6,①16a +b =7,②①+②得25a+3b=13,∴5*3=25a+3b=13. 12.答案 9解析 {2 024m +2 023n =19,①506m +505n =7,②①-②×4得3n=-9,解得n=-3,∴n 2=(-3)2=9. 13.答案 -2 022解析 {3(x +2 023)−2(y −⊕)=1,①3(x +2 023)+2(y −⊕)=5,②①+②,得6(x+2 023)=6,解得x=-2 022.14.解析 (1)根据题意得4 (-3)=2×4+(-3)=8-3=5. (2)根据题意得{2x −y =2①,4y +x =−1②,①+②,得3x+3y=1,∴x+y=13.15.解析 (1){3x −5y =2a①,2x +7y =a −18②,②×2得4x+14y=2a-36③,③-①得x+19y=-36④,∵x,y 的值互为相反数,∴x=-y,将x=-y 代入④,得-y+19y=-36,解得y=-2,∴x=2,将{x =2,y =−2代入①,得3×2-5×(-2)=2a,解得a=8.(2){3x −5y =2a①,2x +7y =a −18②,②×2-①得x+19y=-36③,将2x+y+35=0与③联立得{x +19y =−36,2x +y +35=0,解得{x =−17,y =−1.素养探究全练16.解析 (1)①-②,得2x+2y=2, ∴x+y=1③, ①-③×2 020,得x=-1.把x=-1代入③,得-1+y=1,解得y=2. ∴原方程组的解为{x =−1,y =2.(2)猜想:方程组{(a +2)x +(a +1)y =a,(b +2)x +(b +1)y =b (a≠b)的解为{x =−1,y =2.验证:当x=-1,y=2时,(a+2)x+(a+1)y=-(a+2)+2(a+1)=a, (b+2)x+(b+1)y=-(b+2)+2(b+1)=b,∴{x =−1,y =2是方程组的解.。
浙教版七年级下册数学第二章二元一次方程组含答案一、单选题(共15题,共计45分)1、在学校组织的游艺晚会上,掷飞标游艺区游戏区规则如下,如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分(掷中一次记一个点)现统计小华、小明和小芳掷中与得分情况,如图所示,依此方法计算小芳的得分为()A.76B.74C.72D.702、如表,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.则每一行的和是()3 4 x﹣2 y a2y﹣x c bC.5D.43、已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x°,∠2=y°,则x、y满足的方程组为()A. B. C. D.4、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A. B. C.﹣ D.﹣5、甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A. B. C.D.6、如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35B.45C.55D.657、方程组的解是( )A. B. C. D.8、若方程组中x与y的值相等,则k等于()A.1或-1B.1C.5D.-59、我国古代数学名著《孙子算经》中记载了一道数学趣题:一百马,一百瓦,大马一个拖三个,小马三个拖一个.大意是:100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B. C. D.10、下列方程中是二元一次方程的是()A. B. C. D.11、某校春季运动会比赛中,七年级六班和七班的实力相当,关于比赛结果,甲同学说:六班与七班的得分比为4:3,乙同学说:六班比七班的得分2倍少40分,若设六班得x分,七班得y分,则根据题意可列方程组()A. B. C. D.12、有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币多少枚()A.22B.16C.14D.1213、一只笼子装有鸡和兔共有10个头,34只脚,每只鸡有两只脚,每只兔有四只脚.设鸡有x只,兔有y只,则可列二元一次方程组()A. B. C. D.14、有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是.其中正确的说法是()A.①④B.①③④C.②③D.①②15、扬州某中学七年级一班40名同学第二次为四川灾区捐款,共捐款2000元,捐款情况如下表:捐款(元) 20 40 50 100人数 10 8表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组()A. B. C.D.二、填空题(共10题,共计30分)16、如果,则=________.17、已知已知是方程组的解,则(m﹣n)2=________.18、已知关于x,y的方程组的解满足x+y>0,则a的取值范围是________19、二元一次方程组的解为________。
2.3 解二元一次方程组第1课时 代入消元法知识点1 代入消元法将方程组一个方程中的某个未知数用含有另一个未知数的代数式表示,并代入另一个方程,从而消去一个未知数,把解二元一次方程组转化为解一元一次方程.这种解方程组的方法称为代入消元法,简称代入法.1.用代入法解二元一次方程组⎩⎪⎨⎪⎧x =2y ,①2x +y =10,②可将①代入②,得一元一次方程:____________.知识点2 代入法解二元一次方程组用代入法解二元一次方程组的一般步骤:(1)从方程组中选取一个未知数系数比较简单的方程;(2)将选取的方程变形,变成用一个未知数表示另一个未知数的形式; (3)用这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值;(4)把这个未知数的值代入变形后的方程,求得另一个未知数的值; (5)写出方程组的解.2.用代入法解下列方程组:⎩⎪⎨⎪⎧2x +3y =16,x +4y =13.一 代入消元法解二元一次方程组教材例2变式题解方程组: ⎩⎪⎨⎪⎧x 2-y 3=7,2x +y =14.[归纳总结] (1)解二元一次方程组的基本思路是“消元”,也就是把二元一次方程组化为一元一次方程;(2)二元一次方程组的解是一对数值,需用大括号将这对数值上下排列;(3)当方程组中某一个未知数的系数的绝对值等于1时,用代入法解方程组比较简单;(4)不能把变形后方程代入变形前的原方程中,否则只能得到一个恒等式,应将变形后的方程代入另一个方程中求解.二 利用整体思想解二元一次方程组教材补充题 解方程组:⎩⎪⎨⎪⎧x +13=2y ,2(x +1)-y =11.[归纳总结] 有时用传统的代入法可能比较烦琐,此时可以考虑用整体代入法.运用整体代入法时,重点是观察,对比系数间的关系.三 方程组的解的综合应用教材补充题若关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =3,x -y =1与方程组⎩⎪⎨⎪⎧mx +ny =8,mx -ny =4的解相同,求m ,n 的值.[归纳总结] 综合性应用题的解题重点为转化思想,根据题意把题目转化成二元一次方程组.[反思] 解方程组:⎩⎪⎨⎪⎧2x -7y =8,①3x -8y =10.②解:由①,得x =8+7y2,③将③代入①,得8=8,所以原方程组无解. 这种解法是否正确?若不正确,请改正.一、选择题1.已知3x -11y =5,用含x 的代数式表示y ,下列正确的是( )A .y =5-3x 11B .y =3x -511 C .x =11y +53 D .x =-11y +532.用代入法解方程组⎩⎪⎨⎪⎧y =2x -3,①3x -2y =8②时,将方程①代入方程②中,所得的方程是( )A .3x +4x -3=0B .3x -4x -6=8C .3x -4x +6=8D .3x +2x -6=83.用代入法解方程组⎩⎪⎨⎪⎧3x +4y =2,①2x -y =5②时,使得代入后化简比较简单的变形是( )A .由①,得x =2-4y 3B .由①,得y =2-3x 4C .由②,得x =y +52D .由②,得y =2x -5 4.二元一次方程组⎩⎪⎨⎪⎧x +y =2,2x -y =1的解是( )A .⎩⎪⎨⎪⎧x =0,y =2B .⎩⎪⎨⎪⎧x =1,y =1 C .⎩⎪⎨⎪⎧x =-1,y =-1 D .⎩⎪⎨⎪⎧x =2,y =0 5.已知关于x ,y 的二元一次方程y =mx +n ,当x =2时,y =-1;当x =-1时,y =5,则( )A .m =2,n =3B .m =-2,n =3C .m =2,n =-3D .m =-2,n =-36.若⎩⎪⎨⎪⎧x =1,y =1是关于x ,y 的方程组⎩⎪⎨⎪⎧ax +by =1,bx -ay =-7的解,则(a +b)(a -b)的值为( ) A .-16 B .-7 C .7 D .167.解二元一次方程组⎩⎪⎨⎪⎧2017x +4y =11,2017x =19-2y ,得y =( )A .-4B .-43C .53D .5二、填空题8.用代入法解方程组⎩⎪⎨⎪⎧3x -y =8,2x +3y =5,选择消去未知数________比较方便.9.已知方程组⎩⎪⎨⎪⎧x =3y -5,y =2x +3,用代入法消去x ,可得方程______________(不用化简).10.若⎩⎪⎨⎪⎧x =2,y =1是关于x ,y 的方程组⎩⎪⎨⎪⎧kx -my =1,mx +ky =8的解,则k =________,m =________.11.若⎩⎪⎨⎪⎧x =1,y =-1和⎩⎪⎨⎪⎧x =2,y =3是关于x ,y 的方程y =kx +b 的两个解,则k =________,b =________. 三、解答题12.用代入法解下列方程组:(1)⎩⎪⎨⎪⎧x =y +1,2x +y =8;(2)2016·无锡⎩⎪⎨⎪⎧2x =3-y ,3x +2y =2.13.解方程组:⎩⎪⎨⎪⎧x -y =3,2y +3(x -y )=11.14.已知二元一次方程:①y=4-x ,②2x -y =2,③x -2y =1.请你从这三个方程中选择你喜欢的两个方程组成一个方程组,并求出这个方程组的解.15.已知关于x ,y 的方程组⎩⎪⎨⎪⎧4x -3y =2,kx +(k -1)y =6 的解中x 与y 的值相等,则k 的值为多少?16.已知方程组⎩⎪⎨⎪⎧2x +3y =7,5x -y =9的解是关于x ,y 的方程3x +my =8的一个解,求m 的值.17.已知(2a -b -4)2+|a +b +1|=0,求a ,b 的值.[创新题] 甲、乙两人同求方程ax -by =7的整数解,甲求出一组解为⎩⎪⎨⎪⎧x =3,y =4;而乙把ax-by =7中的7错看成1,求得一组解为⎩⎪⎨⎪⎧x =1,y =2,试求a ,b 的值.详解详析【预习效果检测】 1.[答案] 4y +y =10[解析] 将②式中的x 用2y 代替,可得2×2y +y =10,即为4y +y =10.2.[解析] 把方程组⎩⎪⎨⎪⎧2x +3y =16,①x +4y =13②的两个方程进行比较,发现把方程②变成用含y的代数式表示x 比较容易.解:⎩⎪⎨⎪⎧2x +3y =16,①x +4y =13,②由②,得x =13-4y ,③把③代入①,得2(13-4y)+3y =16, 即-5y =-10,所以y =2.把y =2代入③,得x =13-4×2=5.故原方程组的解为⎩⎪⎨⎪⎧x =5,y =2.【重难互动探究】例1 解:原方程组可整理为⎩⎪⎨⎪⎧3x -2y =42,①2x +y =14,②由②,得y =14-2x ,③把③代入①,得3x -2(14-2x)=42, 即7x =70,所以x =10.把x =10代入③,得y =-6.故原方程组的解为⎩⎪⎨⎪⎧x =10,y =-6.例2 [解析] 本题可用整体代入法求解.解:⎩⎪⎨⎪⎧x +13=2y ,①2(x +1)-y =11,②由①,得x +1=6y ,③ 把③整体代入②,得 12y -y =11,y =1.把y =1代入③,得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =1.例3 [解析] 把方程组的解代入含m ,n 的方程组中即可求出m ,n 的值.解:方程组⎩⎪⎨⎪⎧x +y =3,x -y =1的解为⎩⎪⎨⎪⎧x =2,y =1. 把⎩⎪⎨⎪⎧x =2,y =1代入含m ,n 的方程组中, 得⎩⎪⎨⎪⎧2m +n =8,2m -n =4, 解得⎩⎪⎨⎪⎧m =3,n =2.【课堂总结反思】[反思] 这种解法不正确,改正如下:⎩⎪⎨⎪⎧2x -7y =8,①3x -8y =10,② 由①,得x =8+7y 2,③把③代入②,得3×8+7y 2-8y =10,解得y =-45.把y =-45代入③,得x =65.所以原方程组的解是⎩⎪⎨⎪⎧x =65,y =-45.【作业高效训练】[课堂达标]1.[解析] B 移项得11y =3x -5,两边同除以11,得y =3x -511.故选B .2.C 3.D 4.B5.[解析] B 由题意可得方程组⎩⎪⎨⎪⎧2m +n =-1,-m +n =5,解得⎩⎪⎨⎪⎧m =-2,n =3.6.[解析] C 因为⎩⎪⎨⎪⎧x =1,y =1是方程组⎩⎪⎨⎪⎧ax +by =1,bx -ay =-7的解,所以把⎩⎪⎨⎪⎧x =1,y =1代入方程组⎩⎪⎨⎪⎧ax +by =1,bx -ay =-7,得⎩⎪⎨⎪⎧a +b =1,b -a =-7.以下有两种解法:解法一:解方程组⎩⎪⎨⎪⎧a +b =1,b -a =-7,得⎩⎪⎨⎪⎧a =4,b =-3,则(a +b)(a -b)=(4-3)×(4+3)=7.解法二:方程组⎩⎪⎨⎪⎧a +b =1,b -a =-7可变形为⎩⎪⎨⎪⎧a +b =1,a -b =7,所以(a +b)(a -b)=1×7=7.7.[解析] A 将2017x =19-2y 整体代入2017x +4y =11,得19-2y +4y =11,解得y =-4.故选A .8.[答案] y[解析] 因为方程3x -y =8化为用含x 的代数式表示y 较为简捷,故应选择消去未知数y.9.[答案] y =2(3y -5)+3 10.[答案] 2 3[解析] 把⎩⎪⎨⎪⎧x =2,y =1代入方程组⎩⎪⎨⎪⎧kx -my =1,mx +ky =8中,得⎩⎪⎨⎪⎧2k -m =1,2m +k =8,解得⎩⎪⎨⎪⎧k =2,m =3.11.[答案] 4 -5[解析] 把⎩⎪⎨⎪⎧x =1,y =-1和⎩⎪⎨⎪⎧x =2,y =3分别代入y =kx +b 中,用代入法求解. 把两组值代入后的方程组是⎩⎪⎨⎪⎧-1=k +b ,①3=2k +b ,②由①,得b =-1-k ,③把③代入②,得3=2k -1-k. 所以k =4,b =-5.12.解:(1)⎩⎪⎨⎪⎧x =y +1,①2x +y =8,②把①代入②,得2(y +1)+y =8,解得y =2,把y =2代入①,得x =3.所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =2.(2)⎩⎪⎨⎪⎧2x =3-y ,①3x +2y =2,② 由①,得y =3-2x ,③把③代入②,得3x +2(3-2x)=2, 解得x =4,把x =4代入③,得y =-5.所以原方程组的解是⎩⎪⎨⎪⎧x =4,y =-5.13.[解析] 本题的两个方程中都含有x -y ,所以可采用整体代入法.解:⎩⎪⎨⎪⎧x -y =3,①2y +3(x -y )=11,②将①代入②,得2y +3×3=11,解得y =1, 将y =1代入①,得x =4.所以原方程的解为⎩⎪⎨⎪⎧x =4,y =1.14.[解析] 此题的答案不唯一,只要从三个方程中选两个方程组成二元一次方程组求解即可.解:若取方程①和②,可得⎩⎪⎨⎪⎧y =4-x ,2x -y =2,解得⎩⎪⎨⎪⎧x =2,y =2;同理,若取方程①和③,可得⎩⎪⎨⎪⎧y =4-x ,x -2y =1,解得⎩⎪⎨⎪⎧x =3,y =1;若取方程②和③,可得⎩⎪⎨⎪⎧2x -y =2,x -2y =1,解得⎩⎪⎨⎪⎧x =1,y =0.15.解:由x 与y 的值相等,得4x -3x =2,即x =y =2,所以2k +2(k -1)=6,解得k =2.16.[解析] 把方程组⎩⎪⎨⎪⎧2x +3y =7,5x -y =9的解代入方程3x +my =8,即可求得m 的值.解:解方程组⎩⎪⎨⎪⎧2x +3y =7,5x -y =9,得⎩⎪⎨⎪⎧x =2,y =1.把⎩⎪⎨⎪⎧x =2,y =1代入方程3x +my =8, 解得m =2.17.解:因为(2a -b -4)2是一个非负数,|a +b +1|也是一个非负数,两个非负数之和等于0,则每一个非负数都等于0,即⎩⎪⎨⎪⎧2a -b -4=0,a +b +1=0,解得⎩⎪⎨⎪⎧a =1,b =-2.[数学活动][解析] 由方程组的定义可知甲求得的解⎩⎪⎨⎪⎧x =3,y =4满足原方程,代入后,可得a ,b 之间的关系式3a -4b =7;乙求出的解不满足原方程,而满足方程ax -by =1,代入后可得a ,b 的另一个关系式a -2b =1,从而可求出a ,b 的值.解:把x =3,y =4代入ax -by =7中,得3a -4b =7,① 把x =1,y =2代入ax -by =1中, 得a -2b =1,② 由①②组成方程组⎩⎪⎨⎪⎧3a -4b =7,a -2b =1,解得⎩⎪⎨⎪⎧a =5,b =2.。
A .3x -6=xB .3x =2yC .x -=0D .2x -3y =xyy 2.二元一次方程x -2y =1有无数个解,下列四组值中不是该方程的解的是( )A.B. C. D.{x =0,y =-12){x =1,y =1){x =1,y =0){x =-1,y =-1)3.下列说法中正确的是( )A .二元一次方程只有一个解B .二元一次方程组有无数个解C .二元一次方程组的解必是它所含的二元一次方程的解D .三元一次方程组一定由三个三元一次方程组成{x =1,)A .40,200B .80,160C .160,80D .200,4010.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面13的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为17则可列方程组为( )A.B.{x +y =3.2,(1+17)x =(1+13)y ){x +y =3.2,(1-17)x =(1-13)y )C.D.{x +y =3.2,13x =17y ){x +y =3.2,(1-13)x =(1-17)y )请将选择题答案填入下表:图2-Z -116.当a =_____________________时,方程组有正整数解.{2x +ay =16,x -2y =0)三、解答题(本题有8小题,共66分)17.(6分)解下列二元一次方程组:(1) (2){x =3y -5,3y =8-2x ;){x -2=2(y -1),2(x -1)+(y -1)=5.)18.(6分)已知2a m +1b -2n 与-3a 2-n b 4是同类项,求m ,n 的值.19.(6分)已知方程组的解也满足方程x +y =1,求m 的值.{2x +y =3,3x -2y =m )20.(8分)某旅行社组织甲、乙两个旅游团分别到西安、北京旅游.已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人,则甲、乙两个旅游团各有多少人?图2-Z-2(1)请问采摘的黄瓜和茄子各多少千克;(2)这些采摘的黄瓜和茄子可赚多少元?23.(10分)为了拉动内需,全国各地汽车购置税补贴活动正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月销售的手动型和自动型汽车分别为多少台?每套服装的价格60元50元40元已知两所学校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两所学校分别有多少名学生准备参加演出?(3)如果甲校有10名学生抽调去参加书法绘画比赛而不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.14. 15.675 cm 316.-3或-2或0或4或1217.解:(1){x =3y -5,①3y =8-2x ,②)把①代入②,得3y =8-2(3y -5),解得y =2.把y =2代入①,可得x =3×2-5,即x =1.∴原方程组的解为{x =1,y =2.)(2)方程组化简得:{x -2y =0,①2x +y =8,②)②-①×2,得5y =8,解得y =.85∴ 解得∴m =8.{2x +y =3,3x -2y =m ,x +y =1,){x =2,y =-1,m =8,)20.解:设甲旅游团有x 人,乙旅游团有y 人.根据题意,得解得{x +y =55,x =2y -5,){x =35,y =20.)答:甲、乙两个旅游团分别有35人、20人.21.解:(1)设采摘黄瓜x 千克,茄子y 千克.根据题意,得解得{x +y =40,x +1.2y =42,){x =30,y =10.)答:采摘的黄瓜和茄子分别有30千克、10千克.(2)30×(1.5-1)+10×(2-1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.22.解:(1)第二天的账目有误,理由如下:设甲、乙两种商品的单价分别为x 元,y 元,根据题意可得:第一天:39x +21y =321①;第二天:26x +14y =204②;第三天:39x +25y =345③.由①÷3,得13x +7y =107,由②÷2,得13x +7y =102,∵第一天的账目正确,∴第二天的账目有误.(2)由(1)得第二天的账目有误,∴{39x +21y =321,①39x +25y =345,③)③-①,得y =6.把y =6代入①,得x =5,所以方程组的解为{x =5,y =6.)答:甲、乙两种商品的单价分别为5元,6元.23.解:(1)方法1:设政策出台前一个月销售的手动型汽车为x 辆,则自动型汽车为(960-x)辆.由题意,得(1+30%)x +(1+25%)(960-x)=1228.解得x =560,所以960-x =960-560=400.答:政策出台前一个月销售的手动型汽车为560辆,自动型汽车为400辆.方法2:设政策出台前一个月销售的手动型汽车为x 辆,自动型汽车为y 辆.由题意,得{x +y =960,(1+30%)x +(1+25%)y =1228,)解得{x =560,y =400.)答:政策出台前一个月销售的手动型汽车为560辆,自动型汽车为400辆.(2)手动型汽车的补贴额为560×(1+30%)×8×5%=291.2(万元),自动型汽车的补贴额为400×(1+25%)×9×5%=225(万元).291.2+225=516.2(万元).答:政策出台后的第一个月,政府对这1228台汽车用户共补贴了516.2万元.24.解:(1)由题意,得5000-92×40=5000-3680=1320(元).答:两校联合起来购买服装比各自购买服装可节省1320元.(2)设甲、乙两所学校分别有x 名、y 名学生准备参加演出.由题意,得解得{x +y =92,50x +60y =5000,){x =52,y =40.)答:甲、乙两所学校分别有52名、40名学生准备参加演出.(3)因为甲校有10人不能参加演出,所以甲校有52-10=42(人)参加演出.若两校联合购买服装,则需要50×(42+40)=4100(元),此时比各自购买服装节约(42+40)×60-4100=820(元).但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买每套50元的服装节约4100-3640=460(元),因此,最省钱的购买服装方案是两校联合购买91套服装(即比实际人数多购买9套).。
浙教版七年级下数学第二章综合测评卷一、选择题(每题3分,共30分)1.下列各方程组中,属于二元一次方程组的是( ).2.二元一次方程组⎩⎨⎧==+0,2x-y y x 的解是( ).3.已知⎩⎨⎧==21y ,-x 是二元一次方程组⎩⎨⎧==+123nx-y m,y x 的解,则m-n 的值是( ).A.1B.2C.3D.44.一种饮料有大盒与小盒两种包装.5大盒、4小盒共装148瓶饮料,2大盒、5小盒共装100瓶饮料,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( ).5.小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如表所示:若小丽需要购买3个商品A 和2个商品B ,则她要花费( ). A.64元 B.65元 C.66元 D.67元6.用加减法解方程组⎩⎨⎧=+=+,823,132y x y x 下列四种变形中,正确的是( ).A.①②B.③④C.①③D.②④7.若关于x ,y 的二元一次方程组⎩⎨⎧==+k x-y k,y x 95的解也是二元一次方程2x+3y=6的解,则k 的值为( ).A. 43B.- 43C. 34D.- 348.已知三角形中两个角之比是4∶5,而第三个角比这两个角的和的31还小12°,则此三角形的三个内角的度数分别为( ).A.90°,70°,20°B.64°,80°,36°C.70°,48°,62°D.78°,64°,38°9.宜宾市某化工厂,现有A 种原料52kg ,B 种原料64kg ,现用这些原料生产甲、乙两种产品.已知生产1件甲种产品需要A 种原料3kg ,B 种原料2kg ;生产1件乙种产品需要A 种原料2kg ,B 种原料4kg.则A ,B 两种原料恰好用完时可生产甲、乙两种产品的总数为( ). A.19件 B.20件 C.21件 D.22件 10.如图所示,三个天平的托盘中形状相同的物体质量相等,图1、图2所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置( ).图1 图2 图3(第10题)A.3个○B.4个○C.5个○D.6个○ 二、填空题(每题4分,共24分)11.在等式3x-2y =1中,若用含x 的代数式表示y ,结果是 y = ;若用含y 的代数式表示x ,结果是 x = .12.若方程组⎩⎨⎧==+,-y x-,y x 3537则3(x+y)-(3x-5y)的值是 .13.若x ∶y ∶z =2∶3∶4,且x +y +z =18,则xyz = .14.已知方程组⎩⎨⎧+=+=1322m x y m,x y-的解x ,y 满足x +3y =3,则m 的值是 .15.有甲、乙、丙三件商品,购买甲商品3件、乙商品2件、丙商品1件共需315元;购买甲商品1件、乙商品2件、丙商品3件共需285元.那么购买甲、乙、丙商品各1件时共需 元. 16.对于任意非零实数x ,y,定义新运算“○×”:x ○×y=ax-by.若2○×3=2,3○×5=2,则3○×4= . 三、解答题(共66分) 17.(8分)解方程组:(1) ⎩⎨⎧=+=++.y x x y 83,02125 (2)⎩⎨⎧=+=+.y x ,y x 76543218.(6分)若关于x,y 的方程组⎩⎨⎧=+=+3)32234y (m-mx ,y x 的解满足x =2y ,求m 的值.19.(8分)已知方程组由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧==.-y -x 1,3乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧==.y x 2,5试求出a ,b 的值.20.(10分)计算:(1)已知a-3b=2a+b-15=1,求代数式a 2-4ab+b 2+3的值.(2)已知方程组⎩⎨⎧=+=+-b y x ,ay x 26432有无数多组解,求a,b 的值.21.(10分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房. (1)问该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数增多.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按八折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?22.(12分)某校举办八年级数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原.每个项目得分都按一定百分比折算后计入总分.下表为甲、乙、丙三位同学的得分情况(单位:分):(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算后计入总分,根据猜测,求出甲的总分.(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分、80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问:甲能否获得这次比赛的一等奖?23.(12分)下表为某主题公园的几种门票价格.李老师家用1600元作为购买门票的资金.(1)李老师若用全部资金购买“指定日普通票”和“夜票”共10张,则“指定日普通票”和“夜票”各买多少张?(2)李老师若想用全部资金购买“指定日普通票”“平日普通票”和“夜票”共10张(每种至少一张),他的想法能实现吗?请说明理由.参考答案一、选择题(每题3分,共30分)1.下列各方程组中,属于二元一次方程组的是(D).2.二元一次方程组⎩⎨⎧==+0,2x-y y x 的解是(C).3.已知⎩⎨⎧==21y ,-x 是二元一次方程组⎩⎨⎧==+123nx-y m,y x 的解,则m-n 的值是(D).A.1B.2C.3D.44.一种饮料有大盒与小盒两种包装.5大盒、4小盒共装148瓶饮料,2大盒、5小盒共装100瓶饮料,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组(A).5.小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如表所示:若小丽需要购买3个商品A 和2个商品B ,则她要花费(C). A.64元 B.65元 C.66元 D.67元 6.用加减法解方程组⎩⎨⎧=+=+,823,132y x y x 下列四种变形中,正确的是(B).A.①②B.③④C.①③D.②④ 7.若关于x ,y 的二元一次方程组⎩⎨⎧==+kx-y k,y x 95的解也是二元一次方程2x+3y=6的解,则k 的值为(A).A.43 B.- 43 C. 34 D.- 34 8.已知三角形中两个角之比是4∶5,而第三个角比这两个角的和的31还小12°,则此三角形的三个内角的度数分别为(B).A.90°,70°,20°B.64°,80°,36°C.70°,48°,62°D.78°,64°,38°9.宜宾市某化工厂,现有A 种原料52kg ,B 种原料64kg ,现用这些原料生产甲、乙两种产品.已知生产1件甲种产品需要A 种原料3kg ,B 种原料2kg ;生产1件乙种产品需要A 种原料2kg ,B 种原料4kg.则A ,B 两种原料恰好用完时可生产甲、乙两种产品的总数为(C). A.19件 B.20件 C.21件 D.22件10.如图所示,三个天平的托盘中形状相同的物体质量相等,图1、图2所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置(C).图1 图2 图3(第10题)A.3个○B.4个○C.5个○D.6个○ 二、填空题(每题4分,共24分)11.在等式3x-2y =1中,若用含x 的代数式表示y ,结果是 y =213-x ;若用含y 的代数式表示x ,结果是 x =312+y . 12.若方程组⎩⎨⎧==+,-y x-,y x 3537则3(x+y)-(3x-5y)的值是 24 .13.若x ∶y ∶z =2∶3∶4,且x +y +z =18,则xyz = 192 .14.已知方程组⎩⎨⎧+=+=1322m x y m,x y-的解x ,y 满足x +3y =3,则m 的值是 1 .15.有甲、乙、丙三件商品,购买甲商品3件、乙商品2件、丙商品1件共需315元;购买甲商品1件、乙商品2件、丙商品3件共需285元.那么购买甲、乙、丙商品各1件时共需 150 元. 16.对于任意非零实数x ,y,定义新运算“○×”:x ○×y=ax-by.若2○×3=2,3○×5=2,则3○×4= 4 . 三、解答题(共66分) 17.(8分)解方程组: (1) ⎩⎨⎧=+=++.y x x y 83,02125 (2) ⎩⎨⎧=+=+.y x ,y x 765432【答案】(1) ⎩⎨⎧==.y -x 37,103 【答案】⎩⎨⎧==.y ,-x 2118.(6分)若关于x,y 的方程组⎩⎨⎧=+=+3)32234y (m-mx ,y x 的解满足x =2y ,求m 的值.【答案】∵x =2y ,∴8y +3y =22.∴y =2.∴x =4. ∴4m +(m-3)×2=3.∴m =23.19.(8分)已知方程组由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧==.-y -x 1,3乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧==.y x 2,5试求出a ,b 的值.【答案】由题意得⎩⎨⎧=⨯+=⨯⨯,a ,-)(-)-b (-152552134解得⎩⎨⎧==.b ,a 10120.(10分)计算:(1)已知a-3b=2a+b-15=1,求代数式a 2-4ab+b 2+3的值. (2)已知方程组⎩⎨⎧=+=+-by x ,ay x 26432有无数多组解,求a,b 的值.21.(10分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房. (1)问该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数增多.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按八折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?【答案】(1)设该店有客房x 间,房客y 人.∴该店有客房8间,房客63人.(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱; 若一次性订客房18间,则需付费20×18×0.8=288钱<320钱;∴诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.22.(12分)某校举办八年级数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原.每个项目得分都按一定百分比折算后计入总分.下表为甲、乙、丙三位同学的得分情况(单位:分):(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算后计入总分,根据猜测,求出甲的总分.(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分、80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问:甲能否获得这次比赛的一等奖?【答案】(1)66×10%+89×40%+86×20%+68×30%=79.8(分).(2)设趣题巧解所占的百分比为x,数学应用所占的百分比为y.∴甲的总分:20+89×0.3+86×0.4=81.1>80.∴甲能获一等奖.23.(12分)下表为某主题公园的几种门票价格.李老师家用1600元作为购买门票的资金.(1)李老师若用全部资金购买“指定日普通票”和“夜票”共10张,则“指定日普通票”和“夜票”各买多少张?(2)李老师若想用全部资金购买“指定日普通票”“平日普通票”和“夜票”共10张(每种至少一张),他的想法能实现吗?请说明理由.【答案】(1)设买“指定日普通票”x张,“夜票”y张.∴“指定日普通票”买6张,“夜票”买4张.(2)能,理由如下:设李老师买“指定日普通票”x张,“平日普通票”y张,则“夜票”为(10-x-y)张.由题意得200x+160y+100(10-x-y)=1600.整理得5x+3y=30,∵x,y均为正整数,且每种至少一张,∴当x=3,y=5,10-x-y=2时,李老师的想法能实现.。
2浙教版七年级数学下册《第2章二元一次方程组》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.方程2x﹣3y=7,用含y的代数式表示x为()A.y=(7﹣2x)B.y=(2x﹣7)C.x=(7﹣3y)D.x=(7+3y)2.方程2x+3y=17的正整数解的对数是()A.1对B.2对C.3对D.4对3.已知是二元一次方程组的解,则m﹣n的值是()A.﹣2B.﹣3C.1D.﹣44.关于x、y的二元一次方程组,用代入法消去y后所得到的方程,正确的是()A.3x﹣x﹣5=83B.3x+x﹣5=8C.3x+x+5=8D.3x﹣x+5=8 5.若关于x,y的方程组的解x,y满足x﹣y=1,则k的值为()A.1B.2C.3D.46.若(x﹣y)2+|5x﹣7y﹣2|=0,则x+y的值为()A.﹣2B.0C.﹣1D.17.《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x人,物品的价格为y钱,根据题意,可列方程组为()A.B.C.D.8.从茂名电白到湛江赤坎全长约为105km,一辆小汽车、一辆货车同时从茂名电白、湛江赤坎两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是()A.B.C.D.二.填空题(共8小题,满分40分)9.已知关于x,y的方程组,则x﹣y=.10.若是二元一次方程2x+y=4的一个解,则m的值为.11.已知,则x+y+z的值.12.若方程组,则3(x+y)﹣3x+5y的值是.13.已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为.14.已知关于x、y的二元一次方程组的解是,则关于x,y的方程组的解是.15.若关于x,y的方程组和同解,则a=.16.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个.其中A盒中有2个耳机,3个优盘,1个音箱;B盒中耳机与音箱的数量之和等于优盘的数量,耳机与音箱的数量之比为3:2;C盒中有1个耳机,3个优盘,2个音箱.经核算,A盒的价值为145元,B盒的价值为245元,则C盒的价值为元.三.解答题(共6小题,满分40分)17.(1)解方程组:;(2)解方程组:.18.甲、乙两位同学一起解方程组由于甲看错了方程①中的a,得到的解为,乙看错了方程②中的b,得到的解为,试根据上述条件,求解下列问题:(1)求a、b的值;(2)计算.19.对于任意的有理数a、b、c、d,我们规定,如.若x、y同时满足.求x,y的值.20.阅读下列解方程组的方法,然后回答问题.解方程组:.解:①﹣②,得2x+2y=2,即x+y=1.③③×16,得16x+16y=16.④②﹣④,得x=﹣1,从而可得y=2.∴原方程组的解是.(1)请你仿照上面的解法解方程组:;(2)请大胆猜测关于x,y的方程组(a≠b)的解是什么?并利用方程组的解加以验证.21.疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?22.为发展校园足球运动,我市四校决定联合购买一批足球运动装备.经市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球多60元,5套队服与8个足球的费用相等,经洽谈,甲商场优惠方案是每购买10套队服,送1个足球;乙商场优惠方案是购买队服超过80套,则购买足球打8折.(1)求每套队服和每个足球的价格各是多少?(2)若这四所学校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用.(3)在(2)的条件下,若a=70,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?请说明理由.参考答案一.选择题(共8小题,满分40分)1.解:∵2x﹣3y=7,∴2x=7+3y.∴x=.∴用含y的代数式表示x为x=.故选:D.2.解:方程2x+3y=17,解得:y=,当x=1时,y=5;x=4时,y=3;x=7时,y=1,则正整数解的个数是3个,故选:C.3.解:把方程组的解代入方程组得,解得,∴m﹣n=﹣4+1=﹣3,故选:B.4.解:,把①代入②,得3x﹣(x﹣5)=8,3x﹣x+5=8,故选:D.5.解:,②×2得:8x﹣2y=10k③,①+③得:9x=12k,解得:x=k,把x=k代入①得:k+2y=2k,解得:y=k,∴原方程组的解为:,把代入x﹣y=1中可得:k﹣k=1,解得:k=1,故选:A.6.解:由题意得方程组,,解得,,∴x+y=﹣1﹣1=﹣2,故选:A.7.解:依题意,得.故选:A.8.解:由题意可得,,即,故选:D.二.填空题(共8小题,满分40分)9.解:,①×5+②得,16x=28,x=,把x=,代入①得y=﹣,∴x﹣y=﹣(﹣)=2,故答案为:2.10.解:把代入二元一次方程2x+y=4,得2+m=4,解得m=2.故答案为:2.11.解:,①+②+③得:3x+3y+3z=6063,则x+y+z=2021.故答案为:2021.12.解:由3x﹣5y=﹣3可得﹣3x+5y=3,∴3(x+y)﹣3x+5y=3×7+3=21+3=24.故答案为:24.13.解:由题意得:x+y=0,∴y=﹣x,把y=﹣x代入原方程组可得:,①+②可得:3a+9=0,解得a=﹣3,故答案为:﹣3.14.解:方程组可变形为:,∵关于x、y的二元一次方程组的解是,∴,解得:,故答案为:.15.解:原方程组可化为:,①+②得7x=14,x=2,把x=2代入②2×2﹣y=3,解得y=1,把x=2,y=1代入ax﹣3y=9,2a﹣3×1=9,解得a=6,故答案为:6.16.解:设1个耳机的价值为x元,1个优盘的价值为y元,1个音箱的价值为z元,B盒中耳机的数量为3n(n为正整数)个,则音箱的数量为2n个,优盘的数量为5n个,依题意得:.若n=2,则B盒的价值至少是A盒价值的3倍,∴n=2不合适,∴n只能为1,∴方程②为3x+5y+2z=245③.3×③﹣4×②得:x+3y+2z=155,即C盒的价值为155元.故答案为:155.三.解答题(共6小题,满分40分)17.解:(1),由②,得x=﹣1+2y③,把③代入①,得2(﹣1+2y)+y=3,解得:y=1,把y=1代入③,得x=﹣1+2×1=1,所以原方程组的解是;(2),②×3,得6x+45y=9③,①×2,得6x﹣4y=﹣40④,③﹣④,得﹣49y=﹣49,解得:y=1,把y=1代入①,得3x﹣2+20=0,解得:x=﹣6,所以原方程组的解是.18.解:(1)将代入方程②得﹣12=﹣b﹣2,解得b=10,将代入方程①得5a+20=15,解得a=﹣1;(2)当a=﹣1,b=10时,原式===3﹣2﹣0.4=0.6.19.解:∵,∴3y﹣2x=﹣2①,2x﹣(﹣y)=8②.∴①+②,得4y=6.∴y=.把y=代入②,得x=.∴x=,y=.20.解:(1)①﹣②,得2x+2y=2,即x+y=1③,①﹣③×2 020,得x=﹣1.把x=﹣1代入③,得﹣1+y=1,解得y=2.所以原方程组的解为;(2)猜想:方程组(a≠b)的解为:;检验:把x=﹣1,y=2代入(a+2)x+(a+1)y=a,得左边=a,左边=右边;把x=﹣1,y=2代入(b+2)x+(b+1)y=b,得左边=b,左边=右边.∴是方程组的解.21.解:(1)设甲种口罩购进了x盒,乙种口罩购进了y盒,依题意得:,解得:,答:甲种口罩购进了700盒,乙种口罩购进了200盒.(2)20×700+25×200=14000+5000=19000(个),2×900×10=18000(个),∵19000>18000,∴购买的口罩数量能满足市教育局的要求.22.解:(1)设每个足球的价格是x元,每套队服的价格为y元,由题意得:,解得:,答:每套队服的价格各是160元,每个足球的价格是100元.(2)到甲商场购买装备所花的费用为:100×160+100(a﹣10)=(100a+15000)(元),到乙商场购买装备所花的费用为:100×160+100×0.8a=(80a+16000)(元);(3)到乙商场购买比较合算,理由如下:当a=70时,到甲商场购买装备所花的费用是:100a+15000=100×70+15000=22000(元),到乙商场购买装备所花的费用是:80a+16000=80×70+16000=21600(元),∵22000>21600,∴到乙商场购买比较合算.。
浙教版2022-2023学年七下数学第二章 二元一次方程组 培优测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.在方程12x =x +1,2x +3y =5,2y −1=x ,x −y +z =0中二元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个【答案】B 【解析】在方程12x =x +1,2x +3y =5,2y −1=x ,x −y +z =0中, 2x +3y =5,2y −1=x 是二元一次方程.故答案为:B .2.已知{x =1y =2是方程ax −2y =6的一个解,那么a 的值是( )A .−10B .−9C .9D .10【答案】D【解析】∵{x =1y =2是二元一次方程ax-2y=6的一个解, ∴a-2×2=6, 解得:a=10.故答案为:D .3.已知二元一次方程3x ﹣4y =1,则用含x 的代数式表示y 是( )A .y =1−3x 4B .y =3x−14C .x =4y+13D .x =1−4y 3 【答案】B【解析】∵3x-4y=1,∴4y=3x-1,∴y=3x−14. 故答案为:B.4.解方程组 {x =3y −2①2y −5x =10②时,把①代入②,得( ) A .2y −15y +2=10 B .2y −3y +2=10C .2y −15y +10=10D .2y −15y −10=10【答案】C【解析】把①代入②,得2y-5(3y-2)=10,2y-15y+10=10;故答案为:C5.若方程组{4x +3y =1kx +(k −1)y =3的解 x 和 y 的值相等,则 K 的值等于( ) A .4 B .10 C .11 D .12【答案】C【解析】把y=x 代入4x+3y=1得:7x=1,解得x=17, ∴y=x=17. 把y=x=17得:17k+17 (k−1)=3, 解得:k=11.故答案为:C.6.某玩具厂共有300名生产工人,每个工人每天可生产玩具车架20个或车轮40个,且1个车架与4个车轮可配成一套,设有x 个工人生产车架,y 个工人生产车轮,下列方程组正确的是( )A .{x +y =30040x =20yB .{x +y =30020x =40yC .{x +y =3004×20x =40yD .{x +y =30020x =4×40y【答案】C【解析】设有x 个工人生产车架,y 个工人生产车轮,由题意得,{x +y =3004×20x =40y, 故答案为:C .7.根据图中提供的信息,可知每个杯子的价格是( )A .51元B .35元C .8元D .7.5元 【答案】C【解析】设一杯为x ,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故答案为:C . 8.在解方程组{●x −2y =57x −4y =●时,小明由于粗心把系数●抄错了,得到的解是{x =−13y =−103.小亮把常数●抄错了,得到的解是{x =−9y =−16,则原方程组的符合题意解是( ) A .{x =1y =1 B .{x =−1y =1 C .{x =1y =−1 D .{x =1y =2【答案】C【解析】对于方程组{●x −2y =57x −4y =●, 小明由于粗心把系数●抄错了,得到的解是{x =−13y =−103 ∴7×(−13)−4×(−103)=● 解得●=11小亮把常数●抄错了,得到的解是{x =−9y =−16∴●⋅(−9)−2×(−16)=5解得●=3∴原方程组为{3x −2y =57x −4y =11,解得{x =1y =−1 故答案为:C .9.如果方程组 {ax +3y =92x −y =1无解,则a 为( ) A .6 B .-6 C .9 D .-9【答案】B【解析】把方程 2x −y =1 两边同时乘以3,再与方程 ax +3y =9 相加,消去y 得:ax +6x =9+3 ,即 (a +6)x =12 ,∵原方程无解,∴a +6=0 ,解得 a =−6 .故答案为:B.10.如图,在某张桌子上放相同的木块,R=34,S=92,则桌子的高度是( )A .63B .58C .60D .55【答案】A【解析】设木块的长为x ,宽为y ,桌子的高度为z ,由题意得: {y +z =x +34①x +z =y +92②, 由①得:y-x=34-z ,由②得:x-y=92-z ,即34-z+92-z=0,解得z=63;即桌子的高度是63.故答案为:A .二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.已知方程 2x a−5−(b −2)y |b|−1=4 是关于 x , y 的二元一次方程,则 a −2b = .【答案】10【解析】∵方程 2x a−5−(b −2)y |b|−1=4 是关于 x , y 的二元一次方程, ∴{a −5=1|b|−1=1b −2≠0 ,解得 {a =6b =−2 , ∴a −2b =10 ,故答案为:10.12.七年级(二)班选出部分同学参加夏令营,分成红、蓝两队,红队戴红帽子,蓝队戴蓝帽子.一个红队队员说,我看见的是红队人数与蓝队人数相等;一个蓝队队员说,我看见的是红队人数是蓝队人数的2倍.则这个班参加夏令营的总人数是 人.【答案】7【解析】设红队队员有x 人,蓝队队员有y 人根据题意可得 {x −1=y x =2(y −1) 解得: {x =4y =3∴这个班参加夏令营的总人数是4+3=7(人)故答案为:7. 13.已知关于 x,y 的方程组 {2x −ay =3bx +y =−1 的解是 {x =1y =−3 ,则 a +b = . 【答案】73 【解析】把方程组的解 {x =1y =−3 代入可得: {2+3a =3b −3=−1 , 解得 a =13 , b =2 , ∴a +b =73, 故答案为: 73 . 14.已知关于x 、y 的方程组{2x +5y =−6ax −by =4和{3x −5y =16bx +ay =−8的解相同,则(a +b)2= . 【答案】4【解析】联立得:{2x +5y =−6①3x −5y =16②, ①+②得:5x =10,解得:x =2,把x =2代入①得:y =−2,代入得:{a +b =2b −a =−4, 解得:{a =3b =−1, 则原式=(3−1)2=4.故答案为:4.15.如图, 8 个完全相同的小长方形拼成了一个大长方形,大长方形的周长是 60 厘米,则小长方形的长是 ,宽是 .【答案】9cm ;3cm【解析】设小长方形的长为acm ,宽为bcm ,则{2a =3b +a 2(2a +a +b )=60 解得{a =9b =3, ∴小长方形的长为9cm ,宽为3cm.故答案为:9cm ;3cm.16.有甲,乙,丙三种不同重量的重物,它们的重量分别为a ,b ,c ,天平一端放2个甲,另一端放一个乙和一个丙天平平衡;或者天平一端放一个甲和一个乙,另一端放一个丙,天平平衡.问a :b :c 的值为 .【答案】2:1:3【解析】由题意,得 {2a =b +c a +b =c ,解得: {a =2b c =3b , ∴a :b :c =2b :b :3b =2:1:3.故答案为:2:1:3.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.解方程组: (1){3x −y =135x +2y =7 (2){x 3+1=y 2(x +1)−y =6【答案】(1)解:{3x −y =13①5x +2y =7②, ①×2+②,得11x=33, ∴x=3,把x=3代入①,得y=-4,∴{x =3y =−4;(2)解:变形,得{x −3y =−3①2x −y =4②, ①×2-②,得-5y=-10, ∴y=2,把y=2代入①,得x=3,∴{x =3y =2.18.已知关于x 、y 的二元一次方程组{2ax +by =7ax −by =2的解为{x =−1y =1,求2a −b 的值. 【答案】解:把{x =−1y =1代入方程组{2ax +by =7ax −by =2,得: {−2a +b =7①−a −b =2②, ①+②,得−3a =9,a =−3,把a =−3代入①得b =1,∴2a −b =2×(−3)−1=−7.19.先阅读,再解方程组.解方程组{x −y −1=0,①4(x −y)−y =5②时,可由①得x −y =1③,然后再将③代入②,得4×1−y =5,解得y =−1,从而进一步得{x =0,y =−1.这种方法被称为“整体代入法”. 请用上述方法解方程组{2x −3y −2=0,2x−3y+57+2y =9. 【答案】解:{2x −3y −2=0,①2x−3y+57+2y =9,②由①,得2x −3y =2,③ 把③代入②,得2+57+2y =9,解得y =4. 把y =4代入③,得2x −3×4=2,解得x =7.故原方程组的解为{x =7,y =4.20.某旅游景点今年“五一”小长假共接待游客39200人,和去年同时期相比,游客总数增加了12%,其中省外游客增加了17%,省内游客增加了10%,求该景点去年“五一”小长假接待的省外游客和省内游客各是多少人?【答案】解:设该景点去年“五一”小长假接待的省外游客是x 人、省内游客是y 人,根据题意得{x +y =392001+12%(1+17%)x +(1+10%)y =39200, 解得:{x =10000y =25000.答:该景点去年“五一”小长假接待的省外游客是10000人、省内游客是25000人21.(1)仔细阅读下面解方程组的方法,并将解题过程补充完整:解方程组{19x +18y =17①17x +16y =15②时,如果直接用代入消元或加减消元,计算会很繁琐,若采用下面的解法,则会简单很多.解:① -②,得:2x +2y =2,即x +y =1③③×16,得:16x +16y =16④ ②-④,得:x =____将x 的值代入③ 得:y =____∴方程组的解是____;(1)请你采用上述方法解方程组:{2022x +2021y =20202020x +2019y =2018【答案】(1)解:{2022x +2021y =2020①2020x +2019y =2018②① –②得:2x +2y =2,即x +y =1③③×2019得:2019x +2019y =2019④② -④得x =−1把x =−1代入③ 得y =2∴原方程组的解是{x =−1y =2.22.亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【答案】(1)解:设计划调配36座新能源客车x 辆,该大学共有y 名志愿者,由题意得{36x +2=y 22(x +4)−2=y解得:{x =6y =218 答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)解:设需调配36座客车m 辆,22座客车n 辆,由题意得 36m +22n =218,∴n =109−18m 11又∵m ,n 均为正整数,∴{m =3n =5,答:需调配36座客车3辆,22座客车5辆.23.阅读下列方程组的解法,然后解答相关问题:解方程组{27x +26y =25①25x +24y =23②时,若直接利用消元法解,那么运算比较繁杂,采用下列解法则轻而易举解:①-②,得2x +2y =2,即x +y =1.③②-③×24,得x =−1. 把x =−1代入③,解得y =2.故原方程组的解是{x =−1y =2.(1)请利用上述方法解方程组{19x +21y =2311x +13y =15. (2)猜想并写出关于x ,y 的方程组{ax +(a −m)y =a −2m bx +(b −m)y =b −2m的解,并加以检验. 【答案】(1)解:{19x +21y =23①11x +13y =15②解①-②,得8x +8y =8,即x +y =1③解②-③×11,得y =2.把y =2代入③,解得x =−1. 故这个方程组的解是{x =−1y =2.(2)解:猜想方程组{ax +(a −m)y =a −2m①bx +(b −m)y =b −2m②解是{x =−1y =2. 检验:把{x =−1y =2代入方程①的左边,左边=−a +2(a −m)=a −2m ,右边=a −2m ,∴左边=右边,∴{x =−1y =2方程①的解.把{x =−1y =2代入方程②的左边,左边=−b +2(b −m)=b −2m ,右边=b −2m ,∴左边=右边,∴{x =−1y =2是方程②的解.∴{x =−1y =2,是方程组{ax +(a −m)y =a −2m bx +(b −m)y =b −2m的解.24.阅读下列材料,解答下面的问题:我们知道方程3x +5y =30有无数个解,但在实际问题中往往只需求出其正整数解.例:由3x +5y =30,得y =30−3x 5=6−35x (x 、y 为正整数).要使6−35x 为正整数,则35x 为正整数,可知x 为5的倍数,从而x =5,代入y =6−35×5=3.所以3x +5y =30的正整数解为{x =5y =3. (1)请你直接写出方程4x +3y =24的正整数解 ;(2)若12a−4为自然数,则求出满足条件的正整数a 的值; (3)关于x ,y 的二元一次方程组{2x +y =82y +kx =7的解是正整数,求整数k 的值. 【答案】(1){x =3y =4(2)解:若12a−4为自然数,则(a −4)的值为12,6,4,3,2,1, 则满足条件的正整数a 的值有16,10,8,7,6,5;(3)解:{2x +y =8①2y +kx =7②, ①×2−②:(4−k)x =9, 解得:x =94−k , ∵x ,y 是正整数,k 是整数,∴4−k =1或3或9.k =3或1或−5.但k =3时,y 不是正整数,故k =1或−5.【解析】(1)解:由方程4x +3y =24得,y =24−4x 3=8−4x 3(x 、y 为正整数). 要使y =8−4x 3为正整数,则4x 3为正整数, 可知:x 为3的倍数,从而x =3,代入y =8−4x 3=4. 所以4x +3y =24的正整数解为{x =3y =4,故答案为:{x =3y =4;。
2021-2022学年浙教版七年级数学下册《2-3解二元一次方程组》同步达标测试(附答案)一.选择题(共6小题,满分30分)1.用代入消元法解关于x、y的方程组时,代入正确的是()A.2(4y﹣3)﹣3y=﹣1B.4y﹣3﹣3y=﹣1C.4y﹣3﹣3y=1D.2(4y﹣3)﹣3y=12.已知方程组中,a,b互为相反数,则m的值是()A.4B.﹣4C.0D.83.已知方程组,那么x与y的关系是()A.4x+2y=5B.2x﹣2y=5C.x+y=1D.5x+7y=54.若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是()A.1B.﹣1C.2D.﹣25.若关于x、y的二元一次方程组的解满足x+y=9,则k的值是()A.1B.2C.3D.46.代数式x2+ax+b,当x=2时,其值是3,当x=﹣3时,其值是4,则代数式a﹣b的值是()A.﹣1B.﹣3C.8D.3二.填空题(共8小题,满分40分)7.若(2x﹣y)2与|x+2y﹣5|互为相反数,则(x﹣y)2021=.8.二元一次方程组的解为.9.如果|x﹣2y+1|=|x+y﹣5|=0,那么x=.10.李明、王超两位同学同时解方程组李明解对了,得:,王超抄错了m,得:,则原方程组中a的值为.11.已知2a x+y b3与﹣a2b x﹣y是同类项,则(x+y)(x﹣y)=.12.已知,那么x+y的值为,x﹣y的值为.13.已知关于x,y的方程组的解是,则关于x1,y1的方程组的解是.14.关于x、y的方程组,那么=.三.解答题(共6小题,满分50分)15.解二元一次方程组:(1);(2).16.解二元一次方程组:(1);(2).17.已知方程组与方程组的解相等,试求a、b的值.18.对有理数x、y规定运算⊕:x⊕y=ax﹣by.已知1⊕7=9,3⊕8=14,求2a⊕5b的值.19.对于任意的有理数a、b、c、d,我们规定,如.若x、y同时满足.求x,y的值.20.善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y=5,③把方程①代入③,得2×3+y=5.∴y=﹣1.把y=﹣1代入①,得x=4.∴原方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换法”解方程组:(2)已知x,y满足方程组,求x2+4y2的值.参考答案一.选择题(共6小题,满分30分)1.解:,把①代入②得:2(4y﹣3)﹣3y=﹣1.故选:A.2.解:因为a,b互为相反数,所以a+b=0,即b=﹣a,代入方程组得:,解得:m=8,故选:D.3.解:,①+②×2得:5x+5y=5,整理得:x+y=1.故选:C.4.解:联立,解得:,代入kx+y=7得:4k﹣1=7,∴k=2,故选:C.5.解:(法一)①﹣②,得3y=k+7,∴y=;①+2×②,得3x=13k﹣8,∴x=∵x+y=9,∴=9即14k=28,∴k=2故选:B.(法二)①×2+②,得3x+3y=14k﹣1,∴x+y=∵x+y=9,∴14k﹣1=27,所以k=2.故选:B.6.解:根据题意得:,解得:,则a﹣b=+=3.故选:D.二.填空题(共8小题,满分40分)7.解:∵(2x﹣y)2与|x+2y﹣5|互为相反数,∴(2x﹣y)2+|x+2y﹣5|=0,∴2x﹣y=0,x+2y﹣5=0,∴,①×2得:4x﹣2y=0③,②+③得:5x﹣5=0,解得:x=1,把x=1代入①得:2﹣y=0,解得:y=2,∴原方程组的解为:,∴(x﹣y)2021=(1﹣2)2021=﹣1,故答案为:﹣1.8.解:,①+②得:2y=10,解得:y=5,把y=5代入①得:x﹣20=0,解得:x=20,则方程组的解为.故答案为:.9.解:由题意得:,②﹣①得:3y﹣6=0,∴y=2,把y=2代入②得:x+2﹣5=0,∴x=3,∴原方程组的解为:,故答案为:3.10.解:把和代入ax+by=2得:,①+②得:b=4,把b=4代入①得:2a+12=2,解得:a=﹣5.故答案为:﹣5.11.解:∵2a x+y b3与﹣a2b x﹣y是同类项,∴则(x+y)(x﹣y)=2×3=6.故答案为6.12.解:,①+②得:3(x+y)=11,解得:x+y=;①﹣②得:x﹣y=﹣1,故答案为:;﹣113.解:根据题意得:,解得:,则关于x1,y1的方程组的解是.故答案为:14.解:设a=,b=,方程组化为,①×3﹣②×2得:5a=65,解得:a=13,将a=13代入①得:b=3,则﹣=a﹣b=13﹣3=10.故答案为:10三.解答题(共6小题,满分50分)15.解:(1),把②代入①,得y﹣9+3y=7,解得y=4,把y=4代入②,得x=﹣5,故方程组的解为;(2),①+②,得3x=8,解得x=,把x=代入②,得y=,故方程组的解为.16.解:(1)把①代入②得:2(y+5)+3y﹣15=0,解得:y=1,把y=1代入①得:x=6,∴原方程组的解为:;(2)将方程①化简得:4x﹣3y=0③,②﹣③得:8y=32,解得:y=4,把y=4代入②得:4x+20=32,解得:x=3,∴原方程组的解为:.17.解:由已知可得,解得,把代入剩下的两个方程组成的方程组,得,解得.故a、b的值为.18.解:由题意可知:,解这个方程组得:,所以2a⊕5b=a•2a﹣b•5b=2a2﹣5b2=8﹣5=3.19.解:∵,∴3y﹣2x=﹣2①,2x﹣(﹣y)=8②.∴①+②,得4y=6.∴y=.把y=代入②,得x=.∴x=,y=.20.解:(1)由②得:3(3x﹣2y)+2y=19③,把①代入③得:15+2y=19,解得:y=2,把y=2代入①得:x=3,则方程组的解为;(2)由①得:3(x2+4y2)﹣2xy=47③,由②得:2(x2+4y2)+xy=36④,③+④×2得:7(x2+4y2)=119,解得:x2+4y2=17.。
浙江七年级数学下册第二章《二元一次方程组》常考题(考试时间:90分钟 试卷满分:100分)一、选择题(本题有10个小题,每小题3分,共30分)1.(本题3分)(2021·浙江·浦江县教育研究和教师培训中心七年级期末)已知二元一次方程473x y -=.用x 的代数式表示y ,正确的是( ) A .374y- B .374y+ C .437x - D .437x + 【答案】C 【解析】 【分析】将x 看作已知数,y 看作未知数,求出y 即可. 【详解】 ∵4x -7y =3, ∵7y =4x -3, ∵437x y -=. 故选:C . 【点睛】本题考查解二元一次方程,解题的关键是将x 看作已知数,y 看作未知数,解方程即可.2.(本题3分)(2021·浙江·七年级专题练习)若一个方程组的一个解为21x y =⎧⎨=⎩,则这个方程组不可能是( )A .31x y x y +=⎧⎨-=⎩B .2231y xx y =⎧⎨-=⎩C .2420x y x y +=⎧⎨-=⎩D .45133424x y x y +=⎧⎨-+=⎩【答案】C 【解析】 【分析】把解代入各个方程组,根据二元一次方程解的定义判断即可 【详解】解:A 、x =2,y =1适合方程组31x y x y +=⎧⎨-=⎩中的每一个方程,故本选项不符合题意;B 、x =2,y =1适合方程组2231y xx y =⎧⎨-=⎩中的每一个方程,故本选项不符合题意;C 、x =2,y =1不是方程20x y -=的解,故该选项符合题意.D 、x =2,y =1适合方程组45133424x y x y +=⎧⎨-+=⎩中的每一个方程,故本选项不符合题意;故选C . 【点睛】本题考查了方程组的解.解决本题可根据方程组解的定义代入验证,也可以通过解方程组确定.3.(本题3分)(2021·浙江诸暨·七年级期末)若方程组327213x y x y -=⎧⎨+=⎩的解也是方程218kx y +=的解,则k 的值为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】先求出方程组的解,然后代入方程218kx y +=,即可解答. 【详解】解:327213①②-=⎧⎨+=⎩x y x y ∵+∵,得:420x = ,解得:5x = ,把5x =代入∵,得:5213y +=,解得: 4y = ,所以方程组的解为54x y =⎧⎨=⎩ , 把x ,y 代入方程218kx y +=,得:52418k +⨯= ,解得:2k = .故选:B 【点睛】本题主要考查了解二元一次方程组和二元一次方程的解,解题的关键是熟练掌握解二元一次方程组的步骤,以及方程的解就是把这个数代入方程使方程成立的值. 4.(本题3分)(2021·浙江萧山·七年级期中)某地响应国家号召,实施退耕还林政策.退耕还林之前,该地的林地面积和耕地面积共有180km 2.退耕还林之后,该地的耕地面积是林地面积的30%.设退耕还林之后该地的耕地面积为x km2,林地面积为y km2,则可列方程组()A.18030%x yy x+=⎧⎨=⎩B.18030%x yx y+=⎧⎨=⎩C.18030%x yx y+=⎧⎨-=⎩D.18030%x yy x+=⎧⎨-=⎩【答案】B【解析】【分析】设耕地面积x平方千米,林地面积为y平方千米,根据该地的林地面积和耕地面积共有180km2,退耕还林之后,该地的耕地面积是林地面积的30%列出方程即可.【详解】解:设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18030%x yx y+=⎧⎨=⎩.故选B.【点睛】本题主要考查了根据实际问题列二元一次方程组,解题的关键在于能够准确根据题意找到等量关系.5.(本题3分)(2021·浙江杭州·七年级期末)方程组2,3x yx y⎧+=⎪⎨+=⎪⎩的解为2,.xy=⎧⎪⎨=⎪⎩则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,4【答案】B【解析】【分析】把x=2代入方程组第二个方程求出y的值,再将x与y的值代入第一个方程左边求出所求即可.【详解】解:把x=2代入x+y=3得:y=1,把x=2,y=1代入得:2x+y=4+1=5,则被遮盖的两个数分别为5,1,此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.(本题3分)(2021·浙江·杭州市公益中学七年级开学考试)已知(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,则x ,y 的值为( ) A .x =﹣1,y =1 B .x =1,y =﹣1 C .x =﹣1,y =﹣1 D .x =1,y =1【答案】D 【解析】 【分析】根据非负数的性质,建立二元一次方程组,加减法解二元一次方程组即可求得x ,y 的值为 【详解】(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,∴(2x ﹣3y +1)2+|4x ﹣3y ﹣1|=023104310x y x y -+=⎧∴⎨--=⎩ 解得11x y =⎧⎨=⎩ 故选D 【点睛】本题考查了相反数的应用,非负数的性质,解二元一次方程组,建立二元一次方程组是解题的关键.7.(本题3分)(2020·浙江·群星外国语学校七年级阶段练习)设1a ,2a ,…,2016a 是从1,0,-1这三个数中取值的一列数,若12202069a a a ++⋯+=,()()()2221220201114007a a a ++++⋅⋅⋅++=,则1a ,2a ,…,2020a 中有( )个0.A .163 B .164 C .170 D .171【答案】D 【解析】 【分析】由(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007得a 12+a 22+…+a 20202=1849,设数列中1有x 个、0有y 个,-1有z 个,根据题意得出1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1853,解:(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007, a 12+2a 1+1+a 22+2a 2+1+…+a 20202+2a 2020+1=4007, (a 12+a 22+…+a 20202)+2(a 1+a 2+…+a 2020)+2020=4007, ∵a 1+a 2+…+a 2020=69, ∵a 12+a 22+…+a 20202=1849,设a 1,a 2,…,a 2020中1有x 个、0有y 个,-1有z 个,根据题意可得:1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1849,即691849x z x z -=⎧⎨+=⎩,解得:959890x z =⎧⎨=⎩, 则y =2020-959-890=171,即0有171个, 故选:D . 【点睛】本题主要考查三元一次方程组的应用和完全平方公式,根据题意列出关于x 、y 、z 的方程组是解题的关键.8.(本题3分)(2021·浙江·杭州市采荷中学七年级期中)若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩【答案】A 【解析】 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案. 【详解】解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=,∴113b =,3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩.故选:A . 【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.9.(本题3分)(2021·浙江浙江·七年级期末)已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中正确的有( )个 ∵当5a =时,方程组的解是1020x y =⎧⎨=⎩;∵当x ,y 的值互为相反数时,20a = ∵不存在一个实数a 使得x y =; ∵若23722a y -=,则2a =.A .1 B .2C .3D .4【答案】B 【解析】 【分析】∵把a =5代入方程组求出解,即可作出判断;∵由题意得x +y =0,变形后代入方程组求出a 的值,即可作出判断; ∵若x =y ,代入方程组,变形得关于a 的方程,即可作出判断;∵根据题中等式得2a ﹣3y =7,代入方程组求出a 的值,即可作出判断. 【详解】解:∵把a =5代入方程组得:3510(1)20(2)x y x y -=⎧⎨-=⎩, 由(2)得x =2y ,将x =2y 代入(1)得:y =10, 将y =10代入x =2y 得:x =20,解得:2010x y =⎧⎨=⎩,故∵错误; ∵当x ,y 的值互为相反数时,x +y =0, 即:y =﹣x代入方程组得:35225x x ax x a +=⎧⎨+=-⎩, 整理,得82(3)35(4)x a x a =⎧⎨=-⎩, 由(3)得:14x a =,将14x a =代入(4),得:354a a =-,解得:a =20,故∵正确;∵若x =y ,则有225x ax a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,∵不存在一个实数a 使得x =y ,故∵正确;∵352(5)25(6)x y a x y a -=⎧⎨-=-⎩, (5)-(6)×3,得:15y a =-, 将15y a =-代入(6),得:25x a =-,∵原方程组的解为2515x ay a=-⎧⎨=-⎩,∵23722a y -=, ∵2a ﹣3y =7, 把y =15﹣a 代入得: 2a ﹣45+3a =7,解得:a =525,故∵错误; ∵正确的选项有∵∵两个. 故选:B . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.10.(本题3分)(2021·浙江·杭州市公益中学七年级期中)用如图∵中的长方形和正方形纸板作侧面和底面,做成如图∵的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n 的值可能是( )A .200B .201C .202D .203【答案】A 【解析】 【分析】分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答. 【详解】解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得: 43{2x y n x y m+=+=, 则两式相加得 5()m n x y +=+,∵x 、y 都是正整数 ∵m n +一定是5的倍数;∵200、201、202、203四个数中,只有200是5的倍数, ∵m n +的值可能是200. 故选A. 【点睛】本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出5()m n x y +=+,是解答本题的关键.二、填空题(本题有7个小题,每小题3分,共21分)11.(本题3分)(2021·浙江浙江·七年级期末)若x ay b =⎧⎨=⎩是方程21x y -=的解,则362a b -+=________.【答案】5 【解析】 【分析】把x 与y 的值代入方程求出a 与b 的关系,代入原式计算即可得到结果. 【详解】解:把x ay b =⎧⎨=⎩代入方程x -2y =1,可得:a -2b =1,所以3a -6b +2=3(a -2b )+2=5. 故答案为:5. 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程中两边相等的未知数的值. 12.(本题3分)(2021·浙江慈溪·七年级期末)已知235x y -=,若用含x 的代数式表示y ,则y =______.【答案】253x - 【解析】 【分析】把方程化为:325,y x =-再两边都除以3, 即可得到答案. 【详解】解: 235x y -=, 325,y x ∴=-25.3x y -∴=故答案为:25.3x - 【点睛】本题考查的是二元一次方程的变形,掌握利用含一个未知数的代数式表示另外一个未知数是解题的关键.13.(本题3分)(2020·浙江泰顺·七年级开学考试)每年五月的第二个礼拜日是母亲节,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组为__________.【答案】2552390x y x y +=⎧⎨+=⎩ 【解析】 【分析】设鲜花x 元/束,礼盒y 元/盒,根据“一束花+二盒花=55元,二束花+三盒花=90元”,列出二元一次方程组,即可. 【详解】设鲜花x 元/束,礼盒y 元/盒,由题意得:2552390x y x y +=⎧⎨+=⎩.故答案是:2552390x y x y +=⎧⎨+=⎩.【点睛】本题主要考查二元一次方程组的实际应用,找出等量关系,列出方程组,是解题的关键. 14.(本题3分)(2021·浙江浙江·七年级期中)已知关于x y 、的方程组342321x y mx y m +=⎧⎨+=-⎩的解满2x y +=,则m =________. 【答案】-1 【解析】 【分析】两式相减得,即可利用m 表示出x +y 的值,从而得到一个关于m 的方程,解方程从而求得m 的值. 【详解】解:两式相减得:x +y =1-m , ∵x +y =2.即1-m =2,解得:m =-1. 故答案是:-1.【点睛】本题考查了二元一次方程组的解,理解两个方程的系数之间的特点是关键.15.(本题3分)(2021·浙江浙江·七年级期末)把某个式子看成一个整体,用一个量代替它,从而使问题得到简化,这叫整体代换成换元思想,请根据上面的思想解决下面问题:若关于,m n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩,则关于,x y 的方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解是_______. 【答案】82x y =⎧⎨=⎩ 【解析】【分析】仿照已知方程组的解法求出所求方程组的解即可.【详解】解:∵关于m ,n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩, ∵方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解为106x y x y +=⎧⎨-=⎩, 解得:82x y =⎧⎨=⎩, 故答案为:82x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.16.(本题3分)(2021·浙江临海·七年级期中)在矩形ABCD 中,放入六个形状、大小相同的长方形,尺寸如图所示,则阴影部分的面积是___cm 2.【答案】44【解析】【分析】设这六个形状、大小相同的长方形的长为x cm,宽为y cm,然后根据图形可得26314y x y x y +=+⎧⎨+=⎩,然后求出x 、y 的值,进而问题可求解. 【详解】解:设这六个形状、大小相同的长方形的长为x cm,宽为y cm,由图形得:26314y x y x y +=+⎧⎨+=⎩,解得:82x y =⎧⎨=⎩, ∵AB =10cm,∵阴影部分的面积为14×10-8×2×6=44cm 2;故答案为44.【点睛】本题主要考查二元一次方程组与几何的应用,熟练掌握二元一次方程组的解法由图形得到基本关系量是解题的关键.17.(本题3分)(2021·浙江浙江·七年级期中)已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.【答案】11x y =-⎧⎨=⎩ 【解析】【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0,因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩,解得:11x y =-⎧⎨=⎩.故答案为:11x y =-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.三、解答题(请写出必要的解题过程,本题共6个小题,共49分)18.(本题6分)(2019·浙江东阳·七年级期末)解下列方程(组)(1)3263x y x y +=⎧⎨-=⎩(2)1122x xx x +=+--【答案】(1)12535x y ⎧=⎪⎪⎨⎪=-⎪⎩ ;(2)3x =-,经检验,3x =-是原方程的根.【解析】【分析】(1)根据加减消元法即可求解;(2)先将分母进行变形,再去分母即可求解.【详解】(1)3263x y x y +=⎧⎨-=⎩①②令∵+2∵得5x=12,解得x=125把x=125代入∵得y=35∵原方程组的解为12535x y ⎧=⎪⎪⎨⎪=-⎪⎩(2)1122x x x x+=+-- 1122x x x x +=-+-- x+1=-x+x-2解得x=-3,把x=-3代入原方程,符合题意,故x=-3是原方程的解.【点睛】此题主要考查方程的求解,解题的关键是熟知加减消元法及分式方程的求解.19.(本题8分)(2019·浙江·绍兴市柯桥区杨汛桥镇中学七年级期中)已知方程组44(1)214(2)ax y x by -=⎧⎨+=⎩,,由于甲看错了方程∵中的a 得到方程组的解为26x y ,,=-⎧⎨=⎩ 乙看错了方程∵中的b 得到方程组的解为44.x y =-⎧⎨=-⎩, 若按正确的a 、b 计算,求原方程组的解. 【答案】42x y =⎧⎨=⎩【解析】【分析】将甲得到的方程组的解代入第二个方程求出b 的值,将乙得到方程组的解代入第一个方程求出a 的值,确定出正确的方程组,求出方程组的解得到正确的x 与y 的值.【详解】解:将x=-2,y=6代入方程组中的第二个方程得:-4+6b=14,解得:b=3,将x=-4,y=-4代入方程组中的第一个方程得:-4a+16=4,解得:a=3,则方程组为()()344123142x y x y ⎧-=⎪⎨+=⎪⎩,,, (2)×3-(1)×2得:17y=34,解得:y=2,把y=2代入(1)得:x=4,即方程组的正确解为42 xy=⎧⎨=⎩.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入正确的a,b的值即可得出答案.20.(本题8分)(2021·浙江浙江·七年级期末)为了保护环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A B、两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万升汽油,求购买这批混合动力公交车需要多少万元?【答案】(1)a=120,b=100;(2)1120万元【解析】【分析】(1)根据“购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.”即可列出关于a、b的二元一次方程组,解之即可得出结论;(2)设A型车购买x台,则B型车购买(10-x)台,根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量即可得出关于x的一元一次方程,解之即可得出x值,再根据总费用=120×A型车购买的数量+100×B型车购买的数量即可算出购买这批混合动力公交车的总费用.【详解】解:(1)根据题意得:20 3260a bb a-=⎧⎨-=⎩,解得:120100ab=⎧⎨=⎩.(2)设A型车购买x台,则B型车购买(10-x)台,根据题意得:2.4x +2(10-x )=22.4,解得:x =6,∵10-x =4,∵120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)根据A 、B 型车价格间的关系列出关于a 、b 的二元一次方程组;(2)根据总节油量=2.4×A型车购买的数量+2×B 型车购买的数量列出关于x 的一元一次方程.21.(本题8分)(2021·浙江·杭州市公益中学七年级期中)已知关于x ,y 的方程组212398x y a x y a -=+⎧⎨+=-⎩,其中a 是实数. (1)若x y =,求a 的值;(2)若方程组的解也是方程53x y -=的一个解,求()20194a -的值;(3)求k 为何值时,代数式229x kxy y -+的值与a 的取值无关,始终是一个定值,求出这个定值.【答案】(1)12-;(2)-1;(3)k =6;定值为25. 【解析】【分析】(1)把a 看做已知数,利用加减消元法求出解即可;(2)把方程组的解代入方程计算求出a 的值,代入原式计算即可求出值;(3)将代数式x 2-kxy +9y 2的配方=(x -3y )2+6xy -kxy =25+(6-k )xy ,即可求解.【详解】解:(1)方程组212398x y a x y a -=+⎧⎨+=-⎩①②, ∵3⨯+∵得:5155x a =-,解得:31x a =-,把31x a =-代入∵得:2y a =-,则方程组的解为312x a y a =-⎧⎨=-⎩, 令312a a -=-,解得12a =-; (2)把方程组312x a y a =-⎧⎨=-⎩代入方程得:315103a a --+=, 解得:3a =,则20192019(4)(1)1a -=-=-;(3) 312x a y a =-⎧⎨=-⎩()3165,x y ∴-=---=229x kxy y -+2(3)6x y xy kxy =-+-25(6)k xy =+-,且代数式229x kxy y -+的值与a 的取值无关,∴当6k =时,代数式229x kxy y -+的值与a 的取值无关,定值为25.【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程,熟练掌握运算法则是解本题的关键.22.(本题9分)(2019·浙江长兴·七年级期末)阅读材料:小丁同学在解方程组435235x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩时,他发现:如果直接用代入消元法或加减消元法求解运算量比较大,也容易出错.如果把方程组中的(x+y)看作一个整体,把(x-y)看作一个整体,通过换元,可以解决问题.以下是他的解题过程:设m=x+y,n=x-y,这时原方程组化为435235m n m n ⎧+=⎪⎪⎨⎪-=-⎪⎩ 解得315m n =⎧⎨=⎩,即315x y x y +=⎧⎨-=⎩,解得96x y =⎧⎨=-⎩ 请你参考小丁同学的做法,解方程组:23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩ 【答案】914x y =⎧⎨=⎩【解析】【分析】设m=2x+3y,n=2x-3y,根据所给整体代换思路,按照所给方法求出方程的解即可.【详解】设m=2x+3y,n=2x-3y, 原方程可组化为743832m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:6024m n =⎧⎨=-⎩. ∵23602324x y x y +=⎧⎨-=-⎩, 解得:914x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,认真理解整体代换思路是解题关键.23.(本题10分)(2021·浙江浙江·七年级期末)用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a 张,正方形铁片b 张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b +的值可能是( )A .2019B .2020C .2021D .2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒【答案】(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【解析】【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设竖式纸盒c个,横式纸盒d个,由题意列出方程组可求解.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,由铁板的总数量及所需长方形铁片的数量为正方形铁皮的2倍,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,取其整数部分再将剩余铁板按一张铁板裁出1个长方形铁片和2个正方形铁片处理,即可得出结论.【详解】解:(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:43201421176 x yx y+=⎧⎨+=⎩,解得:100538 xy=⎧⎨=⎩,答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设竖式纸盒c个,横式纸盒d个,根据题意得:432c d a c d b+=⎧⎨+=⎩,∵5c+5d=5(c+d)=a+b,∵a+b是5的倍数,可能是2020,故选B;(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:35 324 m nm n+=⎧⎨=⨯⎩,解得:525116911mn⎧=⎪⎪⎨⎪=⎪⎩,∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∵共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∵可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程(组).。
2.3 解二元一次方程组第1课时 代入消元法基础过关全练知识点 代入消元法1.(2022湖南株洲中考)对于二元一次方程组{y =x −1,①x +2y =7,②将①式代入②式,消去y 可以得到( ) A.x+2x-1=7 B.x+2x-2=7C.x+x-1=7D.x+2x+2=72.四名学生利用代入法解二元一次方程组{3x −4y =5,①x −2y =3②时,提出四种不同的解法,其中解法不正确的是( ) A.由①得x=5+4y 3③,将③代入② B.由①得y=3x−54③,将③代入② C.由②得y=-x−32③,将③代入①D.由②得x=3+2y ③,将③代入①3.(2022江苏无锡中考)二元一次方程组{3x +2y =12,2x −y =1的解为 .4.【新独家原创】 已知关于a,b 的二元一次方程组{a +m =3,b −3=m,则-a-b 的值为 .5.(2021浙江丽水中考)解方程组:{x =2y,x −y =6.6.【易错题】下面是老师在铭铭的数学作业本上截取的部分内容:解方程组{2x −y =3,①x +y =−12.②解:方程①变形,得y=2x-3③, 第一步把方程③代入方程①,得2x-(2x-3)=3, 第二步整理,得3=3, 第三步因为x 可以取任意实数,所以原方程组有无数个解.问题:这种解方程组的方法叫 ;铭铭的解法正确吗?如果不正确,错在哪一步?并求出正确的解.能力提升全练7.已知单项式-3x m-1y 3与52x n y m+n 是同类项,那么m,n 的值分别是 ( )A.2,1B.1,2C.0,-1D.-1,28.小明说{x =−1,y =2为方程ax+by=10的解,小惠说{x =2,y =−1为方程ax+by=10的解,两人谁也不能说服对方.若他们的说法都正确,则a,b 的值分别为 ( )A.12,10B.9,10C.10,11D.10,109.(2022浙江杭州西湖期中,9,)在解关于x,y 的方程组{ax −2by =8①,2x =by +2②时,小明将方程①中的“-”看成了“+”,得到的解为{x =2,y =1,则原方程组的解为 ( ) A.{a =2b =2 B.{x =2y =2 C.{x =−2y =−3 D.{x =2y =−110.如果|x-2y+1|+|x+y-5|=0,那么x= .11.(2022浙江杭州期中改编,15,)若 1 314x+17y=2y+x-5=2x-3,则2(x-2y)= .12.(2022浙江杭州萧山期中,14,)对于有理数x,y,定义一种新运算:x ⊕y=ax+by-5,其中a,b 为常数.已知1⊕2=9,(-3)⊕3=-2,则2a+b= .13.(2022浙江杭州余杭月考,15,)已知关于x,y 的二元一次方程(3x-2y+9)+m(2x+y-1)=0,无论m 取何值,方程总有一个固定不变的解,这个解是 .14.【一题多解】当关于x,y 的二元一次方程组{2x −y −4m =0,14x −3y −20=0中y 的值是x 值的3倍时,求x,y 的值.15.已知关于x,y 的二元一次方程组{ax +5y =4,5x +y =3与{x −2y =5,5x +by =1的解相同,求a,b 的值.素养探究全练16.【运算能力】材料:解方程组{x −y −1=0①,4(x −y)−y =5②时,可由①得x-y=1③,然后将③代入②得4×1-y=5,解得y=-1,将y=-1代入③,得x-(-1)=1,解得x=0,∴方程组的解为{x =0,y =−1,这种方法被称为“整体代入法”.请用这样的方法解方程组{2x −y −2=0,6x−3y+45+2y =12.17.【运算能力】三个同学对问题“若关于x,y 的二元一次方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是{x =3,y =4,求关于x,y 的二元一次方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解”提出各自的想法.甲说:“这个题目条件不够,不能求解.”乙说:“它们的系数有一定的规律,可以试试.”丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元的方法来解决?”参考他们的讨论,解决上述问题.答案全解全析基础过关全练1.B 将①式代入②式,得x+2(x-1)=7,∴x+2x-2=7,故选B.2.C C 中,应该由②得y=x−32,故选项C 解法错误,符合题意,故选C.3.答案 {x =2y =3 解析 {3x +2y =12,①2x −y =1②,由②得y=2x-1③,将③代入①得3x+2(2x-1)=12,解得x=2,将x=2代入③得y=3,∴原方程组的解为{x =2,y =3. 4.答案 -6解析 {a +m =3①,b −3=m②,把②代入①,得a+b-3=3, ∴a+b=6,∴-a-b=-6.5.解析 {x =2y①,x −y =6②,把①代入②得,2y-y=6,解得y=6, 把y=6代入①得,x=12, 则原方程组的解为{x =12,y =6. 6.解析 代入消元法.铭铭的解法不正确,错在第二步,正确解法:将方程①变形,得y=2x-3③,把③代入②,得x+2x-3=-12,解得x=-3,把x=-3代入③,得y=-9,所以原方程组的解为{x =−3,y =−9.能力提升全练7.A 根据题意得{m −1=n,m +n =3,解得{m =2,n =1.故选A. 8.D 由{x =−1,y =2为方程ax+by=10的解,{x =2,y =−1为方程ax+by=10的解,得{−a +2b =10,2a −b =10,解得{a =10,b =10.故选D. 9.C 把{x =2,y =1代入{ax +2by =8,2x =by +2,得{2a +2b =8,4=b +2,解得{a =2,b =2, ∴原方程组为{2x −4y =8,2x =2y +2,解得{x =−2,y =−3.故选C. 10.答案 3解析 ∵|x-2y+1|+|x+y-5|=0,∴{x −2y +1=0,①x +y −5=0,②由①得x=2y-1③,把③代入②,得2y-1+y-5=0,解得y=2,把y=2代入③,得x=2×2-1=3,∴原方程组的解为{x =3,y =2.11.答案 -4解析 由2y+x-5=2x-3得2y+x-2x=-3+5,∴2y-x=2,∴x-2y=-2.∴2(x-2y)=2×(-2)=-4.12.答案 13解析 根据题中的新定义得{a +2b −5=9,−3a +3b −5=−2,整理得{a +2b =14,①−a +b =1,②由②得b=1+a ③,把③代入①,得a+2(1+a)=14,解得a=4,把a=4代入③,得b=1+4=5.则原方程组的解为{a =4,b =5,则2a+b=8+5=13.13.答案 {x =−1y =3解析 ∵无论m 取何值,方程总有一个固定不变的解,∴{2x +y −1=0,3x −2y +9=0,解得{x =−1,y =3. 14.解析 解法一:∵y 的值是x 值的3倍,∴y=3x,∴{2x −3x −4m =0,14x −9x −20=0,解得{x =4,m =−1, ∴y=3×4=12.故x 的值为4,y 的值为12.解法二:{2x −y −4m =0,①14x −3y −20=0,② 由①得,y=2x-4m,③把③代入②,得14x-3(2x-4m)-20=0,∴x=−3m+52,∴y=-7m+5,∵y 的值是x 值的3倍,∴y=3x,∴-7m+5=3×−3m+52,解得m=-1.∴x=4,y=12.故x 的值为4,y 的值为12.15.解析 ∵两个方程组的解相同,∴可用方程5x+y=3,x-2y=5组成新方程组,得{5x +y =3,①x −2y =5,②由①得,y=3-5x ③,把③代入②,得x-2(3-5x)=5,解得x=1,把x=1代入③得y=-2,∴此方程组的解为{x =1,y =−2,把{x =1,y =−2代入{ax +5y =4,5x +by =1,得{a −10=4,5−2b =1,解得{a =14,b =2.素养探究全练16.解析 {2x −y −2=0,①6x−3y+45+2y =12,② 由①得2x-y=2③,将③代入②得3×2+45+2y=12,解得y=5,把y=5代入③得2x-5=2,解得x=3.5.所以原方程组的解为{x =3.5,y =5.17.解析 方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2中的两个方程的两边都除以5,得{a 1(35x)+b 1(25y)=c 1,a 2(35x)+b 2(25y)=c 2, 因为方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是{x =3,y =4,所以{35x =3,25y =4,解得{x =5,y =10.所以方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解是{x =5,y =10.。
第2章二元一次方程组一、选择题下列是二元一次方程的是()A.x﹣xy=0B.x﹣2=3y C.2x=3+3x D.x﹣=22二元一次方程3x+y=6的解可以是()A.B.C.D.3足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为()A.B.C.D.4关于x、y的方程组的解是,则|m﹣n|的值是()A.5B.3C.2D.15若是方程nx+6y=4的一个解,则代数式3m﹣n+1的值是()A.3B.2C.1D.﹣16当a为何值时,方程组的解,x、y的值互为相反数()A.a=﹣8B.a=8C.a=10D.a=﹣107与方程5x+2y=﹣9构成的方程组,其解为的是()A.x+2y=1B.3x+2y=﹣8C.3x﹣4y=﹣8D.5x+4y=﹣38李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.二、填空题9解方程组,当采用加减消元法时,先消去未知数比较简便.10是关于x,y的方程ax﹣y=3的解,则a=.11已知3x﹣2y﹣3=0,求23x÷22y=.12方程组(a为常数)的解满足方程x﹣3y=﹣1,则a=.13甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x米/秒,乙的速度为y米/秒,可列方程组.三.解答题14解方程组:(1);(2).15某单位在疫情期间购买甲、乙两种防疫品共三次,只有一次甲、乙同时打折,其余两次均按标价购买.三次购买甲、乙的数量和费用如下表:购买甲的数量(个)购买乙的数量(个)购买总费用(元)第一次购物60501140第二次购物30701110第三次购物90801062(1)该单位在第次购物时享受了打折优惠;(2)求出防疫品甲、乙的标价.16课本里,用代入法解二元一次方程组的过程是用下面的框图表示:根据以上思路,请用代入法求出方程组的解(不用画框架图).第2章二元一次方程组一、选择题下列是二元一次方程的是()A.x﹣xy=0B.x﹣2=3y C.2x=3+3x D.x﹣=2【考点】二元一次方程的定义.【专题】一次方程(组)及应用;分式方程及应用;符号意识.【答案】B【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:A.x﹣xy=0,是二元二次方程,故本选项不合题意;B.x﹣2=3y,属于二元一次方程,故本选项符合题意;C.2x=3+3x,是一元一次方程,故本选项不合题意;D.,是分式方程,故本选项不合题意;故选:B.2二元一次方程3x+y=6的解可以是()A.B.C.D.【考点】二元一次方程的解.【专题】一次方程(组)及应用;运算能力.【答案】A【分析】将x=0代入方程求出y的值,判断所求值与各选项中对应的y的值是否一致,从而得出答案.【解答】解:A.当x=0时,y=6,是方程的解;B.当x=1时,9+y=6,解得y=3≠2,故不是方程的解;C.当x=2时,6+y=6,解得y=0≠1,故不是方程的解;D.当x=3时,9+y=6,解得y=﹣3≠3,故不是方程的解;故选:A.3足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【答案】A【分析】设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.【解答】解:设这个队胜x场,负y场,根据题意,得.故选:A.4关于x、y的方程组的解是,则|m﹣n|的值是()A.5B.3C.2D.1【考点】二元一次方程组的解.【专题】常规题型.【答案】D【分析】根据二元一次方程组的解的定义,把方程组的解代入方程组,求解得到m、n 的值,然后代入代数式进行计算即可得解.【解答】解:∵方程组的解是,∴,解得,所以,|m﹣n|=|2﹣3|=1.故选:D.5若是方程nx+6y=4的一个解,则代数式3m﹣n+1的值是()A.3B.2C.1D.﹣1【考点】二元一次方程的解.【专题】整式;一次方程(组)及应用;运算能力.【答案】A【分析】把代入方程nx+6y=4得出﹣2n+6m=4,求出3m﹣n=2,再代入求出即可.【解答】解:∵是方程nx+6y=4的一个解,∴代入得:﹣2n+6m=4,∴3m﹣n=2,∴3m﹣n+1=2+1=3,故选:A.6当a为何值时,方程组的解,x、y的值互为相反数()A.a=﹣8B.a=8C.a=10D.a=﹣10【考点】二元一次方程组的解.【专题】实数;一次方程(组)及应用;运算能力.【答案】B【分析】①﹣②×2得出﹣x﹣19y=36,得出方程组,求出x、y的值,再把x=2,y=﹣2代入①求出a即可.【解答】解:当x、y互为相反数时,x+y=0,∵,∴①﹣②×2得:﹣x﹣19y=36,解方程组得:,把x=2,y=﹣2代入①得:6+10=2a,解得:a=8,故选:B.7与方程5x+2y=﹣9构成的方程组,其解为的是()A.x+2y=1B.3x+2y=﹣8C.3x﹣4y=﹣8D.5x+4y=﹣3【考点】二元一次方程组的解.【答案】C【分析】将分别代入四个方程进行检验即可得到结果.【解答】解:A、将代入x+2y=1,得左边=﹣2+1=﹣1,右边=1,左边≠右边,所以本选项错误;B、将代入3x+2y=﹣8,得左边=﹣6+1=﹣5,右边=﹣8,左边≠右边,所以本选项错误;C、将代入3x﹣4y=﹣8,得左边=﹣6﹣2=﹣8,右边=﹣8,左边=右边,所以本选项正确;D、将代入5x+4y=﹣3,得左边=﹣10+2=﹣8,右边=﹣3,左边≠右边,所以本选项错误;故选:C.8李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【答案】D【分析】根据关键语句“到学校共用时15分钟”可得方程:x+y=15,根据“骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程:250x+80y=2900,两个方程组合可得方程组.【解答】解:他骑车和步行的时间分别为x分钟,y分钟,由题意得:,故选:D.二、填空题9解方程组,当采用加减消元法时,先消去未知数比较简便.【考点】解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【答案】y.【分析】由未知数的系数的特点,y的系数互为相反数,即可得到答案.【解答】解:把两个方程进行相加,即可消去未知数y,故答案为:y.10是关于x,y的方程ax﹣y=3的解,则a=.【考点】二元一次方程的解.【专题】一次方程(组)及应用;运算能力.【答案】5.【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:代入方程得:a﹣2=3,解得:a=5,故答案为:5.11已知3x﹣2y﹣3=0,求23x÷22y=.【考点】同底数幂的除法.【专题】整式;运算能力.【答案】见试题解答内容【分析】把3x﹣2y﹣3=0变形为3x﹣2y=3,再根据同底数幂的除法法则计算即可.【解答】解:由3x﹣2y﹣3=0得3x﹣2y=3,∴23x÷22y=23x﹣2y=23=8.故答案为:8.12方程组(a为常数)的解满足方程x﹣3y=﹣1,则a=.【考点】二元一次方程的解;二元一次方程组的解.【专题】一次方程(组)及应用;运算能力.【答案】2.5.【分析】将只含有x,y的两个方程联立,解出x,y,代入含a的方程中求出a即可.【解答】解:,解得:,代入ax﹣y=4得:2a﹣1=4,∴a=2.5.故答案为:2.5.13甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x米/秒,乙的速度为y米/秒,可列方程组.【考点】由实际问题抽象出二元一次方程组.【答案】见试题解答内容【分析】根据题意,得出等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;②乙先跑2秒,则甲跑4秒就可追上乙,得出方程组即可.【解答】解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故答案为:.三.解答题14解方程组:(1);(2).【考点】解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【答案】(1);(2)..【分析】(1)利用代入法解方程组即可得到答案;(2)加减消元法求解可得答案.【解答】解:(1)解方程组,由①得,x=6+2y③把③代入②得,2(6+2y)+3y=﹣2解得,y=﹣2把y=14代入③得,x=2所以原方程组的解为:;(2)①﹣②,得:7y=14,解得:y=2,将y=2代入①,得:3x﹣2×2=20,解得:x=8,所以原方程组的解为:.15某单位在疫情期间购买甲、乙两种防疫品共三次,只有一次甲、乙同时打折,其余两次均按标价购买.三次购买甲、乙的数量和费用如下表:购买甲的数量(个)购买乙的数量(个)购买总费用(元)第一次购物60501140第二次购物30701110第三次购物90801062(1)该单位在第次购物时享受了打折优惠;(2)求出防疫品甲、乙的标价.【考点】二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【答案】见试题解答内容【分析】(1)由第三次购买的东西多且总费用底,可得出该单位在第三次购物时享受了打折优惠;(2)设甲的标价是x元,乙的标价是y元,根据总价=单价×数量结合前两次购物的数量和费用,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:(1)观察表格数据,可知:第三次购物购买的物品更多,总费用反而更少,∴该单位在第三次购物时享受了打折优惠.故答案为:三.(2)设甲的标价是x元,乙的标价是y元,依题意,得:,解得:.答:甲的标价是9元,乙的标价是12元.16课本里,用代入法解二元一次方程组的过程是用下面的框图表示:根据以上思路,请用代入法求出方程组的解(不用画框架图).【考点】绝对值;解二元一次方程组.【专题】计算题;一次方程(组)及应用.【答案】见试题解答内容【分析】根据阅读材料中的思路利用代入法求出方程组的解即可.【解答】解:由①得:x=y③,把③代入②得:|y﹣2y|=2,解得:y=2或y=﹣2,当y=2时,x=y=2;当y=﹣2时,x=y=﹣2,∴方程组的解为或.。
浙教版七年级下数学第二章二元一次方程组解答题精选题号一总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上请点击修改第I卷的文字说明评卷人得分解答题(共40小题)1.解方程组(1)(2).2.解方程组(1)(2).3.已知关于x,y的方程组和有相同解,求(﹣a)b值.4.如果关于x、y的二元一次方程组的解是,求关于x、y的方程组的解:(1)(2)5.已知:都是关于x、y方程y+mx=1的解,(1)若a=b=3,求m的值并直接写出c和d的关系式;(2)a+c=12,b+d=4m+4,比较b和d的大小.6.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3,用<a>表示大于a 的最小整数.例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣2.6]=,<6.2>=.(2)已知x,y满足方程组,则[x]=,<y>=,x的取值范围是,y的取值范围是.7.已知关于x、y的方程组的解满足x+y=2,求k的值.8.已知代数式kx+b,当x=﹣3,x=2时,代数式的值分别是1和11,求代数式的值为﹣3时,x的值.9.在解方程组时,由于粗心,甲看错了方程组中的a,而得到解为,乙看错了方程组中的b,而得到解为.(1)求正确的a,b的值;(2)求原方程组的解.10.解方程组:11.已知和是关于x,y的二元一次方程y=kx+b的解,求k,b的值.12.已知方程组和的解相同,求代数式(4a﹣3b)2018的值.13.解方程组(1)(2)14.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.15.解方程组:(1)2x﹣y=x+y=3;(2).16.解关于x、y方程组可以用(1)×2+(2)消去未知数x;也可以用(1)+(2)×5消去未知数y;求m、n的值.17.已知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.18.(1)阅读以下内容:已知实数x,y满足x+y=2,且求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于x,y的方程组,再求k的值.乙同学:先将方程组中的两个方程相加,再求k的值.丙同学:先解方程组,再求k的值.(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)19.根据要求,解答下列问题.(1)解下列方程组(直接写出方程组的解即可):A.B.C.方程组A的解为,方程组B的解为,方程组C的解为;(2)以上每个方程组的解中,x值与y值的大小关系为;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.20.根据要求,解答下列问题.(1)解方程组:.(2)解下列方程组,只写出最后结果即可:①;②.(3)以上每个方程组的解中,x值与y值有怎样的大小关系?(4)观察以上每个方程组的外形特征,请你构造一个具有此特征的方程组,并用(3)中的结论快速求出其解.21.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱,求有多少人,物品的价格是多少”.22.某服装店用4400元购进A,B两种新式服装,按标价售出后可获得毛利润2800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.类型价格A型B型进价(元/件)60100标价(元/件)100160(1)请利用二元一次方程组求这两种服装各购进的件数;(2)如果A种服装按标价的9折出售,B种服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?23.如图为地铁调价后的计价表.调价后小明、小伟从家到学校乘地铁分别需要4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校的里程多5km,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米?24.小阳骑车和步行的速度分别为240米/分钟和80米/分钟,小红每次从家步行到学校所需时间相同.请根据两人的对话解决如下问题:小阳:“如果我骑车,你步行,那么我从家到学校比你少用4分钟”小红:“如果我们俩都步行,那么从家到学校我比你少用2分钟.”若设小阳从家到学校的路程为x米,小红从家到学校所需的时间为y分钟.(1)小阳从家到学校骑车的时间是分钟,步行的时间是分钟(用含x的式子表示).(2)求x,y的值.25.[阅读•领会]怎样判断两条直线是否平行?如图①,很难看出直线a、b是否平行,可添加“第三条线”(截线c),把判断两条直线的位置关系转化为判断两个角的数量关系.我们称直线c为“辅助线”.在部分代数问题中,很难用算术直接计算出结果,于是,引入字母解决复杂问题,我们称引入的字母为“辅助元素”事实上,使用“辅助线”、“辅助元”等“辅助元素”可以更容易地解决问题【实践•体悟】(1)计算(2+++)(+++)﹣(++)(2++++),这个算式直接计算很麻烦,请你引入合适的“辅助元”完成计算(2)如图②,已知∠C+∠E=∠EAB,求证AB∥CD,请你添加适当的“辅助线”,并完成证明【创造•突破】(3)若关于xy的方程组的解是的解是•则关于x、y的方程组的解为(4)如图③∠A1=∠A5=120°,∠A2=∠A4=70°,∠A6=∠A8=90°,我们把大于平角的角称为“优角”,若优角∠A3=270°,则优角∠A7=26.七(1)班五位同学参加学校举办的数学素养党赛试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道題未答),具体如下表:参赛同学答对题数答错题数未答题数A1901B1721C1523D1712E//7最后从公布的竞赛成绩中获知A,B,C,D,E五位同学的实际成绩分别是95分,81分,57分,83分,58分(1)求E同学的答对题数和答错题数;(2)若A,B,C,D四位同学中有一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况.27.某公司以每吨600元的价格收购了100吨某种药材,若直接在市场上销售,每吨的售价是1000元,该公司决定加工后再出售,相关信息如下表所示:工艺每天可加工药材的吨数成品率成品售价粗加工1480%6000精加工660%11000(注:①成品率80%指加工100吨原料能得到80吨可销售药材;②加工后的废品不产生效益)受市场影响,该公司必须在10天内将这批药材加工完毕.(1)若全部粗加工,可获利元;(2)若尽可能多的精加工,剩余的直接在市场上销售,可获利元;(3)若部分粗加工,部分精加工,恰好10天完成,求可获利多少元?28.在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建一条210米长的公路,甲队每天修建15米,乙队每天修建25米,一共用10天完成.根据题意,小红和小芳同学分别列出了下面尚不完整的方程组:小红:小芳:(1)请你分别写出小红和小芳所列方程组中未知数x,y表示的意义:小红:x表示,y表示;小芳:x表示,y表示;(2)在题中“()”内把小红和小芳所列方程组补充完整;(3)甲工程队一共修建了天,乙工程队一共修建了米.29.春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用了200天.(1)根据题意,小莉、小刚两名同学分别列出了尚不完整的方程组如下:小莉:小刚:根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示;(2)求甲、乙两工程队分别出新改造步行道多少米.30.小明是一个乐思好问的学生,在解答七年级下册教材中一道拓广探索题时遇到了困难.这道题是一个长方形的长减少5cm,宽增加2cm,就成为一个正方形,并且这两个图形的面积相等.这个长方形的长、宽各是多少?(1)如图,设长方形的长、宽各是xcm,ycm,小明绞尽脑汁列出了三个不同的方程组:①,②,③以上三个方程组中,能正确反映题意的有.(请直接填写序号)(2)小明列出的方程,根据目前知识不易求解,便请教老师,老师提示这个问题可以列二元一次方程组来解答,并适时点拨,小明终于明白了.请你写出小明列出的二元一次方程组,并写出解题过程.31.某公司要把一批货物运往A地,准备租用汽车运输公司的甲乙两种货车.过去曾两次租用这两种货车的情况如表:第一次第二次租用甲种货车(辆)25租用乙种货车(辆)36合计运货吨数(吨)15.535现租用该公司甲种货车3辆,乙种货车5辆,正好运完这批货,如果每吨货物的运费为30元,这批货物应该付运费多少元?32.某校组织七年级全体师生乘旅游客车前往广州开展研学旅行活动.旅游客车有大小两种,2辆大客车与3辆小客车全部坐满可乘载195人,4辆大客车与2辆小客车全部坐满可乘载250人,全体师生刚好坐满12辆大客车与10辆小客车,问该校七年级师生共有多少人?33.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金34.某运动员在一场篮球比赛中的技术统计如表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分篮板(个)助攻(次)个人总得分数据4666221011860注:表中出手投篮次数和投中次数均不包括罚球.投篮投不中不得分,罚球投中一球得1分,除罚球外投中一球得2分或3分.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.35.分别用8个大小一样的长方形拼图.如图①,小明拼成了一个大的长方形;如图②,小红拼成了一个大的正方形,但中间恰好空出一个边长为1mm的小正方形.你能求出小长方形的长和宽吗?36.我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.37.在国家积极推进“互联网+”行动以来,网上购物已成为生活中的新常态.某甲在网购平台上购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物64240第二次购物86204第三次购物56280(1)某甲第次购物时,商品A、B同时打折,并简略叙述理由.理由为:.(2)请求出商品A的标价.38.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8812小刚121016(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?39.某市为了鼓励居民节约用水,决定实行两级收费制度,若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价m和市场价n分别是多少元?(2)小明家5月份交水费70元,则5月份他家用了多少吨水?40.奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件,小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择,如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买15支钢笔,20个笔记本,一共花多少钱?参考答案与试题解析一.解答题(共40小题)1.解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.2.解:(1),把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为;(2)方程组整理得:,①×2﹣②得:3y=9,解得:y=3,把y=3代入②得:x=5,则方程组的解为.3.解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得,代入(2)得.所以(﹣a)b=(﹣2)3=﹣8.4.解:∵关于x、y的二元一次方程组的解是,∴(1),解得;(2),解得.5.④解:(1)∵a=b=3,∴3+3m=1,解得m=﹣,∴c和d的关系式为d﹣c=1;(2)依题意有,①+②,得b+d+(a+c)m=2⑤,把③④代入⑤,得4m+4+12m=2,即16m=﹣2,∴m=﹣,①﹣②,得b﹣d=(c﹣a)m即b﹣d=﹣(c﹣a)∵a<c.即c﹣a>0∴b﹣d=﹣(c﹣a)<0∴b<d.6.解:(1)由题意得:[﹣2.6]=﹣3,<6.2>=7;故答案为:﹣3,7;(2)解方程组得:,故x,y的取值范围分别为﹣1≤x<0,2≤y<3.故答案为:﹣1,3,﹣1≤x<0,2≤y<3.7.解:①×3+②得:7x+7y=10k+4,7(x+y)=10k+4,x+y=,x+y=2,=2,解得k=1.8.解:将x=﹣3、y=1和x=2、y=11代入得:,解得:,把k=2,b=7,y=﹣3代入y=kx+b中,可得:﹣3=2x+7,解得:x=﹣5.9.解:(1):将代入方程4x﹣by=1得b=5将代入方程ax+5y=﹣17得a=4(2)将a=4,b=5代入原方程组得,解此方程组得10.解:①+②得:4x+3z=18④,①+③得:2x﹣2z=2⑤⑤×2﹣④得:﹣7z=﹣14,解得:z=2,把z=2代入①得:x=3,把x=3,z=2代入①得:y=1,则方程组的解为.11.解:根据题意得:,②﹣①得:5k=15,解得:k=3,把k=3代入①得:﹣6+b=﹣8,解得:b=﹣2,答:k=3,b=﹣2.12.解:联立得:,①+②得:9x=9,解得:x=1,把x=1代入①得:y=﹣5,把代入得:,解得:a=b=﹣1,则原式=1.13.解:(1),①+②得:2x=6,解得:x=3,把x=3代入①得:y=﹣1,则方程组的解为;(2),①+②得:3x﹣y=3④,①+③得:4x=6,解得:x=1.5,把x=1.5代入④得:y=1.5,把x=1.5,y=1.5代入①得:z=3.5,则方程组的解为.14.解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.15.解:(1)由题意得,①+②,得:3x=6,解得:x=2,将x=2代入②,得:2+y=3,解得:y=1,则方程组的解为;(2)令x+y=m、x﹣y=n,则,①×8﹣②,得:n=46,解得:n=6,将n=6代入①,得:+2=6,解得:m=8,则,③+④,得:2x=14,解得:x=7,③﹣④,得:2y=2,解得:y=1,所以原方程组的解为.16.解:由题意得:,解得:m=﹣23,n=﹣39.17.解:(1)∵∴①﹣②得:2(x+2y)=m+1∵x+2y=2,∴m+1=4,∴m=3,(2)∵a≥m,即a≥3,∴a+1>0,2﹣a<0,∴原式=a+1﹣(a﹣2)=318.解:我最欣赏(1)中的乙同学的解题思路,,①+②得:5x+5y=7k+4,x+y=,∵x+y=2,∴=2,解得:k=,评价:甲同学是直接根据方程组的解的概念先解方程组,得到用含k的式子表示x,y的表达式,再代入x+y=2得到关于k的方程,没有经过更多的观察和思考,解法比较繁琐,计算量大;乙同学观察到了方程组中未知数x,y的系数,以及与x+y=2中的系数的特殊关系,利用整体代入简化计算,而且不用求出x,y的值就能解决问题,思路比较灵活,计算量小;丙同学将三个方程做为一个整体,看成关于x,y,k的三元一次方程组,并且选择先解其中只含有两个未知数x,y的二元一次方程组,相对计算量较小,但不如乙同学的简洁、灵活.19.解:(1)方程组A的解为,方程组B的解为,方程组C的解为;故答案为:;;;(2)以上每个方程组的解中,x值与y值的大小关系是x=y;故答案为:x=y;(3)根据题意举例为:,其解为.20.解:(1),①×2﹣②得:3y=3,即y=1,把y=1代入①得:x=1,则方程组的解为;(2)①;②;(3)以上每个方程组的解中,x=y;(4)把x=y代入①得:3y+7y=10,即y=1,则方程组的解为.21.解:设有x人,物品价格为y钱,由题意可得,,解得:,答:有7人,物品的价格是53钱.22.解:(1)设购进A种服装x件,购进B种服装y件,根据题意得:,解得:.答:购进A种服装40件,购进B种服装20件.(2)40×100×(1﹣0.9)+20×160×(1﹣0.8)=1040(元).答:服装店比按标价出售少收入1040元.23.解:设小明和小伟从家到学校乘地铁的里程分别是x千米、y千米,根据题意得,解得.答:小明和小伟从家到学校乘地铁的里程分别是10千米、5千米.24.解:(1)小阳从家到学校的骑车时间是:;步行时间是:;故答案为:;;(2)设小阳同学从家到学校的路程为x米,小红从家到学校所需时间是y分钟,由题意得:,解得:.答:x和y的值分别是720,7.25.解:(1)设a=++,原式=(2+a)(a+)﹣a(2+a+)=;(2)延长BA交CE于点F,如图所示:∵∠EAB是△EF A的外角,∴∠EAB=∠E+∠EF A,又∵∠EAB=∠E+∠C,∴∠EF A=∠C,∴AB∥CD;(3)把代入方程组得:,与方程组比较得:,方程组的解为:;故答案为:x=1,y=﹣3.(4)连接A7、A3,∵五边形的内角和为(5﹣2)×180°=540°,∴∠A1+∠A2+∠A8+∠1+∠3=540°,∠A4+∠A5+∠A6+∠2+∠4=540°,∵∠A1=∠A5=120°,∠A2=∠A4=70°,∠A6=∠A8=90°,∴∠1+∠3=∠2+∠4=260°,∴∠1+∠3+∠2+∠4=520°,∵优角∠A3=270°,即∠3+∠4=270°∴∠1+∠2=520°﹣270°=250°.故答案为:250°.26.解:(1)设E同学的答对题数为x条,则答错y条.由题意解得答:设E同学的答对题数为12条,则答错1条.(2)C同学错了自己的答题情况.应该是对13题,错4题,没有答3题.27.解:(1)全部粗加工共可售得6000×80%×100=480000(元),成本为600×100=60000(元),获利为480000﹣60000=420000(元).全部粗加工可获利420000元.故答案为420000;(2)10天共可精加工10×6=60(吨),可售得60×60%×11000+40×1000=436000(元),获利为436000﹣60000=376000(元).可获利376000元,故答案为376000;(3)设精加工x天,粗加工y天,则解得,销售可得:30×60%×11000+70×80%×6000=534000(元),获利为534000﹣60000=474000(元),答:可获利474000元.28.解:(1)由题意可得,小红:x表示甲队修建的天数,y表示乙队修建的天数;小芳:x表示甲队修建的长度,y表示乙队修建的长度;故答案是:甲队修建的天数;乙队修建的天数;甲队修建的长度;乙队修建的长度.(2)依题意得:小红:,小芳:.(3)解方程组,得则25y=25×6=150(米)即:甲工程队一共修建了4天,乙工程队一共修建了150米.故答案是:4;150.29.解:(1)由题意可得,小莉的:设甲工程队改造x天,乙工程队改造y天,,小刚的:设甲工程队改造长度x米,乙工程队改造长度y米,,故答案为:200、1800;1800、200;甲工程队改造天数,乙工程队改造天数;甲工程队改造的长度,乙工程队改造的长度;(2)设甲工程队改造长度x米,乙工程队改造长度y米,,解得,,答:甲、乙两工程队分别出新改造步行道600米、1200米.30.解:(1)解:由题意得:.故答案为:①②③(2)设长方形的长、宽各是x cm,y cm,由题意列方程组,得解这个方程组,得答:长方形的长、宽分别是cm、cm.31.解:设甲种货车每辆运x吨,乙种货车每辆运y吨,,得,∴3x+5y=3×4+5×2.5=24.5,30×24.5=735(元),答:如果每吨货物的运费为30元,这批货物应该付运费735元.32.解:设1辆大客车乘载x人,1辆小客车乘载y人,根据题意列出方程组得:,解得12×45+10×35=890(人).答:该校七年级师生共有890人.33.解:设每头牛值金x两,每只羊各值金y两.根据题意得:解得:答:每头牛值金两,每头羊值金两.34.解:设本场比赛中该运动员投中2分球x个,3分球y个,根据题意得:,解得:.答:本场比赛中该运动员投中2分球16个,3分球6个.35.解:设小长方形的长为xmm,宽为ymm,根据题意得:,解得:.答:小长方形的长为5mm,宽为3mm.36.解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则,解得:,答:1个大桶可以盛酒斛,1个小桶可以盛酒斛.37.解:(1)某甲以折扣价购买商品A、B是第二次购物.理由:∵某甲在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,且只有第二次购买数量明显增多,但是总的费用不高,∴某甲以折扣价购买商品A、B是第二次购物;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为20元.故答案为:二;∵某甲在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,且只有第二次购买数量明显增多,但是总的费用不高,∴某甲以折扣价购买商品A、B是第二次购物.38.解:(1)根据题意得:,解得:.(2)11×1+14×=18(元).答:小华的打车总费用是18元.39.解:(1)根据题意得:,解得:.答:每吨水的政府补贴优惠价m是2元,市场价n是3.5元.(2)设5月份小明家用了x吨水,根据题意得:14×2+3.5(x﹣14)=70,解得:x=26.答:5月份小明家用了26吨水.40.解:(1)设每个笔记本的价格为x元,每支钢笔的价格为y元.根据题意得:,解得:.答:每个笔记本的价格为14元,每支钢笔的价格为15元.(2)10×15+(15﹣10)×15×0.8+14×20=490(元).答:一共花了490元钱.。
2.3 解二元一次方程组第2课时 加减消元法知识点 加减消元法解二元一次方程组对于二元一次方程组,当两个方程的同一个未知数的系数是互为相反数或相同时,可以通过把两个方程的两边相加或相减来消元,转化为一元一次方程求解.这种解二元一次方程组的方法叫做加减消元法,简称加减法.用加减法解二元一次方程组的一般步骤:(1)将其中一个未知数的系数化成相同(或互为相反数);(2)通过相减(或相加)消去这个未知数,得到一个一元一次方程(注意:一般在消去一个字母时,考虑用另一个字母系数大的式子减系数小的式子);(3)解这个一元一次方程,得到一个未知数的值;(4)将求得的未知数的值代入原方程组中的任一个方程,求得另一个未知数的值. (5)写出方程组的解.解方程组:⎩⎪⎨⎪⎧3x +2y =21,3x -4y =3.一 加减消元法解二元一次方程组教材例2变式题用加减法解方程组:⎩⎪⎨⎪⎧2x +3y =12,3x +4y =17.[归纳总结] 运用加减消元法解方程组时,首先要观察两个方程中同一个未知数的系数,若系数相等,则将这两个方程相减;若系数互为相反数,则将这两个方程相加,就可以消去该未知数.若系数既不相等也不互为相反数,我们应该设法使用等式的性质,将同一个未知数的系数化为相等或互为相反数.注意:(1)把某个方程乘一个数时,方程两边的每一项都要和这个数相乘;(2)把两个方程相加减时,一定要把两个方程两边分别相加减.二 灵活选择适当的方法解二元一次方程组教材补充题用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧6s +3t =13,3s -t =5;(2)⎩⎪⎨⎪⎧5x -6y =17,4x +3y =28.[归纳总结] 二元一次方程组解法的选取主要取决于未知数的系数,当方程组中某未知数的系数较简单,如系数为1或-1时,常选用代入消元法;当方程组中某未知数的系数相等或互为相反数或成倍数关系时,常选用加减消元法.[反思] 请观察下面解方程组⎩⎪⎨⎪⎧4x +3y =6,2x -y =4的过程,并判断该过程是否正确,若不正确,请写出正确的解法.解:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,②②×2,得4x -2y =8.③ ①-③,得y =-2.把y =-2代入②,得2x -(-2)=4,x =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =-2.一、选择题1.将方程-12x +y =1中含x 的项的系数化为3,则以下结果中,正确的是( )A .3x +y =1B .3x +6y =1C .3x -6y =1D .3x -6y =-62.方程组⎩⎪⎨⎪⎧x +y =5,①2x +y =10,②由②-①得到的正确的方程是( )A .3x =10B .x =5C .3x =-5D .x =-53.用加减法解方程组⎩⎪⎨⎪⎧2x +3y =3,3x -2y =11时,有下列四种变形,其中正确的是( )A .⎩⎪⎨⎪⎧4x +6y =3,9x -6y =11 B .⎩⎪⎨⎪⎧6x +3y =9,6x -2y =22C .⎩⎪⎨⎪⎧4x +6y =6,9x -6y =33D .⎩⎪⎨⎪⎧6x +9y =3,6x -4y =11 4.方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 后,得到的方程是( )A .y =4B .-7y =14C .7y =14D .y =145.2015·河北利用消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26.方程组⎩⎪⎨⎪⎧x +y =1,2x -y =5的解为( )A .⎩⎪⎨⎪⎧x =-1,y =2B .⎩⎪⎨⎪⎧x =-2,y =3C .⎩⎪⎨⎪⎧x =2,y =1D .⎩⎪⎨⎪⎧x =2,y =-17.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .38.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B .34 C .43D .-43二、填空题9.用加减法解二元一次方程组⎩⎪⎨⎪⎧11x -3y =4,①13x -6y =-5,②将方程①两边乘________,再把得到的方程与方程②相__________,可以消去未知数________.10.2016·温州方程组⎩⎪⎨⎪⎧x +2y =5,3x -2y =7的解是________.11.已知二元一次方程组⎩⎪⎨⎪⎧3x +4y =28,①4x +3y =7,②不解方程组,直接求x +y 与x -y 的值,则x+y =________,x -y =________.12.2015·咸宁如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为________. 13.已知方程3x2m +5n +9+4y4m -2n -7=2是关于x ,y 的二元一次方程,则m =________,n=________.三、解答题14.用加减法解方程组:(1)⎩⎪⎨⎪⎧3x -y =2,3x +2y =11;(2)⎩⎪⎨⎪⎧x 2-y +13=1,3x +2y =10.15.用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧x +2y =1,3x -2y =11; (2)⎩⎪⎨⎪⎧5x +3y =6,5x -2y =-4;(3)⎩⎪⎨⎪⎧4x -3y =39,7x +4y =-15; (4)⎩⎪⎨⎪⎧2(2x +5y )=3.6,5(3x +2y )=8.16.如果二元一次方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a 的解是二元一次方程3x -5y -38=0的一个解,请你求出a 的值.17.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x +5y =-6,3x -5y =16和方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8的解相同,求代数式3a +7b 的值.1.[技巧性题目] 在解关于x ,y 的方程组⎩⎪⎨⎪⎧ax +by =2,cx -7y =8时,一位同学把c 看错而得到⎩⎪⎨⎪⎧x =-2,y =2,正确的解应是⎩⎪⎨⎪⎧x =3,y =-2,求a ,b ,c 的值.2.[技巧性题目] 如果关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -ay =16,2x +by =15的解是⎩⎪⎨⎪⎧x =7,y =1,那么关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3(x +y )-a (x -y )=16,2(x +y )+b (x -y )=15的解是什么?详解详析【预习效果检测】[解析] 解方程组⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②两个方程中x 的系数相等,因此,可直接由①-②消去未知数x .解:⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②①-②,得6y =18,解得y =3. 把y =3代入方程②,得 3x -4×3=3,解得x =5.所以原方程组的解是⎩⎪⎨⎪⎧x =5,y =3.【重难互动探究】例1 [解析] 方程组中两个方程的同一未知数的系数均不成倍数关系,则需选定一个系数相对简单的未知数,将两个方程通过变形使其绝对值相等,再进行消元.解:⎩⎪⎨⎪⎧2x +3y =12,①3x +4y =17,②①×3,得6x +9y =36,③ ②×2,得6x +8y =34,④③-④,得y =2,把y =2代入①,得x =3.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =2.例2 [解析] 用适当的方法解方程组要求同学们能认真观察方程组中各项系数的特征,根据代入消元法和加减消元法的解题思路选择简捷的方法求解.故(1)可选择代入法求解,(2)可选择加减法求解.解:(1)⎩⎪⎨⎪⎧6s +3t =13,①3s -t =5,②由②,得t =3s -5,③把③代入①,得6s +3(3s -5)=13, 解得s =2815.把s =2815代入③,得t =35.所以原方程组的解为⎩⎪⎨⎪⎧s =2815,t =35.(2)⎩⎪⎨⎪⎧5x -6y =17,①4x +3y =28,② ②×2,得8x +6y =56,③ ①+③,得13x =73,所以x =7313.把x =7313代入②,得4×7313+3y =28,所以y =2413. 所以原方程组的解为⎩⎪⎨⎪⎧x =7313,y =2413.【课堂总结反思】[反思] 该过程不正确.正确的解法如下:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,② ②×2,得4x -2y =8.③ ①-③,得5y =-2,y =-25.把y =-25代入②,得2x -⎝ ⎛⎭⎪⎫-25=4,x =95. ∴原方程组的解是⎩⎪⎨⎪⎧x =95,y =-25.【作业高效训练】[课堂达标] 1.D 2.B3.[解析] C 根据等式的基本性质进行检验,发现正确答案为C . 4.B 5.D 6.D7.[解析] D 两式相加,可得3x +3y =9,故x +y =3.8.[解析] B 解方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k ,得⎩⎪⎨⎪⎧x =7k ,y =-2k.把x ,y 的值代入二元一次方程2x +3y =6,得2×7k +3×(-2k)=6,解得k =34.9.[答案] 2 减 y[解析] ①×2,得22x -6y =8,③ ③-②可消去y.10.[答案] ⎩⎪⎨⎪⎧x =3,y =111.[答案] 5 -21[解析] ①+②,得7x +7y =35,即x +y =5.②-①,得x -y =-21. 12.[答案] -5413.[答案] 1 -2[解析] 根据二元一次方程的定义可知,x ,y 的次数都是1,所以得方程组:⎩⎪⎨⎪⎧2m +5n +9=1,4m -2n -7=1, 解方程组,得⎩⎪⎨⎪⎧m =1,n =-2.14.[解析] 方程组(2)较复杂,可先通过化简,将其变形为二元一次方程组的一般形式后再消元.解:(1)⎩⎪⎨⎪⎧3x -y =2,①3x +2y =11,②②-①,得3y =9,解得y =3.把y =3代入①,得3x -3=2,解得x =53.所以原方程组的解是⎩⎪⎨⎪⎧x =53,y =3.(2)原方程组可化简为⎩⎪⎨⎪⎧3x -2y =8,①3x +2y =10,②①+②,得6x =18,解得x =3.将x =3代入①,得 9-2y =8,解得y =12.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =12.15.[解析] 认真观察每个方程组,发现方程组(1)用加减法求解比较简便;(2)未知数x的系数相同,可通过相减消去“x”,用加减法比较简便;(3)是一个较复杂的方程组,用加减法求解较合适;(4)需先将此方程组化简,再确定求解方法.解:(1)⎩⎪⎨⎪⎧x +2y =1,①3x -2y =11,②①+②,得4x =12,解得x =3.把x =3代入①,得3+2y =1, 解得y =-1.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-1.(2)⎩⎪⎨⎪⎧5x +3y =6,①5x -2y =-4,② ①-②,得5y =10,解得y =2. 把y =2代入①,得5x +3×2=6, 解得x =0.所以原方程组的解是⎩⎪⎨⎪⎧x =0,y =2.(3)⎩⎪⎨⎪⎧4x -3y =39,①7x +4y =-15,② ①×4,得16x -12y =156,③ ②×3,得21x +12y =-45,④ ③+④,得37x =111, 解得x =3.把x =3代入①,得4×3-3y =39, 解得y =-9.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-9.(4)将原方程组化简为⎩⎪⎨⎪⎧4x +10y =3.6,①15x +10y =8,②②-①,得11x =4.4,解得x =0.4.把x =0.4代入①,得1.6+10y =3.6, 解得y =0.2.所以原方程组的解为⎩⎪⎨⎪⎧x =0.4,y =0.2.16.[解析] 用方程组中的a 分别表示x ,y ,再把x ,y 的值代入3x -5y -38=0,即可求得a 的值.解:解方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a ,得⎩⎪⎨⎪⎧x =3a ,y =-2a. 把⎩⎪⎨⎪⎧x =3a ,y =-2a 代入方程3x -5y -38=0, 得3×3a-5×(-2a)-38=0, 解得a =2.17.解:⎩⎪⎨⎪⎧2x +5y =-6,①3x -5y =16,②①+②,得5x =10,x =2.把x =2代入①,得2×2+5y =-6,y =-2.将⎩⎪⎨⎪⎧x =2,y =-2代入方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8,得 ⎩⎪⎨⎪⎧2a +2b =-4,2b -2a =-8, 解这个方程组,得⎩⎪⎨⎪⎧a =1,b =-3,所以3a +7b =3×1+7×(-3)=-18.[数学活动]1.[解析] 根据题意,把⎩⎪⎨⎪⎧x =-2,y =2代入方程ax +by =2,得关于a ,b 的一个方程,再把⎩⎪⎨⎪⎧x =3,y =-2代入方程ax +by =2,得关于a ,b 的另一个方程,组成方程组,求得a ,b 的值.把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8,即可求得c 的值. 解:把⎩⎪⎨⎪⎧x =-2,y =2,⎩⎪⎨⎪⎧x =3,y =-2分别代入方程ax +by =2, 得⎩⎪⎨⎪⎧-2a +2b =2,3a -2b =2, 解得⎩⎪⎨⎪⎧a =4,b =5. 把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8, 得3c +14=8,解得c =-2.即a =4,b =5,c =-2.2.解:设x +y =m ,x -y =n ,所求方程组可变形为⎩⎪⎨⎪⎧3m -an =16,2m +bn =15.由题意,可得该方程组的解为⎩⎪⎨⎪⎧m =7,n =1,由此可得到关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =7,x -y =1,解得⎩⎪⎨⎪⎧x =4,y =3.故所求方程组的解是⎩⎪⎨⎪⎧x =4,y =3.。
解二元一次方程组
一、选择题(每小题4分,共20分)
1.用加减法解方程组
时,将方程②变形正确的是( ) A .2x ﹣2y=2 B .3x ﹣3y=2
C .2x ﹣y=4
D .2x ﹣2y=4
2.若方程mx +ny=6的两个解
,
,则m ,n 的值为( )
A .4,2
B .2,4
C .﹣4,﹣2
D .﹣2,﹣4
3.解方程组①⎩⎪⎨⎪⎧y =2x +1,6x +5y =-11; ②⎩
⎪⎨⎪⎧2x +3y =10,
2x -3y =-6.比较简便的方法( )
A .均用代入法
B .均用加减消元法
C .①用代入法,②用加减消元法
D .①用加减消元法,②用代入法
4.解二元一次方程组⎩⎪⎨⎪⎧8x +6y =3,①
6x -4y =5,②
得y =
( )
A .-112
B .-217
C .-234
D .-11
34
5.由方程组⎩
⎪⎨⎪⎧2x +m =1,y -3=m 可得出x 与y 的关系是 ( )
A .2x +y =4
B .2x -y =4
C .2x +y =-4
D .2x -y =-4
二、填空题(每题4分,共20分)
6.解二元一次方程组的基本思想是 ,基本方法是 和 .
7.用加减法解方程组较简便的消元方法是:将两个方程 ,消去
未知数 .
8.由方程组可得出x 与y 的关系是 .
9.已知
,则2016+x +y= .
10.已知等式(2A ﹣7B )x +(3A ﹣8B )=8x +10对一切实数x 都成立,则A= ,
B=.
三、简答题(每题15分,共60分)
11. 用适当的方法解下列方程组:
错误!未找到引用源。
错误!未找到引用源。
12.已知方程组和方程组的解相同,求(2a+b)2014的值.
13.如图,8块相同的小长方形地砖拼成一个大长方形,每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)
14.根据要求,解答下列问题.
(1)解下列方程组(直接写出方程组的解即可):
A. B. C.
方程组A的解为,方程组B的解为,方程组C的解为;(2)以上每个方程组的解中,x值与y值的大小关系为;
(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.
参考答案
一、选择题
1. D
【解析】加减法解方程组时,
将方程②变形正确的是2x﹣2y=4.
故选D.
2. C
【解析】∵方程mx+ny=6的两个解,,
∴,
解得:.
故选:C.
3. C
【解析】方程组①直接就有y=2x+1,直接带入第二个吃方程会更加方便一点;
方程组②x的系数相等,而y的系数互为相反数,用加减消元法会更简便.
4. D
【解析】②×4-①×3,得
24x-16y-(24x+18y)=20-9
-34y=11
∴y=错误!未找到引用源。
∴选D.
5. A
【解析】将m=y-3带入第一个方程,得
2x+y-5=1
∴2x+y=4,故选A.
二、填空题
6.消元、代入法、加减法.
【解析】解二元一次方程组的基本思想是消元,
基本方法是代入法和加减法.
故答案为:消元、代入法、加减法.
7.相加,y.
【解析】用加减法解方程组较简便的消元方法是:将两个方程相加,消去未知数y.
故答案为相加,y.
8.y=﹣2x+3.
【解析】,
把②代入①得,2x+y﹣2=1,
整理得,y=﹣2x+3,
故答案为:y=﹣2x+3.
9.2018.
【解析】,
①﹣②得:x+y=2,
则原式=2016+2=2018.
故答案为:2018.
10.,﹣.
【解析】由于等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,
所以,有
解得.
故答案为:,﹣.
三、简答题
11、(1)解:①带入②,得
2[2(y-1)]+(y-1)=5
4y-4+y-1=5
y=2 ③
将③带入①,得
x-2=2
x=4
∴该方程组的解为:错误!未找到引用源。
(2)②-①,得:
-错误!未找到引用源。
y-(-错误!未找到引用源。
y)= -错误!未找到引用源。
-(-错误!未找到引用源。
)
y=错误!未找到引用源。
=错误!未找到引用源。
③
将③带入①,得
错误!未找到引用源。
x-错误!未找到引用源。
= -错误!未找到引用源。
x=错误!未找到引用源。
=错误!未找到引用源。
∴该方程组的解为:错误!未找到引用源。
12、解:由于两个方程组的解相同,则有方程组,
解得:,
把代入方程:ax﹣by=﹣4与bx+ay=﹣8中得:,
解得:,
∴(2a+b)2014=(2﹣1)2014=1.
13.解:设每块小长方形地砖的长为xcm,宽为ycm,由题意得:
,
解得:,
答:长是30cm,宽是10 cm.
14、解:(1)方程组A的解为,方程组B的解为,方程组C的解为;
故答案为:(1);;;
(2)以上每个方程组的解中,x值与y值的大小关系是x=y;
故答案为:x=y;
(3)根据题意举例为:,其解为.。